J. Functional Programming 5 (1): 37-49. January 1995 © 1995 Cambridge University Press 37

Untyped strictness analysis
CHRISTINE ERNOULT' AND ALAN MYCROFT

Computer Laboratory, Cambridge University, New Museums Site, Pembroke Street,
Cambridge CB2 3QG, UK (e-mail: ernoult@info.emn.fr, Alan.Mycroft@cl.cam.ac.uk)

Abstract

We re-express Hudak and Young’s higher-order strictness analysis for the untyped A-calculus
in a conceptually simpler and more semantically-based manner. We show our analysis to be a
sound abstraction of Hudak and Young’s which is also complete in a sense we make precise.

Capsule review

Much of the previous work on higher-order strictness analysis is based on some form of typed
lambda calculus, relying, for example, on ‘polymorphic invariance’ to capture critical
strictness properties of modern functional languages. One notable exception is the work of
Hudak and Young, who in 1986 proposed a strictness analysis for untyped lambda calculus.
Their system used abstract interpretation over a domain of ‘strictness pairs’, the key notion
used to capture strictness properties of higher-order functions. However, this domain used the
syntactic subdomain of variable names. In the current paper, Ernoult and Myecroft replace this
domain with the simpler two-element domain 2, while retaining the key intuition behind
strictness pairs. The resulting development foliows that of Hudak and Young, but is somewhat
simpler and more ‘semantically based’. The results confirm the soundness of Hudak and
Young’s approach, while strengthening and extending previous results.

1 Background

Untyped strictness analysis is currently a little out of vogue. There are two reasons
for this. One is that the standard reference (Hudak and Young, 1986) is
presentationally hard to read and, as we show, is complicated by spurious domain
elements. The other is that most of the functional programming world uses some form
of typed (typically simple polymorphic) A-calculus. Strictness analysis for such
languages benefits from the simple exposition of the Imperial College stable and
various finiteness properties seemingly associated by the decidability of type inference.
However, some properties of, for example, the second-order polymorphic A-
calculus are best proved by appeal to untyped results and, as yet, we know of no
polymorphic invariance properties which allow lifting of results for simple types.

! Current address: Ecole des Mines de Nantes, 4, rue Alfred Kastler, La Chantrerie, 44 070 Nantes Cédex
03, France.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

38 C. Ernoult and A. Mycroft

It is with this interest in such strictness analysis that we give a more fundamental
explanation of the ideas in the untyped A-calculus which both better explains the
theory and encourages its use as a basis for such extended analyses.

We discuss the treatment of domain errors which influence strictness. In particular,
it is common to wish errors to give non-_L values (exceptions) in an untyped language,
but when we see the untyped language used as an underlying implementation of a
typed language such as the second-order A-calculus then (unobtainable) domain
errors should be treated as L to ease strictness analysis.

2 Introduction

Strictness analysis was originated by Mycroft (1981) for the first-order case over flat
domains, using a formalism based on abstraction and concretisation functions.

Temporarily, suppose that D is a flat cpo. Let 2 stand for the set {0, 1} ordered by
0 < 1. Recall that f: D" — D is strict in its kth argument if V¥e D") f(x,,...,X;_1, 1,
Xp11--+» X,) = L. Mycroft developed a strictness theory for first order functions on
flat domains which gave a standard interpretation of a program user-defined function
symbol (say £) as a function f as above and also non-standard interpretation
S*:2"—>2. Such f* satisfy a correctness property with respect to f along the lines of
f*(,...,1,0,1,...,1) = 0= fis strict in its kth argument. This property is respected
by composition and fixpoint extraction and so lifts from base functions to user-
defined functions.

Burn, Hankin and Abramsky (1985) showed that the Hoare (or relational) power-
domain could be used to generate a theory of strictness analysis for the simply typed
A-calculus. (Their system abstracts functions between concrete domains with
functions between abstract domains.)

Around the same time, Hudak and Young (1986) gave a definition of strictness
pairs which enabled them to analyse the untyped A-calculus. They observed that an
expression has not only a ‘direct strictness’ (the set of variables which are evaluated
when it is), but also a ‘delayed strictness’ (the set of variables which are evaluated
when the expression is applied). They suggested that the strictness property should
perhaps be captured by an object, the domain of strictness pairs Sp defined by:

Sp = P(V)x (Sp— Sp)

where V is the set of variable names and 2(¥V) is ordered by reverse inclusion 2. With
every expression e in a strictness environment senv, they associated a strictness pair
that provides properties of e both as an “isolated value’ and as a ‘function to be
applied’:
Flel senv = (sv, sf).

Their work was less semantically-based than Burn, Hankin and Abramsky’s because
its use of power-sets of variable names in the ‘strictness pair’ domain introduced
syntactic objects into a semantic construction. In retrospect, it was both over-
syntactic and unnecessary in the sense that (V) can be replaced by 2 with no loss
of expression power, as we show in Section 3.1, where we use the notation &[]
instead of &[-].

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 39

This work is structured in the following manner. Section 3 explains notation and
the syntax and standard semantics for the untyped A-calculus. It also describes the
problem of domain error. Section 4 gives strictness interpretations which formalise
Hudak and Young’s and also our improvement. Section 5 sets up the relationship
between the standard semantics, Hudak and Young’s strictness and ours. Section 6
shows the correctness and completeness of our strictness interpretation relative to
Hudak and Young’s.

3 Notation and A-calculus

Here we use the word domain to mean complete (pointed) partial order as usual. Let
2 stand for the domain {0, 1} ordered by 0 < 1. Recursive domain definitions are as
usual and +, @, x, - will mean (resp.) separated sum, coalesced sum, cartesian
product and continuous function space.

3.1 Untyped A-calculus

We consider the untyped A-calculus with constants. Let C and V be sets of constants
(including primitive functions) and variables ranged over by ¢ and x, respectively (z
will also be used to range over integer constants). For the purposes of this paper,
we will assume C contains Z and Turing-sufficient arithmetic constants
{plus,minus, cond}. (The first argument of cond is required to be an integer
which is tested for zero/non-zero as in the ‘C’ programming language.) A natural
alternative would be to use the register-machine primitives of {succ, pred, cond}
acting over N.
The set A of A-calculus terms is then:

ecAs=c|x|Ax.e|ee’
The standard domain of interpretation is:
U=Z+U-U)+{wrong}[=Z, ® (U~ U), @ {wrong},]

treating - + - + - as a ternary separated sum. Injections into this sum will be written
in(-), in/-) and in,(-). We use typewriter font for syntactic objects and italic
font for mathematical (meta-language) objects.

In the untyped world we need to inject functions (in U~ U) into U to represent
them as values and outject them from U to U- U to apply them. This can be
summarised by two functions, /lam and app, respectively, such as:

lamx = in(x)
app xy = case x of in(f) = f(y)
elseerr.
Here err typically represents L or in (wrong) (see below). Hudak and Young use the
symbol ‘error’ to represent such domain errors for constants—their treatment of

these (and also for app) suggests they mean our in,(wrong). Milner (1978) used a
similar ‘wrong’ value to handle domain errors.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

40 C. Ernoult and A. Mycroft

3.2 Definition of an interpretation

An interpretation [is a tuple (D,; lam,, app,, num,, plus,, minus,, cond,, err;) where
D, is a cpo and lam,: (D — D)-> D and app,: D— (D — D) are continuous functions;
num,: Z - D is a function and plus,, minus,, cond,, err,e D. (We drop the subscripts
when the context is clear.)

Given such an interpretation, /, we can define the notion of environment (over [)

by
Env, = VD,

We use the letter p to range over environments. Such an interpretation, /, naturally
defines an associated semantics
&:A—-Env,>D,
in the following manner:
&,[x]p = p(x)
&.lelp = Al
&, [Ax.e]p = lam,(Ade D, . & le] pld/x])
€leelp = app(&le] p)(&leT p)
Here we use ; for the meaning of constants—it is simply given by
Hill2] = num,(z)
Aqplus] = plus,
A [minus] = minus,
Hylcond] = cond,.
We write STD to refer to the standard interpretation given by U as domain and the
constants as given below. Arithmetic constants have the usual meanings for
arguments within Z in STD (including numz = in,z)—we now consider their
definition over the larger space D. The otherwise unused err,., provides a convenient
way of varying the error value in plus, app, etc. used in the semantics for constants.
(This is important as strictness depends upon it.) Although this is rather an abuse of
notation, given an interpretation, say STD above, we will write STD[1 /err] or

STDlin, (wrong)/err] to represent an interpretation in which the error value and all
parts of the interpretation which use it are altered.

3.3 Semantics of constants
3.3.1 Treatment of domain errors

We use the phrase ‘domain errors’ to refer to situations such as plus(ix. x)3 or 3(2)
in which an inappropriate value is used for an operand. To clarify this, let us consider
an example, the function F defined by

F=Ax.Ay.plusxy.
Is F strict in y? In the standard interpretation we obviously have

plus(in,(m)) (in,(n)) = in(m+n)

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 41
but this does not define the other cases of plus(in{f)) and plus(in,(m))(in{g)). If we

define
plus(in(f)) = L
then F is strict in y, but if we define

plus(in(f))y = in(wrong)

then F is non-strict in y. Similarly app(in(z)) x and app(in(wrong)) x provide similar
choices which affect strictness.

As Kuo and Mishra (1989) noted, some very specific choices are made in the
denotational semantics regarding such issues as: domain errors due to primitive
functions or whether all looping terms should be regarded as denoting the same value.

3.3.2 Subtlety of partial applications

Note that, even for a fixed choice of domain error value, there is still a non-trivial
choice for semantics of partially applied constants. Clarifying Hudak and Young’s
remark, there is a non-trivial choice of semantics of the (strict, curried) constants due
to the lifting which occurs as a consequence of the above separated sum. (The
problem arises from the non-isomorphism of (4x B—C), and (4->(B—~C))),
which causes n-equivalence to fail.) For example, in the standard interpretation we
can give
Hlplus] = in,Ax.in Ay.case(x,y) of (in, (i), in,(j) = in (i+J)
else err
H'lcond] = in,Ax.in Ay.in Ay .in Az.casex of in(n)=(n+ 0-y,2)
else err
or we can give the following versions (which are more strict in the case of err = L)
A [plus] = in,Ax.casex of in (i) = in Ly .casey of in,(j) = in(i+)
else err
H'[cond] = in Ax.casex of in(n) = (n + 0 (in,Ay.in Az.y),(in, Ay .in Az . 2))
else err

Such differences are important for the precise details of the abstract strictness
interpretation given in Section 4.

To reproduce as closely as possible Hudak and Young’s world, we adopt the
former definitions and errg,, = in, (wrong).

4 Untyped strictness

In this section we give a simpler and more semantically oriented framework for the
strictness analysis of Hudak and Young (1986). Section 3 gave the syntax and
standard interpretation of our A-calculus which yields the standard value domain U,
given in Section 3.1 as

U=Z+(U->U)+{wrong}[=Z, & (U—>U), @ {wrong},}.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

42 C. Ernoult and A. M ycroft

Now, since the abstract domain for Z, is to be 2 as in the first order case, it might
appear that the cpo
PP P S = {1}+(5~$)
is a suitable domain of strictness properties (the separated sum adds a | element
corresponding to 0. However, the untyped nature of functions like Ax.condx7
(Ay .42+ y) means that we need more least upper bounds to exist—in particular any
uncertainty of the value of x requires the A-body to be described as the least upper
bound of an integer and a function. The reasoning is identical to that whereby a non-
deterministic amb operator may require the least upper bound of two differing
integers leading to a power-domain. (In abstract interpretation the uncertainty
induced by imprecise knowledge behaves very much like non-determinism.) Recalling
the natural isomorphism of (A4 + B) and 2(A) x #(B) leads us to complete S with
least upper bounds by usin

PP YUSIIE g 2x(5>5)
which can now be viewed as a simpler formulation of Hudak and Young’s strictness
pairs.?2 We adopt the name strictness pairs and their notation: elements seS are
written <v,f) with s,, s, standing for the components of s.

4.1 Strictness in the presence of domain errors

Note that the treatment of domain errors effects strictness. In the STD[in, (wrong)/err]
interpretation above, we have that Ax.cond(Ay .y) x x is not strict in x and hence
neither is Ax.Ay.condyx x. Sometimes it is simplistically said that ‘strictness
analysis is invalid in the presence of non-_L error values’. A more correct view (which
we adopt here) is that strictness functions need to correspond to standard semantic
functions—hence they must reflect the treatment of err as L or in, (wrong). A minor
error in Hudak and Young’s original strictness interpretation causes the above
functions to be incorrectly analysed as strict.

4.2 Strictness semantic interpretation

We tak
¢ take S=2x(S>S)

as above for the domain part of the interpretation. The function part is given by:
lamx = {1,x)
appxy = {x, N (X 9)e (X, 9)p0
= (X, To.s2 M (xfy)

err =<{1,As.err)

= T, (the unique fixpoint)
numz = {l,As.err)
plus = minus = {1,Ax. {1, y.(x, Nl y,, As.err)>>
cond = {1,hx.{1,Ay {1,Az.{x, N (¥, U z,), ¥, Uz D>>>

= {L,Ax. {1, p. {L,Az.{x, Te.s> N (¥ U 2N

? Later, Young suggested this domain in his PhD dissertation (Young, 1989), but did not carry through
with it in the analysis.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 43

The strictness interpretation of cond above is for the first choice (i.e. Hudak and
Young’s) of standard semantics of plus and cond given in Section 3.3.2, i.e. when
cond 1 + L. For the case of cond L = 1 we would have the better (enabling more
strictness inferences) interpretation as

plus = (1, Ax.{x,Ay.x, N y,As.err)>>

cond = {1, x.{x,,(x,=0)—>As.err,Ay.{1,Az.(y U 2)D>).
We will refer to this interpretation as £M and use ‘EM’ subscripts on its components
when the context requires.

4.3 Hudak and Young’s strictness interpretation

Let us call HY -strictness the strictness interpretation HY defined by
(Syy;lamy,, appyy, numy.., plus .., minus,, ,, cond,,, err,.)

satisfying the definitions below. These are taken from the strictness semantics of
Hudak and Young, save that we use the J symbol to denote the least upper bound
on S,,—S,, but inexplicably they use N ‘for clarity’. Similarly, to make the
semantic basis clearer, we have used the U symbol instead of the synonymous n on
(#(V), =) and similarly N for U. We also have no need for ‘hatted’ variables X to
range over sets of variables which they used because of their mix of syntax and
semantics. HY is given, dropping subscripts, by:
S=(2(V),2)x(S>S)
lamx = {{}, x>
app xy = <x, N (X;¥)y (X, ¥);>
=<x,, T2 N (xf)’)
err ={{},As.err)
=T s
numz = {{},As.err)
plus = minus = {{},Ax.{{},Ay.{x, N y,As.err>>)
cond = {{}Ax. LAy K{hAz.{x, N (y, U z,), 5, Uzd))
=LA LAy Az (x, T N (y U 255D
It appears that merely re-phrasing Hudak and Young’s formulation as an
interpretation helps to separate syntax and semantics.

4.3.1 Warning

As we noted in Section 4.1, the definition of cond,,, is only correct with respect to
errgpp = L not errg,, = in, (wrong). Accordingly, to ensure the correctness of the
following theorem from now on we take
HAsrplcond] = in Ax.in Ay.in Az .case x of in(n)=>(n + 0 y,z)
else L
instead of that given in Section 3.3.2.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

44 C. Ernoult and A. Mycroft

5 Relationship between various interpretations
We claim the following results:

(1) (From Hudak and Young) HY(= HY [TSHy/err]) is a correct abstraction of
STD (= STD[in, (wrong)/err}).

(2) HY[L /err] is a correct abstraction of STD[L /err].

(3) EM is a correct abstraction of HY.

(4) EM is complete for HY.

(5) EM|[L/err] is a correct abstraction of HY[L /err].

(6) EM|[L/err] is complete for HY[L /err].

The correctness relations between STD and EM hold by transitivity.
The next section sets about proving that results 3 and 4, i.e. that EM is a correct
abstraction of HY, which is also complete.

6 Relationship to Hudak and Young’s strictness

We now set up a relationship between HY-strictness HY and EM-strictness EM from
Sections 4.2 and 4.3. This relationship is then shown to induce an abstraction of HY-
strictness into EM-strictness. Moreover, the abstraction is complete in that all
properties exploited by Hudak and Young are derivable via our strictness
interpretation.
For notational reasons, in this section we will use A for S,,, and B for S,,,.
Both A4 and B are given as recursive function spaces, viz.

A=2%x(A4->A)
B=(#(V), 2) x(B—B).
Let us define y,: 2 2(V) by
YI(O) =V
Y,(1) = {}.
Now, the relation we seek to define should satisfy
~C AxB
)~ (r.8<=y=r1(x)A(VacA,beB)a~ b= fla) ~ g(b)
but it is unclear whether this is well-defined. To prove the unique existence and
various properties of ~ we define it simultaneously with the inverse limit construction
for A and B.
Recall that domain equations like that for 4 above are solved by the inverse limit
construction—we put 4, = {1}, the trivial domain, and thenput 4,,, =2 x(4,—> 4,).

There are embedding i, : A, - A, ,, and projection p,: 4,., ~ A, maps between 4, and
Ay, A is obtained as the limit

A, ={(aga,,..)e]] A4l @, = plac)}

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 45

The isomorphism of A and 2 x (4 - A) is obtained pointwise from the p, and i,. The
construction for B is identical.
We can define approximants of ~ in the following manner

~y S A x B,
A
a ~yb<true

) ~ e () g)éy =7,(x)A
(VaEAk,bE Bk)a ~kb=>f(a) ~kg(b)

and hence properly define
~S AxB

@y-ay,...) ~ (by, by, ..)= (V) a, ~ . b,.

It is convenient to write
1
~ S 2xPV)
2
~e & (Alc g Alc) X (Bk -> Blc)
1 A
X~y y=1v,(x)

2 A
S~rng(VaeA,,beB)a~ b= fla) ~, gb)

1 2
so that)~) x ~YAf~ i 8

It is also convenient to define here the type-induced (‘logical’) relations from ~.
Allowing ¢ to range over meta-language types given by t==D|t—t we define

a~Phbea~b

f~rges((Vx,y)x ~ty=fx~Ygy).

2
The limit relation ~ now coincides with ~ 272,

We now have distributivity lemma for ~:

Lemma: ~ preserves arbitrary LUBs and GLBs (including 1 and T) in that, given
possible empty sequences a'e A,b'e B, we have

(V) a' ~ by = (Ud* ~ b A N ~ N5,
1 i

6.1 Proposition: relatedness

For all A-terms e A we have that

(YN€Envgy, pe Envyy)n ~ p=> Epyleln ~ Eyylelp

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

46 C. Ernoult and A. Mycroft

where n ~ p<> (Vxe V)n(x) ~ p(x). It turns out that this abstraction relation is both
correct and complete and we study these aspects after a proof sketch.

6.2 Proof

We prove the above proposition by structural induction on the (object) term e. But
first we need some lemmas, viz.

D—~(D-D)
apPem ~ appPyy
lamg,, ~ P22 lam,,

(Vze Z)numg,(2) ~ numy,(z)
Plusgy ~ plusyy

MInUS g, ~ MINUS,

condy,, ~ cond,,,

errpy ~ erry,

Given these lemmas, proved below, the theorem is a trivial structural induction. We
give two cases:

e case e = x: trivial.

e case e=Ax.¢’: by inductive hypothesis, supposing also a ~ b then &g,le’]
nla/x] ~ &,,[e’1 p[b/x]. Hence by the lemma lam,, ha. 8, le'lInla/x] ~ lamy,,
Ab.Eyyle’) plb/x].

Proof of lemmas We give the representative cases for app and cond.
o apppy ~""PPapp,,. assume a~b and a ~b then, expanding
the definitions of app,, and app,,,, it is equivalent to prove

a,, Tasa N (a;0) ~ by, Tppd N (5, D).

1 2
This holds since a ~ b<>a, ~ b, Aa, ~ b, and the lemma for ~ -preservation of L
and M.
e cond,, ~ condy,,. We need to prove

(LAaa. {L,Aa' {1, a” {a,, T, > N (@ Ua)))
~ LA LAY (3D b, T p) N (B U D).

Assume a ~ b,a’ ~ b’ and a” ~ b” then, using the recursive definition of ~ and
recalling that 1 = T, and {} = T, this is equivalent to

1
T,~TgAla, T, on{@ua)~<b, Tg,gpn (@ Ud).

The first conjunct holds by definition, and by the lemma for ~ -preservation of U
and N it suffices to show

<ava TA—-A) ~ <bv, TB—»B)'

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 47

This holds since a ~ b= a, ~ b, and
2
Taoa=rx€A. T, ,~ryeB. T,=Tg. 5

6.3 Proposition: soundness

The relation ~ restricts to a embedding-closure pair (an abstraction of B = §,,, by
A = Sg,,). The concretisation and abstraction maps respectively are y: A— B and
o: B—~ A given by

v(a) = U{beB|a ~ b}
a(b) = N{acA|la ~ b} = N{acA|y(b) E a}.

The o and y form a galois connection as usual and correctness of the remainder of
the interpretation (i.e. lam, app, plus, etc.) with respect to (a, y) follows from the base
lemmas above.

6.4 Proposition: completeness

Since the trivial abstract interpretation would be sound with respect to HY -strictness,
we now show that EM-strictness can provide all the information that HY-strictness
can. This is a completeness argument. Note that we cannot expect to have a natural
completeness result of the form ‘EM-strictness of expressions determines their HY-
strictness’. Consider the term Ax.x: this has HY-strictness of ({},Axe Sy, .x) and
EM-strictness of (0,Axe S,,,.x). It is unreasonable to expect some function of the
latter, coarser-grained, interpretation to yield the former, finer, one. (The general
question of completeness in abstract interpretation is addressed by Mycroft, 1993.)

Accordingly, our completeness result relies on the observation that Hudak and
Young’s analysis makes strictness optimisations only on the basis of limited
predicates (actually whether the first component of S,,, is empty or non-empty). The
rest of the internal structure is non-observable. Accordingly, we wish to assert that
our simpler internal structure gives rise to precisely the same observable properties.

The key notion is that both the EM and HY interpretations are only used for
strictness optimisations, i.e. early evaluation of an expression. Although it is rarely
clearly stated, we implicitly have a predicate whose result tells us when an abstract
value permits strictness optimisations. Here, this predicate (subset of S,,, or Sg,,) is

iven by
® p.f)=v= 1.

This is a sound predictor of when the standard interpretation gives 1 for some
prescribed assignments of values to free variables. We abuse notation by using p as
a predicate both on S,,, and S.,,.

Our completeness result is that, for all meta-terms c,

(VM€ Envyy,, pe Envyy)n ~ p=> (p(Egplel m) <> p(Eyylel p)).

Thus all optimisations permitted by the HY interpretation are also permitted by the
EM interpretations. This forms the basis of our claim that the HY domain had
spurious elements.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

48 C. Ernoult and A. Mycroft

7 Problem of infinite chains

Hudak and Young (1986) mentioned that their higher-order analysis is not guaranteed
to terminate. Indeed, this is the case when a strictness pair needs to be applied an
infinite number of times. They gave the following example: £ = Ax . £ x x which leads
to EM-strictness

s = (LAx. (s, N (8,%), N ((5,%),%), ((5,%), %)

or HY-strictness

s=<L{{}LAix.{s5,V (sfx)v U ((s, x)fx)m ((ij)fx)f>>'

There is a circularity which Hudak and Young suggest is due to the fact that ‘early’
elements of (V) in the nested pairs depended on ‘deeper’ S}, - S}, elements. Note
that, because HY- (and EM-) strictness inherits undecidability from the pure A-
calculus part of the standard interpretation, limiting such infinite chains is undecidable
and not merely an algorithmic problem. Hudak and Young make the suggestion that,
to avoid such chains, we may be able ‘to impose a weak type discipline’. The next
paragraph shows how this could work for the simply typed A-calculus and, although
this is clearly not the best way to handle the simply typed A-calculus, it points to how
one might treat the second-order A-calculus.

8 Further work

It would be desirable to consider whether certain finite-height lattices could represent
strictness properties for the untyped A-calculus instead of the infinite chains present
in Hudak and Young. For example, if the given program in A corresponds to a (type-
stripped) program in the simply typed A-calculus (with (object) types ranged over by
t) then we can use), T[] for the value domain (a retract of D = Z+(D - D)) and
hence Y 7,[1] for the strictness domain (a retract of S = 2 x (S—S)) where

T linf] = X
Tt~ 1= Tyl > T

This exhibits within our model (Burn et al., 1985), and the key point is that) F;[/]
has no infinite ascending chains. The key question is to whether there exists finite
height models for another subset of A, those programs corresponding to second-
order polymorphically typable terms—this would enable us to conclude Hudak and
Young’s suggestion of modelling list operators as A-terms and thereby inheriting a
sensible strictness theory.

Acknowledgements

Thanks to Andy Pitts for explaining subtleties of recursive function spaces. We are
indebted to the referees for their careful reading and apposite comments of the draft
version of an earlier version of this paper (Ernoult and Mycroft, 1991) which included
sketched versions of these results. This research was supported by SERC grant
GR/H14465.

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

Untyped strictness analysis 49

References

Burn, G., Hankin, C. and Abramsky, S. (1985) The theory and practice of strictness analysis
for higher order functions. Proc. Programs as Data Objects Workshop. Springer-Verlag.
Ernoult, C. and Mycroft, A. (1991) Uniform ideals and strictness analysis. Proc. 18th ICALP,

Springer-Verlag Lecture Notes in Computer Science, 510.

Hudak, P. and Young, J. (1986) Higher order strictness analysis in untyped lambda calculus.
Proc. 13th ACM Symp. on Principles of Programming Languages.

Jones, N. D. and Ganzinger, H. (eds.) 1985 Programs as Data Objects: Proc. of a Workshop,
Copenhagen, Denmark. Springer-Verlag Lecture Notes in Computer Science 215.

Kuo, T.-M. and Mishra, P. (1989) Strictness analysis: a new perspective based on type
inference. Proc. Functional Programming and Computer Architecture Conference (ACM-
IFIP).

MacQueen, D., Plotkin, G. D. and Sethi, R. (1984) An ideal model for recursive polymorphic
types. Proc. 11th ACM Symp. on Principles of Programming Languages.

Milner, R. (1978) A theory of type polymorphism in programming. JCSS.

Mycroft, A. (1981) Abstract interpretation and optimising transformations of applicative
programs. PhD thesis, Edinburgh University. (Available as computer science report CST-15-
81.)

Mycroft, A. and Jones, N. D. (1985) A relational framework for abstract interpretation. Proc.
Programs as Data Objects Workshop. Springer-Verlag.

Mycroft, A. (1993) Completeness and predicate-based abstract interpretation. Proc. ACM
Conf. on Partial Evaluation and Program Manipulation.

Young, J. (1989) The theory and the practice semantic program analysis for higher-order
functional programming languages. PhD thesis, Department of Computer Science, Yale
University. (Available as research report YALEDU/DCS/RR-669.)

https://doi.org/10.1017/50956796800001222 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001222

