ON SUMS OF SETS OF INTEGERS

J. H. B. KEMPERMAN AND PETER SCHERK

1. Introduction. Small italics denote integers. Let A, B, \ldots be sets of non-negative integers. Let $A(h)$ be the number of positive integers in A that are not greater than h. Finally let $A+B$ denote the set of all integers of the form $a+b$ where $a \subset A, b \subset B$. The following result is implicitly contained in Mann's Proposition 11 (4):

Theorem 1. Let $n>0$ and

$$
\begin{equation*}
0 \subset A, \quad 0 \subset B, \quad n \not \subset C=A+B \tag{1.1}
\end{equation*}
$$

Then there exists an m such that

$$
\begin{gather*}
C(n)-C(n-m) \geqslant A(m)+B(m), \tag{1.2}\\
0<m \leqslant n, \tag{1.3}\\
m \not \subset C \tag{1.4}\\
m \not \subset A \quad \text { and } \quad m \not \subset B . \tag{1.5}
\end{gather*}
$$

especially

Finally, $a+n-m \subset C$ for every $a \subset A, a \leqslant m$.
In this paper, we prove several theorems related to Theorem 1. Like Theorem 1 , each of them readily implies Mann's famous result: Let $n \geqslant 0, \gamma \leqslant 1 ; 0 \subset A$, $0 \subset B, C=A+B$
and $\quad A(k)+B(k) \geqslant \gamma k \quad(k=1,2, \ldots, n)$.
Then

$$
C(n) \geqslant \gamma n
$$

2. Khintchine's inversion principle. Let $n>0$ be an arbitrary but fixed integer and let I be the set of the non-negative integers $\leqslant n$. Let A, B, \ldots denote subsets of I. Put

$$
\begin{equation*}
A \oplus B=(A+B) \cap I \tag{2.1}
\end{equation*}
$$

Following Hadwiger, we define the difference $C \Theta A$ of C and A as the set of all the $d \subset I$ such that $A \oplus d \subset C$ (2). Thus $C \ominus A$ is the largest subset D of I such that $A \oplus D \subset C$. Obviously

$$
\begin{equation*}
A \oplus B \subset C \leftrightarrow B \subset C \Theta A \tag{2.2}
\end{equation*}
$$

The inversion \widetilde{A} of A is defined to be the set of all the integers $n-\bar{a} \subset I$ where $\bar{a} \not \subset A$ (3). Thus

$$
\begin{equation*}
(\widetilde{A})^{\sim}=A . \tag{2.3}
\end{equation*}
$$

[^0]If $n \not \subset A$, then $0 \subset \tilde{A}$; and if $0 \subset A$, then $n \not \subset \tilde{A}$. We readily verify

$$
\begin{equation*}
C \ominus A=D \leftrightarrow A \oplus \widetilde{C}=\widetilde{D} \tag{2.4}
\end{equation*}
$$

and hence, by (2.3),

$$
\begin{equation*}
\widetilde{A} \ominus \widetilde{C}=(\widetilde{C} \oplus A)^{\sim}=(A \oplus \widetilde{C})^{\sim}=C \ominus A \tag{2.5}
\end{equation*}
$$

Furthermore, from (2.2) and (2.4),

$$
\begin{equation*}
A \oplus B \subset C \leftrightarrow A \oplus \widetilde{C} \subset \widetilde{B} \tag{2.6}
\end{equation*}
$$

This is a slightly modified version of Khintchine's Inversion Formula (3). It enables us to deduce new results from given ones.

We note that
and

$$
\begin{equation*}
\widetilde{C}(k)=k-C(n-1)+C(n-k-1) \quad(0 \leqslant k \leqslant n-1) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{C}(n)=n-1-C(n-1) \quad \text { if } 0 \subset C \tag{2.8}
\end{equation*}
$$

3. The dual of Mann's theorem. Using the above notations, Mann's theorem can be reformulated as follows:

Theorem 1A. Let

$$
\begin{align*}
& A \subset I, \quad B \subset I, \quad C=A \oplus B \tag{3.1}\\
& 0 \subset A, \quad 0 \subset B, \quad n \not \subset C \tag{3.2}
\end{align*}
$$

Then there exists an m such that

$$
\begin{gather*}
C(n)-C(n-m) \geqslant A(m)+B(m), \tag{3.3}\\
0<m \leqslant n \tag{3.4}\\
m \not \subset C \tag{3.5}\\
n-m \subset C \ominus A \tag{3.6}
\end{gather*}
$$

and

We note once more that (3.5) and (3.2) imply

$$
\begin{equation*}
m \not \subset A, \quad m \not \subset B \tag{3.7}
\end{equation*}
$$

and that (3.6) and (3.2) yield

$$
\begin{equation*}
n-m \subset C \tag{3.8}
\end{equation*}
$$

Applying Khintchine's Inversion Formula to Theorem 1A, we obtain
Theorem 1B. Let

$$
\begin{equation*}
A \subset I, \quad B \subset I, \quad A \oplus B \subset C \subset I \tag{3.9}
\end{equation*}
$$

and assume (3.2). Then there exists an m satisfying (3.3), (3.4), (3.6) and

$$
\begin{equation*}
n-m \subset C \ominus B \tag{3.10}
\end{equation*}
$$

Again (3.6), (3.10), and (3.2) will imply (3.7) and (3.8).
Proof. Put

$$
\begin{equation*}
D=C \ominus A \tag{3.11}
\end{equation*}
$$

Thus by (3.9) and (2.2)

$$
\begin{equation*}
B \subset D \tag{3.12}
\end{equation*}
$$

From (3.2) and (3.12) we have

$$
\begin{equation*}
0 \subset \widetilde{C}, \quad 0 \subset A, \quad n \not \subset \widetilde{D} \tag{3.14}
\end{equation*}
$$

By Theorem 1A, there exists therefore a number m satisfying (3.4) such that

$$
\begin{gather*}
\tilde{D}(n)-\tilde{D}(n-m) \geqslant \widetilde{C}(m)+A(m) \tag{3.15}\\
m \not \subset \widetilde{D} \tag{3.16}
\end{gather*}
$$

and

$$
\begin{equation*}
n-m \subset \tilde{D} \ominus \widetilde{C} \tag{3.17}
\end{equation*}
$$

Here, (3.16) is equivalent to (3.6). Furthermore, (3.17), (2.5) and (3.12) imply

$$
n-m \subset \tilde{D} \Theta \widetilde{C}=C \ominus D \subset C \Theta B
$$

i.e. (3.10). Hence we also have (3.7) and (3.8). It remains to verify (3.3).

Since $0 \subset B \subset D \subset C$, (3.15) implies on account of (2.7) and (2.8)

$$
\begin{equation*}
C(n-1)-C(n-m-1) \geqslant A(m)+D(m-1)+1 \tag{3.18}
\end{equation*}
$$

if $0<m<n$, and

$$
\begin{equation*}
C(n-1) \geqslant A(n)+D(n-1) \tag{3.19}
\end{equation*}
$$

if $m=n$. By (3.7), we have $m \not \subset B$. Hence (3.18) and (3.12) yield

$$
\begin{aligned}
C(n)-C(n-m) & \geqslant C(n-1)-C(n-m-1)-1 \geqslant A(m)+D(m-1) \\
& \geqslant A(m)+B(m-1)=A(m)+B(m)
\end{aligned}
$$

if $0<m<n$. If $m=n$, then (3.19), (3.12) and $m=n \not \subset B$ imply

$$
C(n) \geqslant C(n-1) \geqslant A(n)+D(n-1) \geqslant A(n)+B(n-1)=A(n)+B(n)
$$

4. Analogues of Mann's theorem. Theorem 1B can be improved slightly:

Theorem 1C. Under the assumptions of Theorem 1B there exists an m satisfying (3.3), (3.6), (3.10) (and therefore also (3.7) and (3.8)) and

$$
\begin{equation*}
m=n, \quad \text { or } \quad 0<m<\frac{1}{2} n . \tag{4.1}
\end{equation*}
$$

Applying the Inversion Principle to Theorem 1C, we obtain a corresponding extension of Theorem 1A (cf. §5, Remark (vii), below).

We shall also prove

Theorem 2A. Suppose A, B, C satisfy (3.9),

$$
\begin{equation*}
0 \subset A, \quad 0 \subset B \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C(n)<A(n)+B(n) \tag{4.3}
\end{equation*}
$$

Then there exists an m satisfying (3.4) such that

$$
\begin{gather*}
C(n)-C(n-m) \geqslant A(m)+B(m)-1, \tag{4.4}\\
m \subset A, \quad m \subset B \tag{4.5}\\
\lambda m \subset C \ominus A \text { and } \lambda m \subset C \ominus B \tag{4.6}
\end{gather*}
$$

for every integer λ such that $\lambda m \subset I$.
Define for any $D \subset I$

$$
\epsilon(D)=\left\{\begin{array}{l}
1 \text { if } 0 \subset D \tag{4.7}\\
0 \text { if } 0 \not \subset D
\end{array}\right.
$$

Thus

$$
\begin{equation*}
\widetilde{D}(n)=n-D(n-1)-\epsilon(D) . \tag{4.8}
\end{equation*}
$$

Replacing A, B, C consecutively by $B, \widetilde{C}, \widetilde{A}$, we deduce from Theorem 2 A
Theorem 2B. Suppose A, B, C satisfy (3.9),

$$
\begin{equation*}
0 \subset B, \quad n \not \subset C \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
C(n)<A(n)+B(n)-(\epsilon(C)-\epsilon(A)) . \tag{4.10}
\end{equation*}
$$

(Obviously $0 \leqslant \epsilon(A) \leqslant \epsilon(C) \leqslant 1$.) Then there exists an m satisfying (3.4) such that

$$
\begin{align*}
& C(n)- C(n-m) \geqslant A(m-1)+B(m-1)+\epsilon(A), \tag{4.11}\\
& m \subset B, \quad n-m \not \subset C \tag{4.12}\\
& \lambda m \subset C \Theta A, \quad n-\lambda m \not \subset A \oplus B \tag{4.13}
\end{align*}
$$

and
for every integer λ such that $\lambda m \subset I$.
We note that $m=1$ implies $C=I$ in Theorem 2A. In 2B it implies that A is empty (cf. (4.6) and (4.13)).

Let $m=n$. Then $C(n)=A(n)+B(n)-1$ and $n \subset B$ in both theorems. Furthermore $n \subset A$ in Theorem 2A but $n \not \subset A, 0 \not \subset A, 0 \not \subset C$ in Theorem 2B.
5. Generalizations to ordered groups. An ordered group is an (additively written) commutative group $G=\left\{g, g^{\prime}, \ldots\right\}$ with a transitive ordering such that $g^{\prime}<g^{\prime \prime}$ always implies $g+g^{\prime}<g+g^{\prime \prime}$. The following examples may be of interest:
(i) G is the set of all real numbers with the ordinary addition.
(ii) G is the set of positive real numbers, their "sum" being their ordinary product.
(iii) Let $\lambda>0 . G$ is the set of real numbers greater than $-1 / \lambda$ and the "sum" of g and h is defined to be $g+h+\lambda g h$.
(iv) G is the set of real vectors $\left(r_{1}, \ldots, r_{m}\right)$ with the ordinary addition and a lexicographic ordering.

Let $n \subset G$ be given; $n>0$. Let I be the set of all the g 's with $0 \leqslant g \leqslant n$. Let A, B, \ldots again denote subsets of I. Then the definitions of Section 2 and the formulas (2.2) - (2.6) will carry over. Put

$$
\begin{equation*}
D(g)=\sum_{\substack{0<d \leq d \leq \\ d \subset D}} 1 \tag{5.1}
\end{equation*}
$$

We can now state our main results:
Theorem I. Let A, B, C be finite subsets of I,

$$
\begin{equation*}
A \oplus B \subset C \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
0 \subset A, \quad 0 \subset B, \quad n \not \subset C \tag{and}
\end{equation*}
$$

Then there exists an $m \subset G$ with the following properties:

$$
\begin{gather*}
C(n)-C(n-m) \geqslant A(m)+B(m) \tag{5.4}\\
m=n \text { or } \quad 0<2 m<n \tag{5.5}\\
n-m \subset C \Theta A, \quad n-m \subset C \ominus B \tag{5.6}
\end{gather*}
$$

Theorem II. Let A, B, C be finite subsets of I,

$$
\begin{gather*}
A \oplus B \subset C \tag{5.7}\\
0 \subset A, \quad 0 \subset B \tag{5.8}\\
C(n)<A(n)+B(n) \tag{and}
\end{gather*}
$$

Then there exists an $m \subset G$ with the following properties:

$$
\begin{gather*}
C(n)-C(n-m) \geqslant A(m)+B(m)-1 \tag{5.10}\\
0<m \leqslant n \tag{5.11}\\
m \subset A, \quad m \subset B \tag{5.12}\\
\lambda m \subset C \ominus A, \quad \lambda m \subset C \ominus B \tag{5.13}
\end{gather*}
$$

for every integer λ such that $\lambda m \subset I$.
Remarks. (i) If G is the group of the ordinary integers, then the above theorems specialize to Theorems 1C and 2A respectively.
(ii) Theorem II remains valid if G is merely an ordered semi-group, i.e. a transitively ordered set with a commutative and associative addition such that $g^{\prime}<g^{\prime \prime}$ always implies $g+g^{\prime}<g+g^{\prime \prime}$. Furthermore G is supposed to have a null-element 0 such that $g>0$ for every $g \neq 0$. However this extension to ordered semi-groups is only apparent since any ordered semi-group can be imbedded into an ordered group.
(iii) Both theorems remain valid if we replace (5.1) by

$$
\begin{equation*}
D(g)=\sum_{\substack{0 d \leq b \\ d \subset D}} f(d) \tag{5.14}
\end{equation*}
$$

where $f(g)$ is any non-negative non-decreasing real-valued function in G. These generalizations can be proved along the same lines as the original theorems.
(iv) Let \bar{A} denote the complement in I of a subset A of I. By applying the Inversion Principle to Theorem I, we obtain the following generalization of Mann's Theorem 1A:

Theorem I'. Let \bar{A}, B, \bar{C} be finite subsets of I such that (5.2) and (5.3) hold true. Then there exists an $m \subset G$ satisfying (5.5),

$$
\begin{equation*}
\bar{A}(m) \geqslant B(m)+(\bar{C}(n)-\bar{C}(n-m)), \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
m \not \subset A \oplus B, \quad n-m \subset C \ominus A \tag{5.16}
\end{equation*}
$$

We note that A and C need not be finite.
(v) In the same fashion, Theorem II yields the following generalization of Theorem 2B:

Theorem II'. Let \bar{A}, B, \bar{C} be finite subsets of I satisfying (5.7),

$$
\begin{equation*}
0 \subset B, \quad n \not \subset C \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{A}(n)-\epsilon(A)<B(n)+\bar{C}(n)-\epsilon(C) \tag{5.18}
\end{equation*}
$$

(cf. (4.7)). Then there exists an $m \subset G$ which satisfies (5.11),

$$
\begin{equation*}
\sum_{\substack{0 \leq \bar{a} \leq m \\ \bar{a} \subset \bar{A}}} 1 \geqslant B(m)+\bar{C}(n)-\bar{C}(n-m)-1 \tag{5.19}
\end{equation*}
$$

$$
\begin{equation*}
m \subset B, \quad n-m \not \subset C \tag{5.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda m \subset C \ominus A, \quad n-\lambda m \not \subset A \oplus B \tag{5.21}
\end{equation*}
$$

for every integer λ such that $\lambda m \subset I$.
(vi) Let I be finite. Then every subset D of I is finite and we have

$$
\begin{equation*}
\bar{D}(k)=I(k)-D(k) \tag{5.22}
\end{equation*}
$$

for any $k \subset I$. Furthermore the group property of G implies

$$
\sum_{0<0<m} 1=\sum_{0<m-0<m} 1=\sum_{0<0<m} 1=\sum_{n-m<n-m+0<n} 1=\sum_{n-m<0<n} 1,
$$

or

$$
\begin{equation*}
\sum_{0<0<m} 1=I(m)=I(n)-I(n-m) \tag{5.23}
\end{equation*}
$$

On account of (5.22) and (5.23), we can then replace (5.15) by (5.4), (5.18) by
and (5.19) by

$$
\begin{equation*}
C(n)+\epsilon(C)<A(n)+B(n)+\epsilon(A) \tag{5.24}
\end{equation*}
$$

$$
\begin{equation*}
C(n)-C(n-m) \geqslant \sum_{\substack{0 \leq a<m \\ a c A}} 1+B(m)-1 \tag{5.25}
\end{equation*}
$$

(vii) The preceding remarks apply in particular when G is the additive group of the ordinary integers. In this case Theorem I' specializes to a result containing Theorem 1A while Theorem II^{\prime} is specialized to Theorem 2B.
6. Proof of Theorem I. Since $B \subset C \ominus A$ it suffices to prove Theorem I under the stronger assumption

$$
\begin{equation*}
B=C \ominus A \tag{6.1}
\end{equation*}
$$

(Note that $0 \subset A$ implies $C \ominus A \subset C$. In particular, $C \ominus A$ is finite.)
Put

$$
\begin{equation*}
A_{0}=A, \quad B_{0}=B \tag{6.2}
\end{equation*}
$$

Let e_{1} be the smallest element of A_{0} such that

$$
e_{1}+b_{1}+b_{1}^{\prime}=\bar{c}\left\{\begin{array}{l}
\leqslant n \tag{6.3}\\
\not \subset C
\end{array}\right.
$$

has solutions $b_{1}, b_{1}{ }^{\prime} \subset B_{0}$ (if there are no such elements, then the index h of the following proof will be zero). Let $B_{1}{ }^{*}$ denote the set of all these solutions $b_{1}, b_{1}{ }^{\prime}$ and let $A_{1}{ }^{*}=e_{1} \oplus B_{1}{ }^{*}$. Thus $B_{1}{ }^{*} \subset B_{0}$ while A_{0} and $A_{1}{ }^{*}$ are disjoint. For $a_{1} \subset A_{1}{ }^{*}$ implies $a_{1}=e_{1}+b_{1}$ and hence

$$
a_{1}+b_{1}^{\prime}=e_{1}+b_{1}+b_{1}^{\prime}\left\{\begin{array}{l}
\subset I \\
\not \subset C
\end{array}\right.
$$

for some $b_{1}, b_{1}{ }^{\prime} \subset B_{0}$. Thus $a_{1} \not \subset A_{0}$.
Let B_{1} be the complement of $B_{1}{ }^{*}$ in B_{0} and let A_{1} be the union of A_{0} and $A_{1}{ }^{*}$. By (6.3) we have

Thus

$$
\begin{equation*}
0 \not \subset B_{1}{ }^{*} \tag{6.4}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
0 \subset A_{1}, \quad 0 \subset B_{1} \tag{6.5}
\end{equation*}
$$

$$
B_{1}=C \ominus A_{1}
$$

Proof. By (6.1),

$$
\begin{equation*}
C \ominus A_{1} \subset C \ominus A_{0}=B_{0} \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1} \subset B_{0} \tag{6.7}
\end{equation*}
$$

If $b_{1} \subset B_{1}{ }^{*}$, then some $b_{1}{ }^{\prime}$ will satisfy (6.3). Since $e_{1}+b_{1}{ }^{\prime} \subset A_{1}$, (6.3) implies $b_{1} \not \subset C \ominus A_{1}$. Thus (6.6) implies $C \ominus A_{1} \subset B_{1}$.

Conversely, let $b_{1} \subset B_{0}$ and $b_{1} \not \subset C \ominus A_{1}$. Thus there is an $a_{1} \subset A_{1}$ such that

$$
a_{1}+b_{1}\left\{\begin{array}{l}
\subset I \\
\not \subset C
\end{array}\right.
$$

Since $A_{0} \oplus b_{1} \subset C$, we have $a_{1} \subset A_{1}{ }^{*}$ or $a_{1}=e_{1}+b_{1}{ }^{\prime}$ for some $b_{1}{ }^{\prime} \subset B_{1}{ }^{*}$. Hence $a_{1}+b_{1}=e_{1}+b_{1}+b_{1}{ }^{\prime}$ is a solution of (6.3) and therefore $b_{1} \not \subset B_{1}$. Thus (6.7) yields $B_{1} \subset C \ominus A_{1}$.

We now repeat our construction as often as possible defining in the same fashion $e_{2}, B_{2}{ }^{*}, A_{2}{ }^{*}, B_{2}, A_{2}$ etc. B_{0} was finite and each B_{ν} contains fewer elements than the preceding $B_{\nu-1}$. Thus this construction has to stop at some index $h \geqslant 0$. We then have
(6.8)

Moreover, by induction,

From (6.10), (6.8), and (6.9)

$$
B_{h} \subset B_{h} \oplus B_{h} \subset C \Theta A_{h}=B_{h}
$$

Hence

$$
\begin{align*}
& A_{h} \oplus B_{h} \oplus B_{h} \subset C \\
& \quad B_{\nu}=C \oplus A_{\nu} \tag{6.9}\\
& 0 \not \subset B_{\nu}^{*}, \quad 0 \subset B_{\nu} \quad(\nu=1,2, \ldots, h)
\end{align*}
$$

Lemma 2.

$$
e_{1}<e_{2}<\ldots<e_{h}
$$

Proof. It suffices to prove

$$
\begin{equation*}
e_{1}<e_{2} \tag{6.12}
\end{equation*}
$$

We have $e_{2} \subset A_{1}$. If $e_{2} \subset A_{0}$, then (6.12) follows from the minimum property of e_{1} and the definition of $B_{1}{ }^{*}$. But if $e_{2} \subset A_{1}{ }^{*}$, then $e_{2}=e_{1}+b_{1}$ where $b_{1} \subset B_{1}{ }^{*}$. By (6.4), $b_{1}>0$. This implies again (6.12).

By (6.10), the set B_{h} is not empty. Let $n-m$ be its largest element. We wish to show that m has the required properties (5.4) - (5.6).

From (6.11) and the definition of $n-m$, we have

$$
\begin{equation*}
\text { either } 2(n-m)=n-m \quad \text { or } 2(n-m)>n \tag{6.13}
\end{equation*}
$$

By (5.2) and (5.3),

$$
B_{n} \subset B=0 \oplus B \subset A \oplus B \subset C
$$

Thus $n \not \subset C$ implies $n \not \subset B_{n}$ and therefore

$$
\begin{equation*}
n-m \neq n \tag{6.14}
\end{equation*}
$$

(6.13) together with (6.14) yields (5.5). Obviously

$$
n-m \subset B_{n} \subset B=C \ominus A
$$

Furthermore, $n-m \subset B_{n}$ implies

$$
\begin{equation*}
n-m \not \subset B_{1}{ }^{*} \tag{6.15}
\end{equation*}
$$

Combining the minimum property of e_{1} with (6.15), we obtain: There is no $b_{1}{ }^{\prime} \subset B_{0}$ such that

$$
0+(n-m)+b_{1}^{\prime}\left\{\begin{array}{l}
\subset I \\
\not \subset C
\end{array}\right.
$$

Thus the second part of (5.6) is also verified. We prove (5.4) by means of several lemmas.

Lemma 3.

$$
B(m)=\sum_{1}^{h} B_{\eta}^{*}(m)
$$

Proof. Since B is the union of the disjoint sets $B_{1}{ }^{*}, \ldots, B_{h}{ }^{*}, B_{h}$, we only have to prove

$$
\begin{equation*}
B_{n}(m)=0 . \tag{6.16}
\end{equation*}
$$

Let $b \subset B_{n} ; b>0$. By (6.11),

$$
b+(n-m) \subset B_{n} \text { unless } b+(n-m)>n
$$

The first possibility being excluded by the maximum definition of $n-m$, we have $b>m$. This implies (6.16).

Lemma 4.

$$
C(n)-C(n-m) \geqslant A(m)+\sum_{1}^{n}{A_{\nu}}^{*}(m)
$$

Proof. We have

$$
A_{h} \oplus(n-m) \subset A_{h} \oplus B_{h} \subset C .
$$

Thus

$$
0<a \leqslant m, \quad a \subset A_{h}
$$

implies

$$
n-m<a+(n-m) \leqslant n, \quad a+(n-m) \subset C .
$$

Hence

$$
C(n)-C(n-m) \geqslant A_{h}(m)=A(m)+\sum_{1}^{n} A_{\nu}{ }^{*}(m)
$$

since A_{h} is the union of the disjoint sets $A, A_{1}{ }^{*}, \ldots, A_{h}{ }^{*}$.
Lemma 5.

$$
A_{\nu}{ }^{*}(m)=B_{\nu}{ }^{*}(m) \quad(\nu=1,2, \ldots, h)
$$

Proof. We have $A_{\nu}{ }^{*}=e_{\nu} \oplus B_{\nu}{ }^{*}$. Thus it suffices to prove that

$$
\begin{equation*}
b \subset B_{v}{ }^{*}, \quad 0<b \leqslant m \tag{6.17}
\end{equation*}
$$

implies $e_{\nu}+b \leqslant m$. Put

$$
\begin{equation*}
t=n-m+b \tag{6.18}
\end{equation*}
$$

Then we have to show

$$
\begin{equation*}
e_{\nu}+t \leqslant n \tag{6.19}
\end{equation*}
$$

Case 1. $t \not \subset B_{\nu-1}$. By (6.9) there is an $a \subset A_{\nu-1}$ such that

$$
a+t=a+(n-m)+b\left\{\begin{array}{l}
\leqslant n \\
\not \subset C
\end{array} .\right.
$$

Since $n-m \subset B_{n} \subset B_{\nu-1}$ and $b \subset B_{\nu}{ }^{*} \subset B_{\nu-1}$, the minimum property of e_{ν} implies $a \geqslant e_{\nu}$ and hence $e_{\nu}+t \leqslant a+t \leqslant n$.

Case 2. $t \subset B_{\nu-1}$. By (6.18) and (6.17), we have $t>n-m$. Thus the maximum definition of $n-m$ implies $t \not \subset B_{h}$. Hence $t \subset B_{\mu}{ }^{*}$ for some μ with $\nu \leqslant \mu \leqslant h$. Thus there is a $b^{\prime} \subset B_{\mu}{ }^{*}$ such that

$$
e_{\mu}+t+b^{\prime}\left\{\begin{array}{l}
\leqslant n \\
\not \subset C
\end{array}\right.
$$

Hence by Lemma 2

$$
n \geqslant e_{\mu}+t+b^{\prime}>e_{\mu}+t \geqslant e_{\nu}+t
$$

Combining Lemmas 4, 5 and 3, we obtain (5.4).
7. Proof of Theorem II. Put

$$
\begin{equation*}
A_{0}=A, \quad B_{0}=B \tag{7.1}
\end{equation*}
$$

Let e_{1} be the smallest element of A_{0} such that

$$
e_{1}+b_{1}=\bar{a}\left\{\begin{array}{l}
\subset I \tag{7.2}\\
\not \subset A
\end{array}\right.
$$

has solutions b_{1} in B_{0}. (If no such elements exist, then we shall again define $h=0$.) Let $B_{1}{ }^{*}$ be the set of all these solutions b_{1} and let $A_{1}{ }^{*}=e_{1} \oplus B_{1}{ }^{*}$. Thus $B_{1}{ }^{*} \subset B_{0}$ while A_{0} and $A_{1}{ }^{*}$ are disjoint. Let B_{1} be the complement of $B_{1}{ }^{*}$ in B_{0} and let A_{1} be the union of A_{0} with $A_{1}{ }^{*}$. By (7.2),

$$
\begin{equation*}
0 \not \subset B_{1}{ }^{*} \tag{7.3}
\end{equation*}
$$

Thus, from (5.8),
$0 \subset A_{1}, \quad 0 \subset B_{1}$.
Furthermore

$$
\begin{equation*}
A_{1}{ }^{*}(n)=B_{1}{ }^{*}(n) \tag{7.4}
\end{equation*}
$$

and hence, by (5.9),

$$
\begin{align*}
A_{1}(n)+B_{1}(n) & =\left[A_{0}(n)+A_{1}^{*}(n)\right]+\left[B_{0}(n)-B_{1}^{*}(n)\right] \tag{7.6}\\
& =A(n)+B(n)>C(n)
\end{align*}
$$

Lemma 1.

$$
A_{1} \oplus B_{1} \subset C
$$

Proof. Since $A_{0} \oplus B_{1} \subset A_{0} \oplus B_{0} \subset C$, we only have to show

$$
\begin{equation*}
A_{1}^{*} \oplus B_{1} \subset C \tag{7.7}
\end{equation*}
$$

Let

$$
\bar{a}=e_{1}+b_{1} \subset A_{1}^{*}, \quad b \subset B_{1}, \quad \bar{a}+b \leqslant n .
$$

Then $0 \leqslant e_{1}+b \leqslant \bar{a}+b \leqslant n$. Thus $b \subset B_{0}, b \not \subset B_{1}{ }^{*}$ implies $e_{1}+b \subset A$. Hence

$$
\bar{a}+b=\left(e_{1}+b_{1}\right)+b=\left(e_{1}+b\right)+b_{1} \subset A \oplus B \subset C .
$$

Starting with A_{1} and B_{1}, we define $e_{2}, B_{2}{ }^{*}, A_{2}{ }^{*}, B_{2}, A_{2}, \ldots$ in the same fashion. Since B_{0} is finite and each B_{ν} contains fewer elements than the preceding one, our process has to stop at some index $h \geqslant 0$. Thus

$$
\begin{equation*}
A_{h} \oplus B_{h} \subset A_{h} \tag{7.8}
\end{equation*}
$$

Furthermore, by construction,

$$
\left.\begin{array}{c}
0 \subset A_{\nu}, \quad 0 \subset B_{\nu} \tag{7.9}\\
C(n)<A_{\nu}(n)+B_{\nu}(n) \\
A_{\nu} \oplus B_{\nu} \subset C
\end{array}\right\} \quad(\nu=0,1, \ldots, h)
$$

(cf. (7.4), (7.6), and Lemma 1).
Since $A_{h}=A_{h} \oplus 0 \subset A_{h} \oplus B_{h} \subset A_{h}$, (7.8) and (7.11) imply

$$
\begin{equation*}
A_{h}=A_{h} \oplus B_{h} \subset C \tag{7.12}
\end{equation*}
$$

hence, by induction,

$$
\begin{equation*}
A_{h} \oplus \lambda B_{h}=A_{h} \subset C \tag{7.13}
\end{equation*}
$$

for every integer $\lambda \geqslant 0$. Obviously,

$$
\begin{equation*}
B_{h} \subset B, \quad A \subset A_{h} \tag{7.14}
\end{equation*}
$$

Lemma 2.

$$
B_{h} \subset A \cap B \subset A \cup B \subset A_{h}
$$

Proof. Let $b \subset A$. Then $b \subset A \subset A_{h}$. If

$$
\begin{equation*}
b \subset B, \quad b \not \subset A \tag{7.15}
\end{equation*}
$$

then $\bar{a}=0+b$ is a solution of (7.2). Hence $h>0, e_{1}=0, b \subset B_{1}{ }^{*}$ (thus $\left.b \not \subset B_{1}\right)$, and

$$
\begin{equation*}
b=e_{1}+b \subset A_{1}^{*} \subset A_{1} \subset A_{h} \tag{7.16}
\end{equation*}
$$

This proves $B \subset A_{h}$. Since (7.15) implies $b \not \subset B_{1}$, it follows that $B_{1} \subset A$. Thus

$$
\begin{equation*}
B_{h} \subset B_{1} \subset A \tag{7.17}
\end{equation*}
$$

Using (7.14) we obtain Lemma 2.
Lemma 3.

$$
\lambda B_{h} \subset C \ominus A, \quad \lambda B_{n} \subset C \ominus B \quad(\lambda=0,1,2, \ldots)
$$

Proof. By Lemma 2, and (7.13),

$$
\left.\begin{array}{l}
A \oplus \lambda B_{h} \tag{7.18}\\
B \oplus \lambda B_{h}
\end{array}\right\} \subset A_{h} \oplus \lambda B_{h}=A_{h} \subset C .
$$

Lemma 4.

$$
e_{1}<e_{2}<\ldots<e_{h}
$$

Proof. It suffices to prove

$$
\begin{equation*}
e_{1}<e_{2} . \tag{7.19}
\end{equation*}
$$

We have $e_{2} \subset A_{1}$. If $e_{2} \subset A_{0}$, then (7.19) follows from the minimum property of e_{1}. But if $e_{2} \subset A_{1}{ }^{*}$, then $e_{2}=e_{1}+b_{1}>e_{1}+0$ on account of (7.3).

From (7.12) and (7.10),

$$
A_{h}(n)+B_{h}(n)>C(n) \geqslant A_{h}(n)
$$

Hence $B_{h}(n)>0$ and there exists a smallest positive element m in B_{h}. It obviously satisfies (5.11). Lemma 2 implies (5.12), and (5.13) follows from Lemma 3. We wish to show that m also satisfies (5.10).

For any finite subset D of G let $D(g \mid \bmod m)$ denote the number of elements d of D which are mutually incongruent $(\bmod m)$ and satisfy $0<d \leqslant g$.

Lemma 5.

$$
C(n)-C(n-m) \geqslant A_{h}(n \mid \bmod m)
$$

Proof. Let $a \subset A_{h}$. By (7.13), each element $a+\lambda m$ which lies in I, belongs to $A_{h}(\lambda=0,1,2, \ldots) . A_{h}$ being finite, there exists a largest element $a+\lambda_{0} m$ of this kind. Thus

$$
a+\lambda_{0} m \leqslant n<\left(a+\lambda_{0} m\right)+m
$$

or

$$
\begin{equation*}
n-m<a+\lambda_{0} m \leqslant n . \tag{7.20}
\end{equation*}
$$

Conversely, our postulates for G imply that the solution λ_{0} of (7.20) is unique for a given a. Thus each residue class $(\bmod m)$ of A_{h} contains one and only one element a^{\prime} with $n-m<a^{\prime} \leqslant n$. Hence, by (7.12),

$$
C(n)-C(n-m) \geqslant A_{h}(n)-A_{h}(n-m)=A_{h}(n \mid \bmod m) .
$$

Lemma 6. Let

$$
\left.\begin{array}{ll}
a \subset A_{\nu-1}, & a \leqslant e_{\nu}+m \tag{7.21}\\
b \subset B_{\nu}^{*}, & 0<b \leqslant m
\end{array}\right\} \quad(0<\nu \leqslant h)
$$

$$
a \not \equiv e_{\nu}+b(\bmod m) .
$$

Proof. Suppose (7.23) is false. Then there exists an integer λ such that

$$
\begin{equation*}
e_{\nu}+b=a+\lambda m \tag{7.24}
\end{equation*}
$$

By (7.22) and (7.21),

$$
\lambda m=e_{\nu}+b-a>e_{\nu}-a \geqslant e_{\nu}-\left(e_{\nu}+m\right)=-m .
$$

Thus $\lambda>-1$. Furthermore, $e_{\nu}+b \not \subset A_{\nu-1}$ and $a \subset A_{\nu-1}$ imply $\lambda \neq 0$. Hence $\lambda \geqslant 1$.

Since $a \subset A_{\nu-1}$ while

$$
a+\lambda m=e_{\nu}+b\left\{\begin{array}{l}
\subset I \\
\not \subset A_{\nu-1},
\end{array}\right.
$$

there exists an integer μ such that

$$
a+\mu m \subset A_{\nu-1}, \quad(a+\mu m)+m \begin{cases}\subset I_{1}, & 0 \leqslant \mu<\lambda .\end{cases}
$$

Hence, from $m \subset B_{h} \subset B_{\nu}$ and the minimum definition of e_{ν},

$$
a+\mu m>e_{\nu} .
$$

Thus (7.24) yields

$$
e_{\nu}+b=a+\lambda m \geqslant(a+\mu m)+m>e_{\nu}+m .
$$

This contradicts (7.22).
Lemma 7.

$$
A_{h}\left(e_{h}+m \mid \bmod m\right) \geqslant A_{0}(m \mid \bmod m)+\sum_{i}^{h}{B_{\nu}}^{*}(m)
$$

Proof. Let $0<\nu \leqslant h . A_{\nu}$ is the union of the disjoint sets $A_{\nu-1}$ and $A_{\nu}{ }^{*}=e_{\nu} \oplus B_{\nu}{ }^{*}$. By Lemma 6, $a \not \equiv a^{*}(\bmod m)$ if

$$
a \subset A_{\nu-1}, \quad a \leqslant e_{\nu}+m, \quad a^{*} \subset A_{\nu}^{*}, \quad a^{*} \leqslant e_{\nu}+m .
$$

Thus, each residue class $(\bmod m)$ counted in $A_{\nu}\left(e_{\nu}+m \mid \bmod m\right)$ is counted either in $A_{\nu-1}\left(e_{\nu}+m \mid \bmod m\right)$ or in $A_{\nu}^{*}\left(e_{\nu}+m \mid \bmod m\right)$ but not in both. Conversely, any residue class counted in either of the latter expressions is also counted in the first one. Hence,

$$
\begin{equation*}
A_{\nu}\left(e_{\nu}+m \mid \bmod m\right)=A_{\nu-1}\left(e_{\nu}+m \mid \bmod m\right)+A_{\nu}^{*}\left(e_{\nu}+m \mid \bmod m\right) . \tag{7.25}
\end{equation*}
$$

Each element of $A_{\nu}{ }^{*}$ being greater than e_{ν}, we have

$$
\begin{equation*}
A_{\nu}^{*}\left(e_{\nu}+m \mid \bmod m\right)=A_{\nu}^{*}\left(e_{\nu}+m\right)=B_{\nu}^{*}(m) \tag{7.26}
\end{equation*}
$$

Put $e_{0}=0$. Then, by Lemma 4, $e_{\nu} \geqslant e_{\nu-1}$. Hence (7.25) and (7.26) imply

$$
\begin{equation*}
A_{\nu}\left(e_{\nu}+m \mid \bmod m\right) \geqslant A_{\nu-1}\left(e_{\nu-1}+m \mid \bmod m\right)+B_{\nu}{ }^{*}(m) . \tag{7.27}
\end{equation*}
$$

Adding (7.27) over ν, we obtain our statement.
Lemma 8.

$$
B(m)=\sum_{1}^{h} B_{\nu}^{*}(m)+1
$$

Proof. B is the union of the disjoint sets $B_{1}{ }^{*}, \ldots, B_{h}{ }^{*}, B_{h}$. Furthermore, $B_{h}(m)=1$, by the minimum definition of m.

Applying consecutively Lemmas 5, 7, and 8, we obtain

$$
\begin{aligned}
C(n)-C(n-m) & \geqslant A_{h}(n \mid \bmod m) \\
& \geqslant A_{h}\left(e_{h}+m \mid \bmod m\right) \\
& \geqslant A_{0}(m \mid \bmod m)+\sum_{1}^{n}{B_{\nu}}^{*}(m) \\
& =A(m)+B(m)-1 .
\end{aligned}
$$

This proves (5.10).
8. A variant of Theorem II. If D is any finite subset of the ordered group G, we define

$$
\begin{equation*}
D[g]=\sum_{\substack{0<d<0 \\ d \subset D}} 1 \tag{5.1}
\end{equation*}
$$

Theorem III. Let A and B be finite subsets of $G ; 0 \subset A, 0 \subset B$. Put

$$
C=A+B=\{a+b ; a \subset A, b \subset B\}
$$

Let $n \subset G, n>0$ and suppose

$$
\begin{equation*}
C[n]<A[n]+B[n] . \tag{8.1}
\end{equation*}
$$

Then there exists an element $m \subset G$ with the following properties:

$$
\begin{gather*}
C[n]-C[n-m] \geqslant A[m]+B[m]+1, \tag{8.2}\\
0<m<n, \tag{8.3}\\
m \subset A, \quad m \subset B, \tag{8.4}\\
a+\lambda m \subset C \tag{8.5}
\end{gather*}
$$

for every $a \subset A$ and every non-negative integer λ such that $a+\lambda m<n$.
Proof. Let I^{\prime} denote the set of those $g \subset G$ with $0 \leqslant g<n$. Without loss of generality, we may assume that A and B are subsets of I^{\prime} and replace C by the intersection of $A+B$ with I^{\prime}. Replacing $I, A(g), B(g), \ldots$ by $I^{\prime}, A[g], B[g], \ldots$, we can readily prove Theorem III after the pattern of the proof of Theorem II.

In a similar way, a variant of Theorem I can be obtained.
The following application of Theorem III may be of interest.
Theorem IV. Let g^{*} be a positive element of G and let A and B be finite subsets of $G ; 0 \subset A, 0 \subset B$. Furthermore let $\phi(g)$ be a real-valued function defined for all positive $g \subset G$ and such that $g \leqslant g^{\prime}+g^{\prime \prime}$ implies $\phi(g) \leqslant \phi\left(g^{\prime}\right)+\phi\left(g^{\prime \prime}\right)+1$. Finally, suppose

$$
\begin{equation*}
A[h]+B[h] \geqslant \phi(h) \tag{8.6}
\end{equation*}
$$

for each $h \subset G$ with $0<h \leqslant g^{*}$. Then the set $C=A+B$ satisfies

$$
\begin{equation*}
C[h] \geqslant \phi(h) \tag{8.7}
\end{equation*}
$$

for the same elements h.
Remark. Van der Corput and Kemperman (1) proved this result assuming only that $G=\left\{g, g^{\prime}, \ldots\right\}$ is an ordered set with a smallest element 0 and with a commutative and associative addition such that (i) $g+0=g$, (ii) $g+g^{\prime}>g$ if $g^{\prime}>0$, (iii) $g^{\prime}=g^{\prime \prime}$ if $g+g^{\prime}=g+g^{\prime \prime}$.

Proof. It suffices to prove (8.7) for $h=g^{*}$.
Let H be the finite set consisting of g^{*} and the positive elements of C. Let $n \subset H, n \leqslant g^{*}$. Then it is sufficient to prove

$$
\begin{equation*}
C[n] \geqslant \phi(n) \tag{8.8}
\end{equation*}
$$

assuming (8.7) for every $h \subset H$ with $h<n$.
If $C[n] \geqslant A[n]+B[n]$, then (8.8) follows from (8.6). Thus we may assume (8.1). By Theorem III, there is an $m \subset G$ that satisfies (8.2) - (8.5). By (8.2) and (8.6),

$$
\begin{equation*}
C[n]-C[n-m] \geqslant A[m]+B[m]+1 \geqslant \phi(m)+1 . \tag{8.9}
\end{equation*}
$$

Since $0 \subset A$, (8.5) implies $\lambda m \subset C$ for each integer $\lambda \geqslant 0$ such that $\lambda m<n$. C being finite, there is an element c_{0} in C with

$$
\begin{equation*}
c_{0}<n, \quad c_{0}+m \geqslant n . \tag{8.10}
\end{equation*}
$$

Let c_{0} be the smallest element of C with this property. Thus $c+m<n$ if $c \subset C, c<c_{0}$. Hence

$$
\begin{equation*}
C[n-m] \geqslant C\left[c_{0}\right] . \tag{8.11}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
C\left[c_{0}\right] \geqslant \phi\left(c_{0}\right) \tag{8.12}
\end{equation*}
$$

on account of (8.10) and our induction assumption. Finally, (8.10) and the assumptions of our theorem imply

$$
\begin{equation*}
\phi\left(c_{0}\right)+\phi(m)+1 \geqslant \phi(n) . \tag{8.13}
\end{equation*}
$$

Combining (8.9), (8.11), (8.12), and (8.13) we obtain (8.8).

References

1. J. G. van der Corput and J. H. B. Kemperman, The second pearl of the theory of numbers I. Nederl. Akad. Wetensch., Proc., 52 (1949), 696-704; or Indagationes Math. 11 (1949), 226-234.
2. H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Math. Z. 53 (1950), 210-218.
3. A. Khintchine, Zur additiven Zahlentheorie. Mat. Sbornik 39 (1932), 27-34.
4. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers. Ann. Math. (2), 43 (1942), 523-527.

Purdue University
University of Saskatchewan

[^0]: Received September 24, 1951; in revised form November 9, 1953.

