
ON SUMS OF SETS OF INTEGERS 

J. H. B. KEMPERMAN AND PETER SCHERK 

1. Introduction. Small italics denote integers. Let A, B} . . . be sets of 
non-negative integers. Let A (h) be the number of positive integers in A that 
are not greater than h. Finally let A + B denote the set of all integers of the 
form a + b where a (Z A, b C B. The following result is implicitly contained in 
Mann's Proposition 11 (4): 

THEOREM 1. Let n > 0 and 

(1.1) 0 C 4 , OCB, n<tC = A+B. 

Then there exists an m such that 

(1.2) C(n) - C(n - m) > A(m) + B(m)y 

(1.3) 0 < m < n, 

(1.4) m(£C, 
especially 
(1.5) m Ç£ A and m Çf_B. 

Finallyy a + n — m C C for every a C A, a < m. 

In this paper, we prove several theorems related to Theorem 1. Like Theorem 
1, each of them readily implies Mann's famous result: Let » > 0 , 7 < 1 ; 0 C ^ » 
OCB, C = A+B 
and A (k) + B(k) > yk (k = 1, 2, . . . , n). 

Then C(n) > yn. 

2. Khintchine's inversion principle. Let n > 0 be an arbitrary but fixed 
integer and let / be the set of the non-negative integers <w. Let A, B, . . . denote 
subsets of / . Put 
(2.1) A ® B = (A + B) n L 

Following Hadwiger, we define the difference C © A of C and A as the set of all 
the d C / such that A 0 d C C (2). Thus C 0 A is the largest subset D of / 
such that A ® D C C. Obviously 

(2.2) A ®BC C<->BC CQA. 

The inversion A of A is defined to be the set of all the integers n — â C I 
where â (£ A (3). Thus 
(2-3) ( I f = A. 
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If n Çt A, then O C i ; and if 0 C A, then n (£ Â. We readily verify 

(2.4) CQA= D<-*A ® C = D 

and hence, by (2.3), 

(2.5) I Q C = (C ® A)~ = (A ® C)~ = C Q A. 

Furthermore, from (2.2) and (2.4), 

(2.6) A ® B CC+->A ® CCB. 

This is a slightly modified version of Khintchine's Inversion Formula (3). It 
enables us to deduce new results from given ones. 

We note that 

(2.7) C(k) = k - C(n - 1) + C(n - k - 1) (0 < k < n - 1) 
and 
(2.8) C(n) = n - 1 - C(n - 1) if 0 C C. 

3. The dual of Mann's theorem. Using the above notations, Mann's 
theorem can be reformulated as follows: 

THEOREM 1A. Let 

(3.1) ACL BCI, C = A ®B 
and suppose 
(3.2) O C i , 0 C £ , n(ZC. 

Then there exists an m such that 

(3.3) C(n) - C(n - m) > A{m) + B{m), 

(3.4) 0 < m < n, 

(3.5) m<tC% 

and 
(3.6) n - mCC Q A. 

We note once more that (3.5) and (3.2) imply 

(3.7) m(ZA, m (IB 

and that (3.6) and (3.2) yield 

(3.8) n - niQC. 

Applying Khintchine's Inversion Formula to Theorem 1A, we obtain 

THEOREM IB. Let 

(3.9) ACL BCI, A ©BCCCI 

and assume (3.2). Then there exists an m satisfying (3.3), (3.4), (3.6) and 

(3.10) n - niCC Q B. 
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Again (3.6), (3.10), and (3.2) will imply (3.7) and (3.8). 

Proof. Put 
(3.11) D = CQA. 
Thus by (3.9) and (2.2) 
(3.12) BCD 
and by (2.4) 
(3.13) C® A = D. 

From (3.2) and (3.12) we have 

(3.14) OCC, OCA, n(£D. 

By Theorem 1A, there exists therefore a number m satisfying (3.4) such that 

(3.15) D(n) - Din - m) > C(m) + A(m)9 

(3.16) m (ID, 
and 
(3.17) n - m CD 0 C. 

Here, (3.16) is equivalent to (3.6). Furthermore, (3.17), (2.5) and (3.12) imply 

n-tnCDQC^CODCCOB, 

i.e. (3.10). Hence we also have (3.7) and (3.8). It remains to verify (3.3). 
Since 0 C B C D C C, (3.15) implies on account of (2.7) and (2.8) 

(3.18) Cin - I) - C(n - m - 1) > A(m) + Dim - 1) + 1 

if 0 < m < n, and 

(3.19) Cin -i)>A(n)+ D(n - 1) 

if m = n. By (3.7), we have m <£ B. Hence (3.18) and (3.12) yield 

C(n) - C(n - m) > Cin - 1) - C(n - m - 1) - 1 > A(m) + D{m - 1) 
> A(m) + B(m - 1) = A(m) + B(m) 

if 0 < m < n. If m = w, then (3.19), (3.12) and m = n (£ B imply 

C(n) > C(n - 1) > A(n) + D{n - 1) > Ain) + B(n - 1) = Ain) + B(n); 
q.e.d. 

4. Analogues of Mann's theorem. Theorem IB can be improved slightly: 

THEOREM 1C. Under the assumptions of Theorem IB there exists an m satis
fying (3.3), (3.6), (3.10) (and therefore also (3.7) and (3.8)) and 

(4.1) m = n, or 0 < m < \n. 

Applying the Inversion Principle to Theorem 1C, we obtain a corresponding 
extension of Theorem 1A (cf. §5, Remark (vii), below). 

We shall also prove 
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THEOREM 2A. Suppose A, B, C satisfy (3.9), 

(4.2) O C i , 0 C £ , 
and 
(4.3) C(n) <A(n)+B(n). 

Then there exists an m satisfying (3.4) such that 

(4.4) C{n) - C{n - m) > A(m) + B(m) - 1, 

(4.5) mCA, mCB, 
and that 
(4.6) XmCC Q A and \m C C 0 B 

for every integer X such that \m <Z L 

Define for any D Q I 
1 if 0 C A 

0 if 0 <l D. 
Thus 
(4.8) D{n) = n - Z>(n - 1) - c(Z>). 

Replacing ^4, J5, C consecutively by B, C, Â, we deduce from Theorem 2A 

THEOREM 2B. Suppose A, B, C satisfy (3.9), 

(4.9) OCB, n(£C, 
and 
(4.10) C(n) < A(n) + B(n) - (c(C) - €(4)) . 

(Obviously 0 < e(4) < e(C) < 1.) T ^ n there exists an m satisfying (3.4) such 
that 
(4.11) C(n) - C(n - m) > A(m - 1) + £(ra - 1) + e(i4), 

(4.12) w C £ , n - m(tC, 
and 
(4.13) X w C C e i , n -\m(ZA ® B 

for every integer X such that \m C I> 

We note that m = 1 implies C = / in Theorem 2A. In 2B it implies that A 
is empty (cf. (4.6) and (4.13)). 

Let m = n. Then C(w) = A(n) + B(n) — 1 and » C 5 in both theorems. 
Furthermore nQAin Theorem 2A but n £ A, 0 (£ A, 0 <£ C in Theorem 2B. 

5. Generalizations to ordered groups. An ordered group is an (additively 
written) commutative group G = {g, g', . . .} with a transitive ordering such 
that g' < g" always implies g + g' < g + g". The following examples may be 
of interest: 

(4.7) e(D) = 
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(i) G is the set of all real numbers with the ordinary addition. 
(ii) G is the set of positive real numbers, their "sum" being their ordinary 

product. 
(iii) Let X > 0. G is the set of real numbers greater than — 1/X and the 

"sum" of g and h is defined to be g + h + \gh. 
(iv) G is the set of real vectors (ri, . . . , rm) with the ordinary addition and a 

lexicographic ordering. 
Let n C G be given; n > 0. Let / be the set of all the g s with 0 < g < n. 

Let A, By . . . again denote subsets of / . Then the definitions of Section 2 and 
the formulas (2.2) — (2.6) will carry over. Put 

(5.1) D{g) = £ 1. 
0<d<g 

dCD 

We can now state our main results: 

THEOREM I. Let A, B, C be finite subsets of I, 

(5.2) A ® B C C, 
and 
(5.3) 0 C 4 , 0 C £ , n<tC. 

Then there exists an m Cl G with the following properties: 

(5.4) C{n) - C(n - m) > A{m) + B(m), 

(5.5) m = n or 0 < 2m < n, 

(5.6) n-mCCeA, n - m C C QIB. 

THEOREM II. Let A, B, C be finite subsets of / , 

(5.7) A ® B CC, 

(5.8) 0 C 4 , OCB, 
and 
(5.9) C(n) <A(n) + B(n). 

Then there exists an m C G with the following properties: 

(5.10) C(n) - C(n - m) > A(m) + £(ra) - 1, 

(5.11) 0 < m < », 

(5.12) m C ^ 4 , m C £ , 
and 
(5.13) \ w C C 0 i , XrnCCQB 

for every integer X swcA £to Xw C I-

Remarks, (i) If G is the group of the ordinary integers, then the above 
theorems specialize to Theorems 1C and 2A respectively. 
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(ii) Theorem II remains valid if G is merely an ordered semi-group, i.e. a 
transitively ordered set with a commutative and associative addition such that 
g' < g" always implies g + gf < g + g". Furthermore G is supposed to have a 
null-element 0 such that g > 0 for every g ^ 0. However this extension to 
ordered semi-groups is only apparent since any ordered semi-group can be 
imbedded into an ordered group. 

(iii) Both theorems remain valid if we replace (5.1) by 

(5.14) Dig) = £ f{d) 
0<d<g 

dQD 

where f{g) is any non-negative non-decreasing real-valued function in G. These 
generalizations can be proved along the same lines as the original theorems. 

(iv) Let Â denote the complement in / of a subset A of / . By applying the 
Inversion Principle to Theorem I, we obtain the following generalization of 
Mann's Theorem 1A: 

THEOREM I7. Let Â, B, C be finite subsets of I such that (5.2) and (5.3) hold 
true. Then there exists an m C G satisfying (5.5), 

(5.15) A(m) > Birn) + (C(n) - C(n - m))9 

and 
(5.16) m (I A 0 B, n-mCCQA. 

We note that A and C need not be finite. 
(v) In the same fashion, Theorem II yields the following generalization of 

Theorem 2B : 

THEOREM II ' . Let Â, B, C be finite subsets of I satisfying (5.7), 

(5.17) 0 C £ , »<ZC, 
and 
(5.18) A{n) - e(A) < B(n) + C(n) - e(C) 

(cf. (4.7)). Then there exists an m C G which satisfies (5.11), 

(5.19) 2 l>B(m)+ C{n) - C(n - m) - 1, 
0<a<m 

aCA 

(5.20) m C B, n - ni(£C, 
and 
(5.21) A m C C e i , n-\rn(tA<5)B 

for every integer X such that \m C L 
(vi) Let / be finite. Then every subset D of / is finite and we have 

(5.22) D(k) - I(k) - D(k) 

for any k Q I. Furthermore the group property of G implies 

E i = E i « L i = E i = E i , 
0<0<m O<m—04&n 0<f/<m n~m<n—m+çKn n—m<ç<.n 
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or 
(5.23) 2 ! = Hm) = I(n) - I(n - m). 

On account of (5.22) and (5.23), we can then replace (5.15) by (5.4), (5.18) by 

(5.24) C(n) + e(C) < A(n) + B(n) + e(A), 
and (5.19) by 
(5.25) C(n) - C(n-m)> £ 1 + B(m) - 1. 

0<a<m 
acA 

(vii) The preceding remarks apply in particular when G is the additive group 
of the ordinary integers. In this case Theorem I' specializes to a result containing 
Theorem 1A while Theorem II ' is specialized to Theorem 2B. 

6. Proof of Theorem I. Since B C C 0 A it suffices to prove Theorem I 
under the stronger assumption 

(6.1) B = C Q A. 

(Note that OCA implies C Q A C C. In particular, C Q A is finite.) 

Put 
(6.2) Ao = A, Bo = B. 

Let ei be the smallest element of Ao such that 

> = ci<n 
(6.3) ex + bx + bi 

has solutions 6i, b\ C Bo (if there are no such elements, then the index h of the fol
lowing proof will be zero). Let Bi* denote the set of all these solutions bi, bx 
and let Ai* — ex ® Bx*. Thus Bx* C B0 while Ao and Ax* are disjoint. For 
a i C ^ i * implies ax = ex + bx and hence 

ax + bx = ex + b - + "{?c 
for some bi, bx C B0. Thus ax <Z ^o . 

Let Bx be the complement of Bx* in B0 and let ^41 be the union of A 0 and ^41*. 
By (6.3) we have 
(6.4) 0 (Z Bx*. 
Thus 
(6.5) OCAi, 0 C 5 i . 

LEMMA 1. 

J3i = C 0 i 4 i . 

Proof. By (6.1), 
(6.6) 
and 
(6.7) 

CeAiCCQAo = B0 

5 i C Bo. 
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If èi C -Bi*, then some b\ will satisfy (6.3). Since e\ + b\ C Au (6.3) implies 
hCtCeAu Thus (6.6) implies C© A^CBu 

Conversely, let b\ C B0 and b\ <£ C © Au Thus there is an a,\ C A\ such that 

ai + bl{zc. 
Since A0 ® bi C C, we have ai C ^4i* or #i = e\ + 6/ for some 6 / C i3i*. 
Hence ax + bi = ei + bi + b\ is a solution of (6.3) and therefore b\ <Z Bi-
Thus (6.7) yields BxCCQAu 

We now repeat our construction as often as possible defining in the same 
fashion £2, B2*, A^, B2f A2 etc. B0 was finite and each Bv contains fewer elements 
than the preceding Bv_u Thus this construction has to stop at some index 
h > 0. We then have 
(6.8) Ah@Bh@BhC C. 
Moreover, by induction, 
(6.9) Bv = CO AVi 

(6:i0) 0 <£ B*, 0CBv fr « lf 2 , . . . , A). 

From (6.10), (6.8), and (6.9) 

BhCBh®BhCCQAh = Bh. 

Hence 
(6.11) Bh@Bh = Bh. 

LEMMA 2. 

ei < e2 < . . . < eh. 

Proof. I t suffices to prove 
(6.12) ei < e2. 

We have e2 C Au If e2(Z AQ, then (6.12) follows from the minimum property 
of ei and the definition of -Si*. But if e2 C A i*, then e2 = e\ + £>i where bi C 5i*. 
By (6.4), 6i > 0. This implies again (6.12). 

By (6.10), the set Bh is not empty. Let n — m be its largest element. We wish 
to show that m has the required properties (5.4) — (5.6). 

From (6.11) and the definition of n — m, we have 

(6.13) either 2{n — m) = n — m or 2(n — ni) > n. 

By (5.2) and (5.3), 
BhCB = 0®BCA®BCC. 

Thus n (JLC implies n (£ Bh and therefore 

(6.14) n — m 9e n. 

(6.13) together with (6.14) yields (5.5). Obviously 

n-mCBhCB = CeA. 
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Furthermore, n — m C Bh implies 

(6.15) • n - m <£ Bx*. 

Combining the minimum property of e\ with (6.15), we obtain: There is no 
b\ C Bo such that 

0 + (» - w) + 6i' 

Thus the second part of (5.6) is also verified. We prove (5.4) by means of several 
lemmas. 

LEMMA 3. 

B(m) = X>*(m). 
i 

Proof. Since B is the union of the disjoint sets Bi*} . . . , Bh*, Bh, we only 
have to prove 
(6.16) Bh(m) = 0. 

Let bQBh;b > 0. By (6.11), 

b + (n — m) C Bh unless b + (n — m) > n. 

The first possibility being excluded by the maximum definition of n — m, we 
have b > m. This implies (6.16). 

LEMMA 4. 
h * 

C(n) - C{n - m) > A(m) + J2A» (*»)• 
i 

Proof. We have 
4* 0 (* - w) CM* © 5* C C. 

Thus 
0 < a < my a Q Ah 

implies 
n — m < a + (n — m) K ny a + (n — m) C C. 

Hence 
* * 

C(») - C(n - m) > il»(w) = i l (w) + E ^ . (m) 
i 

since ^4ft is the union of the disjoint sets A, Ai*, . . ., Ah*. 

LEMMA 5. 

A*(m) = B*(m) (y = 1 ,2 , . . . , /*) . 

Proof. We have -4,,* = e„ © £„*. Thus it suffices to prove that 

(6.17) b C B,*t 0 < b < m 
implies e„ + i < ra. Put 
(6.18) t = n - m + b. 
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Then we have to show 
(6.19) ev + t < n. 

Case 1. t <X. Bp-i. By (6.9) there is an a C Av_i such that 

a + t = a + (n - m) + b< ^ n . 

Since n — w C Bh C B„_i and 6 C £** C JB^_I, the minimum property of ev 

implies a > ev and hence ev + / < a + £ < n. 

Case 2. / C -B^-i. By (6.18) and (6.17), we have t > n - m. Thus the maxi
mum definition of n — m implies t <£ Bh. Hence / C Bf for some \i with 
v < fx < h. Thus there is a b' C #M* s uch that 

* + ' + "{«c-
Hence by Lemma 2 

w > eM + / + V > eM + t > e„ + t. 

Combining Lemmas 4, 5 and 3, we obtain (5.4). 

7. Proof of Theorem II. Put 

(7.1) A0 = A, B0 = B. 

Let ei be the smallest element of A0 such that 

(7.2) e1 + 61 = a | ^ 

has solutions b\ in Bo. (If no such elements exist, then we shall again define 
h = 0.) Let J5i* be the set of all these solutions b\ and let Af = e\ © £i*. Thus 
5 i* C Bo while AQ and -4i* are disjoint. Let B\ be the complement of Bi* in Bo 
and let Ai be the union of ^40 with Af. By (7.2), 

(7.3) 0 <t Bx*. 
Thus, from (5.8), 
(7.4) O C ^ i , O C B i . 
Furthermore 
(7.5) Al*(n) = J5i*(») 
and hence, by (5.9), 

(7.6) A1{n) + B1(n) = [A0(n) + Afin)] + [BQ(n) - Bf{n)] 

= A(n) +B(n) > C(n). 

LEMMA 1. 
A1®B1CC. 

Proof. Since A0 © B\ C AQ © B0 C C, we only have to show 

(7.7) i i * e B i C C 
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Let 
â = ei + biQAi*, b Q Bu â + b < n. 

Then 0 < e i + ô < â + ô < w . Thus b C B0, b tf_ Bi* implies ei + b d A. 
Hence 

à + b = (ei + fti) + b = {ex + b) + h C A ® B C C. 

Starting with 4 1 and J3i, we define e2, B2*> i42*, B^Ai% . . . in the same fashion. 
Since JB0 is finite and each Bv contains fewer elements than the preceding one, 
our process has to stop at some index h > 0. Thus 

(7.8) Ah®BhC Ah. 

Furthermore, by construction, 

(7.9) 0CAV1 0CBV1 \ 

(7.10) C(n) <Av(n) + B,(n), (v = 0, 1, . . . , h) 

(7.11) AV®BV CC J 

(cf. (7.4), (7.6), and Lemma 1). 
Since Ah = Ah ® 0 C Ah ® Bh C Ahl (7.8) and (7.11) imply 

(7.12) Ah = Ah®BhC C, 
hence, by induction, 

(7.13) Ah ® \Bh = Ah C C 

for every integer X > 0. Obviously, 

(7.14) BnCB, AC Ah. 

LEMMA 2. 

BnCAr\BCA\JBCAh. 

Proof. Let b C A. Then bCACAh.U 

(7.15) bCB, b(£A, 

then â = 0 + b is a solution of (7.2). Hence h > 0, ex = 0, b C 5i* (thus 
b(£Bi), and 
(7.16) 6 = ^ + & C ill* C i l i C il». 

This proves B <Z Ah. Since (7.15) implies b (£_ Bu it follows that BiQA. 
Thus 
(7.17) BhCB1CA. 

Using (7.14) we obtain Lemma 2. 

LEMMA 3. 

XBnCCQA, XBnCCQB (X = 0, 1, 2, . . .). 
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Proof. By Lemma 2, and (7.13), 

A ® \Bh] 
(7.18) \cAh®XBh = AhCC. 

B ® \Bk) 

LEMMA 4. 

ei < e2 < . . . < eh. 

Proof. It suffices to prove 
(7.19) ei < e2. 

We have e2 C A\. If e2 C Ao, then (7.19) follows from the minimum property 
of e\. But if e2 C Ai*, then e2 = ex + b\ > ei + 0 on account of (7.3). 

From (7.12) and (7.10), 

Ah(n) + Bh{n) > C(n) > Ah(n). 

Hence Bh(n) > 0 and there exists a smallest positive element m in Bh. It ob
viously satisfies (5.11). Lemma 2 implies (5.12), and (5.13) follows from 
Lemma 3. We wish to show that m also satisfies (5.10). 

For any finite subset D of G let D (g \ mod m) denote the number of elements 
d of D which are mutually incongruent (mod m) and satisfy 0 < d < g. 

LEMMA 5. 

C(n) — C(n — m) > Ah(n \ mod m). 

Proof. Let a C. Ah. By (7.13), each element a + \m which lies in / , belongs 
to An (X = 0, l ,2 , . . . ) .^4/ j being finite, there exists a largest element a + X0w 
of this kind. Thus 

a + X0m < n < (a + X0w) + m 
or 
(7.20) n — m < a + \0m < w. 

Conversely, our postulates for G imply that the solution X0 of (7.20) is unique 
for a given a. Thus each residue class (mod m) of Ah contains one and only 
one element a' with n — m < a' < n. Hence, by (7.12), 

C(n) — C{n — ni) > Ah(n) — Ah(n — ni) — Ah(n \ mod ni). 

(0 < v < h). 

LEMMA 6. Let 

(7.21) a C Av_i, a < ev + m 
(7.22) 6 C B*, 0 <b <m 
Then 
(7.23) a ^ e„ + 6 (mod ni). 

Proof. Suppose (7.23) is false. Then there exists an integer X such that 

(7.24) ev + b = a + Xra. 
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By (7.22) and (7.21), 

\m = ev + b — a > ev — a > ev — (ev + w) = — rn. 

Thus X > — 1. Furthermore, ev + b (£ A„-i and a C ^ M imply X 9^ 0. Hence 
X > 1. 

Since a Q. Av-\ while 

there exists an integer \i such that 

Hence, from m (Z Bh (Z By and the minimum definition of e„ 

a + urn > ev. 
Thus (7.24) yields 

ev -\- b — a -\- Xw > (a + Mw) + w > e„ + w. 

This contradicts (7.22). 

LEMMA 7. 

* * 
^4/»fe + w|mod w) > ^4o(w|mod w) + 2 ^" (w)-

i 

Proof. Let 0 < v < /z. 4̂„ is the union of the disjoint sets Av-\ and 
Av* — ev © £„*. By Lemma 6, a ^ a* (mod w) if 

a C -4^-1, # < ev + w, a* C Av*, a* < e„ + w. 

Thus, each residue class (mod m) counted in Av(ev + m | mod w) is counted 
either in v4„_i (ev -\- m\ mod w) or in A* (ev + m | mod ni) but not in both. 
Conversely, any residue class counted in either of the latter expressions is also 
counted in the first one. Hence, 

(7.25) Av(ev + m \ mod ni) = Av-\(ev + m | mod ni) + Av*(ev + m | mod ni). 

Each element of 4̂ „* being greater than ev, we have 

(7.26) Av*(ev + m | mod ni) = Av*(e„ + ni) = B,*(m). 

Put 0o = 0. Then, by Lemma 4, e„ > e„_i. Hence (7.25) and (7.26) imply 

(7.27) Av(ev + m | mod w) > ^4v-i(^-i + m | mod ra) + Bv*(m). 

Adding (7.27) over v, we obtain our statement. 

LEMMA 8. 

B(m) = ]£B,*(m) + 1. 
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Proof, B is the union of the disjoint sets Bi*, . . . , Bh*, Bh. Furthermore, 
Bh(m) = 1, by the minimum definition of m. 

Applying consecutively Lemmas 5, 7, and 8, we obtain 

C(n) — C(n — m) > Ah(n\ mod m) 

> Ah(eh + m | mod m) 

> A0(m | mod m) + X] ^ " (w) 
i 

= il (iff) + £ (w) - 1. 
This proves (5.10). 

8. A variant of Theorem II. If D is any finite subset of the ordered group 
G, we define 

D{g]~ o i l 1 [cf. (5.1)]. 
dcD 

THEOREM III. Let A and B be finite subsets of G; 0 C A, 0 C B. Put 

C = A+B = (a + J ; a C 4 , J C 5 | . 

Ze/ w C C, w > 0 aw^ suppose 

(8.1) C[«] < 4 [ » ] + S[n]. 

7"Aew there exists an element m C G with the following properties: 

(8.2) C[n] - C[n - m] > A[m] + B[m] + 1, 

(8.3) 0 < m < n, 

(8.4) rnCA, m C B, 

(8.5) a + \mCC 

for every a Q A and every non-negative integer X such that a + Am < n. 

Proof. Let V denote the set of those g C G with 0 < g < n. Without loss of 
generality, we may assume that A and B are subsets of V and replace C by the 
intersection of A + B with / ' . Replacing / , A (g), B(g), . . . by / ' , A [g], B[g],..., 
we can readily prove Theorem III after the pattern of the proof of Theorem II. 

In a similar way, a variant of Theorem I can be obtained. 

The following application of Theorem III may be of interest. 

THEOREM IV. Let g* be a positive element of G and let A and B be finite subsets 
of G; 0 C A j 0 C B. Furthermore let <t>{g) be a real-valued function defined for all 
positive g C.G and such that g < g' + g" implies <j>(g) < 4>{gr) + <t>(g") + 1. 
Finally, suppose 
(8.6) A[h] + B[h] > 4>(h) 
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for each h C G with 0 < h < g*. Then the set C = A + B satisfies 

(8.7) C[h] > <t>(h) 
for the same elements h. 

Remark. Van der Corput and Kemperman (1) proved this result assuming 
only that G = {# ,# ' , . . .} is an ordered set with a smallest element 0 and with a 
commutative and associative addition such that (i) g + 0 = g, (ii) g + g' > g 
if g' > 0, (iii) g' = g" if g + g' = g + g". 

Proof. It suffices to prove (8.7) for h — g*. 

Let H be the finite set consisting of g* and the positive elements of C. Let 
n C H, n < g*. Then it is sufficient to prove 

(8.8) C[n] > 0(») 

assuming (8.7) for every h C. H with h < n. 
If C[n] > A[n] + B[n], then (8.8) follows from (8.6). Thus we may assume 

(8.1). By Theorem III, there is an m C G that satisfies (8.2) - (8.5). By (8.2) 
and (8.6), 
(8.9) C[n] - C[n - m] > A[m] + B[m] + 1 > <j>{m) + L 

Since 0 C A, (8.5) implies \m C C for each integer X > 0 such that \m < n. 
C being finite, there is an element c0 in C with 

(8.10) Co < ny Co + m > n. 

Let Co be the smallest element of C with this property. Thus c + m < n if 
c C C, c < Co. Hence 
(8.11) C[n -m]> C[co\. 
Furthermore 
(8.12) C[co] > *(c0) 

on account of (8.10) and our induction assumption. Finally, (8.10) and the 
assumptions of our theorem imply 

(8.13) </>(co) + *(m) + 1 > 4>(n). 

Combining (8.9), (8.11), (8.12), and (8.13) we obtain (8.8). 
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