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In this paper we characterize those locally convex lattices which can be represented as
dense sublatices containing 1 in a space C(X) and whose topologies can be recognized as
topologies of uniform convergence on selections of compact subsets of X. Here C(X) is
the lattice of continuous real-valued functions on a completely regular space X. The class
of such locally convex lattices includes the classical order unit spaces investigated by
Kakutani [3], arbitrary products of order unit spaces, for example [I L", and the order
partition spaces studied in [1].

We remark that Jameson [2] obtained a representation theorem for arbitrary M-
spaces as sublattices of C(X) with topologies of uniform convergence on certain compact
subsets. In his general setting the sublattices need not be dense nor separate the points of
X. Also, Kuller [4] obtained an algebraic representation for a complete locally convex
lattice with topology T satisfying what he called condition (U) and observed a topological
correspondence analogous to that obtained by Michael [5] for locally m-convex algebras:
namely T is finer than the topology of uniform convergence on certain compact sets. We
show in Theorem 1 that condition (U) for a locally convex lattice (not necessarily
complete) is equivalent to being representable in our sense, so that T is in fact equal to the
topology of uniform convergence on a collection of compact sets. We also show in
Theorem 1 that this representability is equivalent to having a quasi-interior point and
what we call a unit condition.

Given such a representation, we prove (Theorem 2) that the carrier set X and the
compact subsets are unique, but that the possible topologies on X form a closed interval
between a weakest a and a strongest cu.

In §2 we show (Theorem 3) that the completion of a space having a quasi-interior
point and unit condition can be identified with C(X, a>) in the topology of uniform
convergence on these compact sets.

In §3 we contrast this topology with the topology of uniform convergence on all
compact subsets.

One might wish to compare this representation with the representation of Banach
lattices having quasi-interior points as continuous extended real-valued functions consi-
dered by Lotz and Schaefer [6].

1. Stone-Weierstrass Embeddability. A positive element e in a locally convex
lattice V is a quasi-interior point if the order ideal generated by e is dense in V. We will
say that V satisfies the unit condition if for each lattice semi-norm p in a generating (not
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necessarily directed) collection, the quotient norm space V/ker (p) has a unit (i.e., a
largest element in its unit ball). Clearly, p is M-convex.

For brevity in what follows, we introduce some notations. Given a topological space
(Y, T), we will use the symbol JK to denote a collection of compact subsets of (Y, T) whose
union is Y. By Cx(Y, T) we will mean the space of all real-valued continuous functions on
(Y, T) with the topology of uniform convergence on the sets in X. Without loss of
generality, we will assume that JC contains all closed subsets and finite unions of its
members. We will say that a topological vector lattice V is Stone-Weierstrass embedded in
Cx(Y, T) if there is a lattice isomorphism and homeomorphism of V onto a dense
sublattice of Qf(Y, T) containing 1.

We recall (see [4]) that a locally convex lattice V satisfies condition (U) if there is a
positive element e in V such that for each lattice seminorm p in a generating collection,
p(e)>0 and if p(u)<p(c) then u < e in V/ker (p).

THEOREM 1. For a locally convex lattice V, the following are equivalent.
(1) V can be Stone-Weierstrass embedded in a Cx (X,a) for a completely regular

topology o-.
(2) V has a quasi-interior point and satisfies the unit condition.
(3) V satisfies condition (U).

Proof. That (1) implies (3) is clear.
To see that (2) implies (1), let 0* be a collection of lattice seminorms generating the

topology of V such that for each p in $P, the quotient Vp of V by the kernel of p has a
unit. By Kakutani's order unit theorem, we can embed (Vp, p) in C(K) for some compact
K. Let /p denote the order ideal in Vp generated by the image e of e. Since the ideal
generated by e is dense in V, /„ is dense in Vp, so that the image of e in C(K) is never
zero, it follows that e is an order unit for Vp and Vp = Ip. We can thus embed Vp in C(KP),
where Kp is the set of lattice homomorphisms y on Vp having y(e) = l with the weak
topology from Vp. We conclude that for all v in V, p(v) = p(v) is equivalent to
sup{|y(u)|: yeKp}. Let Z be the set of lattice homomorphisms x on V having x(e) = l,
with the weak topology a from V. Where jp is the adjoint of the quotient map from V
into Vp, mapping Kp into Z, we let X be the union of subspaces jp(Kp) over the
seminorms p in 0*. Clearly the map from V into C(X, a) given by v(x) = x(v) is a lattice
homomorphism. To see that it is one-to-one, we note that u^O implies p(u)^0 for some
p in 0>, so that y(t;)^O for some y in Kp, implying that u(/p(y))^0. Finally, letting %
denote the collection of compact sets jp(Kp), we see that V is homeomorphic to its image
in Qc(X, a), since p(v) is equivalent to sup{|u(x)| : xejp(Kp)}.

To show that (3) implies (2), we first observe that the unit ball of (Vp, p) has a largest
element e/p(e), since if p( t i )s l then p(p(e)u)<p(e) so that, by condition (U), u<e/p(e).
It now follows that for each v in V there is an N such that u sNe , so that i)-tJAjVe = 0,
implying p(v~VANe) = 0. Thus the conditions of (2) are satisfied.

LEMMA. Let topological vector lattice V be Stone-Weierstrass embedded in C%(Y,T)

with d the pre-image of 1. Then Y is the set of all continuous lattice homomorphisms z on V
such that z(d) = l.
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Proof. Let z be a continuous lattice homomorphism on V with z(d) = 1. There is a
compact set K in 3£ such that |z(u)|<Ap(u) = A sup{|u(x)|: xeK} for some A>0. The
induced continuous lattice homomorphism z on the quotient of V by the kernel of p,
given by z(tJ) = z(u), can be continuously extended to C(K) in the supremum norm
topology, since the quotient is dense in C(K). Since z(d) = \, z is a point-evaluation
functional; hence z is in Y. Clearly, the points in Y satisfy the condition.

THEOREM 2. Let a topological vector lattice V be Stone-Weierstrass embedded in
Cx(X, cr) where a is the weak topology induced on X by V. There is a finest topology a> on X
containing a such that each K in X is compact in to. The space V is Stone-Weierstrass
embedded in CX'(Y, T) if and only if there is a bijection $:Y—*X such that the
mappings , _, ,

(X,«)±->(Y,T)^(X,<r)
are continuous and tpjfC' = X

Proof. Let w be the supremum of all topologies T 2 <x on X such that each member of
3fi is compact in T. For each such r, and K in %, T restricted to K equals a restricted to K.

Each basic open set in w restricted to K is of the form K n I f] Ot )= f] (K n Oj) for Of in

some T; and hence is open in a restricted to K. This proves the first assertion of the
theorem.

Suppose V is Stone-Weierstrass embedded in CX{X, a) and in Q^Y, T) with
embedding maps j and /', respectively, and let e and e' be the corresponding pre-images
of 1 in V. We define mappings ip : Y —» X and $ : X —» Y by setting \\i{y) = y/y(e) and
(j)(x) = xlx(e'), where x and y are viewed as lattice homomorphisms on V. These
mappings are well-defined by the lemma and the fact that e and e' are quasi-interior
points (so that y(e) and x(e') are never zero). It is easy to verify ip and <fr are inverses of
each other. As a mapping from (Y, T) to (X,\}n), ip is a homeomorphism, so that its
adjoint ip* : C(X, ipv) - • C(Y, T) is an isomorphism. We define q : C(Y, T) -^ C(Y, T) by
setting q(f) = flje. One can verify that the following diagram is commutative:

>F(X)

Here F(X) is the set of all function on X, and i and t are inclusions. It follows that for
each v in V, jv is continuous on (X, \\n). Thus ipr^a. Hence \p : (Y, T) —» (X, a) is
continuous. Since the mappings of the diagram are homeomorphisms (into), for K in X
there is a K' in X' such that pK°y is dominated by a multiple of Pw°(<P*<iJ') ~ P*KIO7- Since
V separates X and contains the constant function 1, we conclude K^ipK'. Similarly, each
ipK' in ipJC' is contained in some K in 3iT. Thus i|$T = 3if. Since each K in X is compact in
tpr, it follows that CO2</T. Thus «^-1 : (X, w) —» (Y, T) is continuous. This proves the
sufficiency of the second assertion; the necessity can easily be readily verified.
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For convenience, we will call a locally convex lattice having a quasi-interior point and
satisfying the unit condition an M*-space. We see in Theorem 2 that the carrier set X and
the collection % are essentially unique for an M*-space. However, the topologies for X
can range from a to w; we will call this collection of topologies the carrier interval [cr, to].
For an example in which this carrier interval is non-trivial, consider the usual topology T
on the interval [0,1] and the M*-space C^-([0,1], T) where % consists of all finite subsets
of [0,1]. Then a is the usual topology, a> is the discrete topology, and

2. The Completion of an M*-space. Let M*-space V be Stone-Weierstrass embed-
ded in Qf (X, T), with carrier interval [cr,«]. We recall that T is a k-topology on X if the
open sets of T are precisely those sets O such that O n K is relatively open for each
compact subset K of X. In analogy, we will say that T is a jK-topology on X if the open
sets of T are precisely those sets O such that O D if is relatively open for each (compact)
set K in 3f. Clearly, each $f-topology is a k -topology.

The next proposition is used in the proof of Theorem 3.

PROPOSITION 1. The topology &> is a %-topology, the only %-topology in the carrier
interval [cr, <u].

Proof. Let cj* be the 3if-topology on X whose open sets are precisely those sets U
such that UDK is relatively open in w for each K in %. Clearly w* is finer than <a and,
since each member of 3£ is compact in a>*, we have (o* = w. For T in [cr, OJ] and K in JC, as
noted in the proof of Theorem 2 a set is relatively open in (K, T) if and only if it is
relatively open in (K, CJ). Thus if T is a 3if-topology, it must be w.

THEOREM 3. The completion of an M*-space is lattice isomorphic and homeomorphic to

Proof. In view of Theorem 2, it is sufficient to prove that C^(X, <o) is complete. Let
{fa} be a Cauchy net in C^(X, w). The restriction of {/„} to a set K in S?C is Cauchy in the
supremum norm space C(K) and thus has a limit fK in C(K). The function / defined on X
by f(x) = fK(x) for x in K is continuous on (X, w) since w is a JK-topology. It is clear that
{/„} converges to / in CX(X, w).

Proposition 1 and Theorem 3 imply the well-known result that C{K) with the topology of
compact convergence is complete if X is a fc-space.

We observe that <o need not be completely regular. Let the real line R have the
topology 8 generated by the usual open sets togeather with the set R\{^ : n = 1, 2 ,3, . . .} .
Since 8 is finer than the usual topology, C(R, 8) separates the points of R. Thus R is the
carrier set of CW(R, 8) where JK is all the compact sets of (R, 8), and 8 is in the carrier
interval [cr, cu]. Clearly, 8 is first countable, so that (R, 8) is a fc-space, implying here that
5 is a 9if-topology. It follows from Proposition 1 that 8 is the unique X-topology w. But
{£ : n = 1,2,3,...} cannot be separated from 0, so that w is not completely regular.

Although a> need not be completely regular it can be replaced by an associated
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completely regular topology w* (the weak topology induced on X by C(X, <o)) so that

The next proposition can now be easily proved.

PROPOSITION 2. Let V be an M*-space with carrier interval [a, a>]. Then the following
are equivalent:

(1) a = <o#;
(2) C(X,cr) = C(X,<o);
(3) Cx(X, cr) is complete.

Moreover, completeness of V implies these conditions.

3. The topology of compact convergence. The question arises: Are the compact sets
of w precisely the collection 3if? The following example shows that this is not always so.
Let T be the usual topology of the interval [0,1] and let the compact sets of 3£ be the
convergent sequences of [0,1], augmented by their limits. For the M*-space
CW([0,1], T), cr = T. Also, cr = oy since these topologies agree on the sets in % and a is first
countable. But there are compact sets in ([0,1], w) which are not in JK.

We remark that in the above example, C([0,1], T) is complete in both the topology of
uniform convergence on the sets in 3if and the finer topology of uniform convergence on
all compact sets, by Theorem 3.

Clearly, if all M-convex seminorms on an M*-space are continuous, then the
compact sets of w are precisely those of X. More generally, it would be of interest to
know conditions for an M*-space to be represented with the topology of uniform
convergence on all compact subsets of (X, w). The orthogonality condition studied in [1]
provides one such condition in a restricted setting.
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