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Abstract

Objective: Maintaining attention underlies many aspects of cognition and becomes compromised early in neurodegenerative diseases like
Alzheimer’s disease (AD). The consistency of maintaining attention can be measured with reaction time (RT) variability. Previous work has
focused onmeasuring such fluctuations during in-clinic testing, but recent developments in remote, smartphone-based cognitive assessments
can allow one to test if these fluctuations in attention are evident in naturalistic settings and if they are sensitive to traditional clinical and
cognitive markers of AD.Method: Three hundred and seventy older adults (aged 75.8þ/− 5.8 years) completed a week of remote daily testing
on the Ambulatory Research in Cognition (ARC) smartphone platform and also completed clinical, genetic, and conventional in-clinic
cognitive assessments. RT variability was assessed in a brief (20-40 seconds) processing speed task using two different measures of variability,
the Coefficient of Variation (CoV) and the RootMean Squared Successive Difference (RMSSD) of RTs on correct trials.Results: Symptomatic
participants showed greater variability compared to cognitively normal participants. When restricted to cognitively normal participants,
APOE ε4 carriers exhibited greater variability than noncarriers. Both CoV and RMSSD showed significant, and similar, correlations with
several in-clinic cognitive composites. Finally, both RT variability measures significantly mediated the relationship between APOE ε4 status
and several in-clinic cognition composites. Conclusions: Attentional fluctuations over 20–40 seconds assessed in daily life, are sensitive
to clinical status and genetic risk for AD. RT variability appears to be an important predictor of cognitive deficits during the preclinical
disease stage.
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Introduction

Cognitive decline is a hallmark of Alzheimer’s disease (AD), and
capturing cognitive changes as early as possible is critical for
potential therapeutic intervention. Conventional assessment
approaches rely on classic cognitive measures that were designed
to detect more overt impairment andmay not be sensitive to subtle
changes that occur prior to onset of clinical symptoms. One
promising approach uses data from high-frequency cognitive
assessments to examine variability in performance at different
timescales.

The study of cognitive variability over larger timescales (i.e.,
weeks, months, and years) in healthy aging and AD has revealed
that older adults and those at risk for developing AD or already

showing AD symptoms are more inconsistent across testing
sessions (e.g., Bielak et al., 2019; Cerino et al., 2021; Hultsch et al.,
2000; MacDonald & Stawski, 2020; Martin & Hofer, 2004; Stawski
et al., 2015). However, moment-to-moment variability (over the
course of several seconds, rather than hours) might serve an
important role in basic psychological and everyday functional
processes (Unsworth & Miller, 2021; Unsworth, 2015; Welhaf &
Kane, 2023). For example, the ability to maintain consistent
attention and focus over the course of several seconds is important
for many everyday functions like remembering a shopping list,
driving, following basic instructions, and even focusing during a
conversation. Failing to maintain consistent attention can result in
a host of errors ranging from simple forgetting to automobile
accidents. In the case of cognitive testing, consistency of reaction
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times (RT) might provide unique information about an individ-
ual’s attentional ability. Throughout a task, participants’ attention
may naturally wax and wane, leading to periods of focused,
accurate performance, and periods of worse performance
(Esterman et al., 2013). This information is overlooked by only
examining mean performance on a task.

Using measures of intra-individual RT variability within a
single task has previously been useful in discriminating healthy
aging from mild cognitive impairment and from individuals
diagnosed with symptomatic AD (Christ et al., 2018; Dixon et al.,
2007; Gorus et al., 2008; Hultsch et al., 2000) and even predicting
increased risk of developing mild cognitive impairment (for a
review see Haynes et al., 2017). For example, Duchek et al. (2009)
found that individuals diagnosed with very mild AD showed
increased variability on difficult trials (measured as RT coefficient
of variation, [CoV]) compared to healthy older adults and young
adults, in three attention control tasks. Also, Gyurkovics et al.
(2018) found increased CoV in a go/no-go task in early-stage AD
participants compared to healthy older adults and healthy young
adults. Increased RT variability has also been proposed to, at least
partially, reflect efficiency of attention control (West et al., 2002),
differences in white matter integrity (Jackson et al., 2012), or
breakdowns in functional connectivity (Duchek et al., 2013). If RT
variability reflects efficiency of attention control (e.g., West et al.,
2002) then it should also be related to conventional cognitive
measures which rely on consistent attention for successful
performance. Previous work suggests that attention control
appears to be impaired in the early stages of AD and might be
an important precursor to memory-related impairments associ-
ated with AD (see Balota & Faust, 2001; Perry & Hodges, 1999).

This previous work has examined the sensitivity of RT
variability between participants who are healthy and beginning
to show early signs of AD. However, a major effort of AD research
is to identify markers that are sensitive during the preclinical stage
of the disease, especially in individual whomight be at an increased
risk for developing AD. For example, carrying at least oneAPOE ε4
allele is a major risk factor for developing AD (Corder et al., 1993)
and is often associated with increased amyloid burden (Mishra
et al., 2018; Morris et al., 2010). Thus, it is possible that RT
variability might be a sensitive measure to help identify cognitive
decline earlier among APOE ε4 carriers. Several studies have
tested for such a relationship, but the findings are mixed. Some
have found that carrying at least one copy of APOE ε4 is
associated with increases in RT variability in otherwise healthy
older adults (Duchek et al., 2009). Other studies have found no
difference in RT variability measures between ε4 carriers and
noncarriers (e.g., Anstey et al., 2007; Kay et al., 2017; Lu et al.,
2020). One possibility for these differences across studies may be
due to the tasks used. Specifically, Duchek et al. (2009) assess RT
variability in the context of attention control tasks (e.g., Stroop),
whereas studies reporting null effects assessed RT variability in
either simple or choice RT tasks (Anstey et al., 2007; Lu et al.,
2020) or a motor timing task (Kay et al., 2017). Thus, more work
is needed to understand how APOE ε4 status is related to RT
variability and how results may vary by the cognitive demands of
the task.

Prior studies of RT variability have, for pragmatic reasons, all
taken place in clinic or lab settings. These typically require
participants to travel to the assessment facility and undergo testing
for extended periods of time. These “one-shot” assessments of
cognition may be biased due to many factors including stress

from traveling to the site, or other performance decrements due to
day-to-day hassles and contextual confounds like poor mood, or
increased fatigue that naturally occur in daily life. Further, when
participants come into the clinic, they may enter a “testing mode,”
which might unintentionally generate different cognitive perfor-
mance than they would otherwise display in real life. Additionally,
traditional in-clinic testing occurred in a structured testing
environment that is highly controlled and minimizes distractions.
Measuring aspects of cognition, like attention, in everyday life
where people are more vulnerable to distractions can be more
reflective of real-world functioning compared to traditional in-
clinic testing.

Our assessment approach (see Nicosia et al., 2023; Wilks et al.,
2021) uses a custom-designed smartphone app to repeatedly assess
cognition with a measurement “burst” design. In this type of
design, participants are remotely assessed several times per day for
several consecutive days with extremely brief cognitive tests that
are designed for repeated administration. Participants might
complete these assessment bursts annually or in our case,
semiannually, to investigate cognitive change (see also Cerino
et al., 2021; Sliwinski et al., 2018; Stawski et al., 2019). Using
principles of ecological momentary assessment (EMA; Shiffman
et al., 2008), we can capture behavior and cognition in daily life
across a variety of contexts and environments to better characterize
fluctuations in RT.

Overview of the present study

The present paper focuses on how moment-to-moment variability
in performance (assessed via RT variability) on a brief processing
speed task given multiple times over the course of a week might be
a sensitive measure to detect subtle cognitive changes in older
adults at risk for AD. Below we detail the major aims of the study.

Aim 1: Can RT variability measure be reliably assessed using
EMA methods?

First, we examined if two measures of RT variability can be reliably
assessed over the course of a week using EMA. Figure 1 depicts our
general analytic approach. We examined moment-to-moment
variability within each session and then calculated the mean of that
variability across sessions to obtain a “person-level” estimate of
variability. Thus, each visit can be equated to an individual “task”
that might be given at a typical in-clinic assessment. Using this
approach, we aimed to minimize influences of between-session
variability, which appears to be sensitive to AD risk factors like
APOE status (see Aschenbrenner et al., 2023).

Aim 2: How is RT variability related to AD risk factors?

If RT variability can be reliably assessed using EMA, the next
logical question is to see if it is sensitive to important AD risk
factors. In line with previous research (Duchek et al., 2009;
Gyurkovics et al., 2018), we hypothesized that RT variability would
be greater among those already showing clinical symptoms (e.g.,
CDR 0.5 vs. CDR 0 participants). Further, we hypothesized that RT
variability would also be a sensitive measure in a preclinical sample
of participants who were at increased risk for developing AD
dementia (e.g., APOE ε4 carriers).
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Aim 3: How is RT variability related to conventional cognitive
measures and can it explain the relationship between AD risk
and cognitive performance?

We hypothesized that measures of RT variability would be
modestly correlated with in-clinic measures of cognition and
perhaps more strongly correlated with in-clinic measures of
attention control compared to memory or speed measures.
Further, we hypothesized that RT variability would be a
significant mediator in the relationship between AD risk
(indexed by APOE ε4 status) and in-clinic cognition. That is,
part of the reason APOE ε4 carriers might perform worse on
traditional cognitive measures is because of their poorer ability
to maintain consistent focus (i.e., greater RT variability).

Methods

Participants

Participants were recruited from ongoing studies of aging and
dementia at the Knight Alzheimer Disease Research Center
(Knight ADRC) at Washington University School of Medicine in
St Louis. Data collection began in March of 2020 for our ongoing
high-frequency cognitive assessment study of older adults at risk
for developing AD, the Ambulatory Research in Cognition (ARC)
study (Nicosia et al., 2023) at Washington University in St Louis.
Nearly all participants were invited to enroll after completing their
annual cognitive and clinic assessment and began ARC testing
shortly after enrolling. As data collection is still ongoing, we used a
data freeze from June 2023 for the current analyses. All participants
provided informed consent, and all procedures were approved by
the Human Research Protections Office at Washington University
in St Louis and the research was conducted in accordance with the
Helsinki Declaration.

The final sample consisted of 377 participants. Table 1 provides
demographic and ARC information on the full sample, grouped by
CDR status. Table 2 provides demographic information and
cognitive assessment descriptive statistics participants in the CDR
0 subsample, grouped by APOE ε4 status. Participants were highly
educated, most self-identified their race as White, and were
majority female. Adherence was high with participants complet-
ing, on average, 23.07 ± 4.69 out of a possible 28 sessions (82.39%
adherence).

Clinical assessments

Clinical status was assessed using the Clinical Dementia Rating®
(Morris, 1993). TheCDR® rates cognitive and functional performance
on a 5-point scale across six domains (memory, orientation, judgment
and problem-solving, community affairs, home and hobbies, and
personal care; see Morris, 1993). Participants and a collateral
source (a close family member or friend) both underwent semi-
structured interviews to determine CDR scores with CDR= 0
indicating cognitive normality, 0.5 indicating very mild dementia,
1 indicating mild dementia, 2 indicating moderate dementia, and 3
indicating severe dementia. For the current study, participants
were categorized as either cognitively normal (CDR = 0), or
diagnosed with very mild dementia (CDR= 0.5). By design, most
participants were cognitively normal (CDR 0), with the final
sample consisting of 345 cognitively normal participants and 32
CDR 0.5 participants. CDR assessments were completed 8.02 ±
7.53 weeks from the ARC assessment.

APOE genotyping was conducted using blood samples drawn
from participants. Participants were classified as APOE ε4 carriers
(4/4, 3/4, 2/4) orAPOE ε4 noncarriers (3/3, 2/3, 2/2) (see Cruchaga
et al., 2013). During the start of the ARC study, biomarker
assessments at the Knight ADRC were suspended temporarily due
to the COVID-19 pandemic. Because of this, we focus our analyses
on APOE ε4 status as our primary AD risk factor (as in
Aschenbrenner et al., 2023).

ARC smartphone assessment

Participants completed three cognitive tasks up to four times per
day over a week in their natural environments (see Nicosia et al.,
2023 for full details on the ARC platform). For the purposes of the
current study, we describe the Symbols test, as this measure features
RT as its primary outcome (the other two tasks include a measure of
visual working memory and associative memory). A screenshot of
the Symbols test is shown in Figure 2.We only included participants
if they completed 10 sessions of the Symbols test over the course of
the week to ensure they engaged sufficiently with the testing.

During the Symbols task, participants were randomly shown
three pairs of abstract shapes and were asked to select which of two
possible responses matched one of the three targets. At each
assessment, participants completed 12 trials (there was no response
deadline for participants in the task). In our previous work

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Symbols Symbols Symbols Symbols

Symbols Symbols Symbols Symbols

Symbols Symbols Symbols Symbols

Symbols Symbols Symbols

Symbols Symbols Symbols Symbols Symbols

Symbols Symbols Symbols Symbols

Symbols Symbols Symbols Symbols

“Person-Level”
Average Variability Across All Assessments

Trial 1, Trial 2, … Trial n

“Session-Level”
Variability of correct trials
for a single assessment

Figure 1. Depiction of different levels of RT
variability analyses across a typical ARC assess-
ment visit period.
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(Nicosia et al., 2022; Wilks et al., 2021) the primary dependent
measure was median RT on correct trials. For the current study,
because we were interested in the variability in RTs, we
calculated CoV (standard deviation of RTs / mean RT) to
correct RTs.

We chose CoV for multiple reasons. First, mean RT and RT
variability are highly correlated, especially in older adults (Faust
et al., 1999), so we used CoV to account for age- and disease-
related slowing of RTs. Second, we used CoV to maintain
consistency with our past work (e.g., Duchek et al., 2009). Higher
scores indicated greater variability and thus poorer moment-to-
moment attention above and beyond overall differences in
processing speed.

To test the robustness of our methods, we also calculated an
alternative measure of RT variability with the Root Mean Squared
Successive Difference (RMSSD; Von Neuman et al., 1941). The
equation for RMSSD is shown in Equation (1):

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N�1
i¼1 Xi � Xiþ1ð Þ2

N � 1

r

where Xi is the interval between adjacent trials, Xiþ 1 the next trial
interval, and N is the number of trials.

We calculated participant-level estimates of RMSSD the same
way we did for CoV. That is, we calculated the RMSSD at each
individual session and then averaged this over all sessions for a
given participant. RMSSD is a well-established measure of
variability in the heart rate literature and accounts for gradual
shifts in mean performance over time and overall learning effects.
However, because CoV can behave differently than other
variability measures (e.g., Hultsch et al., 2011; Stawski et al.,
2019), it is important to determine if measures of variability might
lead to different results or interpretations.

Table 1. Demographics of sample by CDR status

CDR 0 (N= 345) CDR= 0.5 (N= 32) Statistic p-value

Age (years) 75.80 (5.77) 77.10 (6.44) t(35.87) = −1.10 .278
Gender (% Female) 199 (58.9%) 12 (37.5%) χ2= 5.45 .020
Education (years) 16.50 (2.42) 16.12 (2.35) t(37.50)= 0.86 .395
Race (N)

White 285 31
Black/African American 58 1
Other 2 0

APOE ε4 status (%) χ2= 4.81 .028
ε4 carrier 117 (33.7%) 17 (53.1%)
ε4 noncarrier 228 (66.3%) 15 (46.9%)

Sessions Complete 23.07 (4.69) 21.28 (5.28) t(35.78)= 1.84 .074
Symbols CoV 0.33 (0.06) 0.37 (0.09) t(34.18) = −2.45 .020
Symbols RMSSD 1499.68 (818.10) 2040.66 (1100.72) t(34.25) = −2.71 .010

APOE ε4 = Apolipoprotein ε4, CDR= Clinical Dementia Rating.
Means (Standard Deviations) reported for continuous variables. N(%) reported for categorical variables. Gender and Race were self-reported.

Table 2. Demographics and cognitive performance of CDR 0 subsample by APOE ε4 status

ε4 Noncarrier (N= 228) ε4 Carrier (N= 117) Statistic p-value

Age (years) 76.12 (6.44) 74.98 (5.37) t(255.96) = 1.79 .075
Gender (% Female) 137 (60.1%) 67 (57.3%) χ2= 0.043 .836
Education (years) 16.57 (2.38) 16.41 (2.47) t(223.93) = 0.56 .576
Race (N)

White 195 91
Black/African American 34 24
Other 1 1

Sessions Complete 26.43 (12.34) 24.86 (8.63) t(311.71) = 1.39 .167
Symbols CoV 0.32 (0.06) 0.34 (0.07) t(216.12) = −1.57 .118
Symbols RMSSD 1445.23 (618.18) 1600.83 (1108.99) t(151.99) = −1.41 .162
FCSRT Free Recall 32.71 (5.61) 31.29 (6.43) t(169.57) = 1.85 .065
WMS associates Recall 15.39 (3.35) 14.43 (3.30) t(229.55) = 2.52 .013
Craft Story Recall Immediate 17.68 (3.54) 16.57 (3.39) t(238.30) = 2.83 .005
Craft Story Recall Delay 17.27 (3.54) 15.84 (3.65) t(225.91) = 3.49 .001
Animal Fluency 20.94 (5.69) 20.80 (5.60) t(234.19)= 0.214 .831
Vegetable Fluency 14.33 (4.03) 13.72 (4.02) t(231.94) = 1.31 .191
Multilingual Naming Test 30.29 (1.93) 30.14 (1.74) t(212.81) = 0.65 .519
Number Symbol 39.36 (7.55) 39.40 (9.02) t(164.51) = −0.04 .966
Digit Span Forward 8.35 (2.41) 8.62 (2.19) t(253.08) = −1.05 .293
CVOE Switch Accuracy 0.95 (0.09) 0.95 (0.10) t(199.77) = 0.15 .879
Stroop Incongruent Accuracy 0.94 (0.14) 0.95 (0.07) t(324.00) = −1.19 .235
Episodic Memory Composite 0.10 (0.75) −0.20 (0.74) t(232.57) = 3.50 .001
Semantic Memory Composite 0.03 (0.86) −0.05 (0.83) t(244.91) = 1.00 .317
Processing Speed Composite −0.02 (0.82) 0.03 (0.65) t(216.45) = −0.72 .574
Attention Control Composite −0.02 (0.70) 0.04 (0.76) t(261.80) = −0.56 .577

APOE ε4 = Apolipoprotein ε4; In-clinic cognitive measures were only analyzed for the CDR 0 group.
Means (Standard Deviations) reported for continuous variables. N(%) reported for categorical variables. Gender and Race were self-reported.
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RT outliers were handled using the following procedures. From
the correct trials, we removed RTs < 200ms as these RTs are below
the threshold for participants to accurately encode and respond to
stimuli. We next imputed any RTs for each subject beyond their
Medianþ 3*Interquartile Range to that value. Thus, we retained as
much data for each subject without undue influence of extremely
long RTs (see Welhaf & Kane, 2023). This procedure resulted in
< 1% of RTs being imputed for each participant.

Conventional cognitive assessments

Participants completed several in-person cognitive measures
as part of their annual assessment at the Knight ADRC (see
Hassenstab et al., 2016). For the current study, we examined scores
on several measures that spanned three main cognitive domains.
Specifically, we included composites for semantic memory/
language (Category Fluency for Animals andVegetables,Multilingual
Naming Test), episodic memory (Weschler Memory Sale Paired
Associated Recall, Free and Cued Selective Reminding Test, Craft
Story 21 immediate and delayed recall), processing speed (Digit
Span Forward and Number Symbol Test, a measure similar to
the digit symbol coding test), and Attention Control (Stroop
Incongruent Accuracy and CVOE Switch Accuracy). We chose
to use these composites given their increased reliability over
individual tests (see Hassenstab et al., 2016 and Weintraub et al.,
2009; 2018 for additional information and references for individual
tests). Cognitive assessments were completed 1.29 ± 4.41 weeks
from the ARC assessment.

Analytic plan

To address our first aim, we report between-person reliability
estimates of the two variability measures used in the present paper.
For our second aim, if RT variability measures are sensitive to
clinical status, we used linear regression to predict RT CoV and
RMSSD (our outcome measures) from two main predictors of
interest, APOE ε4 status and CDR status, while controlling for age,
level of education, self-reported gender, and number of completed
sessions. As part of our second aim, we also examined if RT
variability could serve as a sensitive preclinical measure. To test
this, we again conducted linear regression analysis in only the
cognitively healthy (CDR 0) participants to determine if there was
a reliable signal of APOE ε4 in a preclinical AD sample following
fromAschenbrenner et al. (2023). Again, our outcomemeasure for
this analysis was the RT variability measure with the main
predictor being APOE ε4 status while controlling for age, level of
education, self-reported gender, and number of completed
sessions.

For our third and final aim, we tested the convergent and
discriminant validity of our RT variability measures against
conventional in-clinic cognitive measures among cognitively
healthy older adults. We approached this question in two ways.
First, we examined the simple bivariate correlations between the
ARC RT Variability measures (CoV and RMSSD) and several in-
clinic measures of episodic memory, semantic memory, processing
speed, language, and attention control. Second, we asked if the
reason individuals at risk for AD perform worse on in-clinic
measures of cognition is due, in part, to poorer ability to maintain

Figure 2. Screenshot of ARC symbols task. Participants completed up to 4 sessions a day for 7 days. Each symbols task included 12 trials of matching items at the bottom to one of
the three options in the top row.
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attention. To test this, we conducted several mediation models
using the PROCESS macro to test a simple mediation model 4
(Hayes, 2022). A different cognitive composite served as the
outcome measure in each model, APOE ε4 status served as the
predictor variable, RT CoV or RMSSD as the proposed mediator,
with age, education, and gender entered as covariates. We
calculated bootstrapped 95% confidence intervals for the direct
and indirect effects in each model. When the confidence interval
did not contain zero, that effect can be interpreted as significant.

Results

Between-person reliability of RT variability measures

As previously described, aggregating scores across EMA sessions
can increase the reliability of measures compared to traditional
“one-shot” measures (e.g., Shiffman et al., 2008). We have
previously shown that ARC measures show dramatically higher
reliability compared to their in-clinic counterparts in as few as two
sessions for the Symbols task and across multiple days for the other
two ARC measures of visual working memory and associate
memory (e.g., Nicosia et al., 2023). We also think it is important to
test if measures of variability (which are inherently noisier) are
also reliable when gathered using EMAmethods. To test this, we fit
a series of unconditional multilevel models for the RT CoV and
RMSSDmeasures to compute between-person reliability (e.g., Raykov
& Marcoulides, 2006; Sliwinski et al., 2018). The resulting reliabilities
are displayed in Table 3. Between-person reliability for bothmeasures
was quite high. Notably, the between-person reliability for RMSSD
was impressively high with only a single day worth of ARC tests (i.e.,
four sessions). RT CoV required roughly two days’ worth of tests to
reach a similar level of between-person reliability.

RT CoV differences by AD risk factors

Our first set of analyses determined if cognitively normal
(asymptomatic) participants (CDR= 0) differed in their RT
CoV compared to participants with very mild dementia symptoms
(CDR= 0.5). As seen in Table 4, RT CoV was significantly
predicted by age and CDR status. As expected, participants with
very mild dementia had higher RT CoV over their week of testing
indicating poorer moment-to-moment attention (see Fig. 3). The
effect of APOE ε4 status was not significant, but it was in the
hypothesized direction withAPOE ε4 carriers showing higher CoV
than noncarriers.

We next looked to see if this APOE ε4 effect was apparent in a
cognitively healthy sample of participants to examine a possible
sensitive preclinical signal. As seen in Table 4, when restricting the
sample to only CDR 0 participants, APOE ε4 carriers showed
greater RT CoV compared to noncarriers (see Fig. 4). Age also
predicted RT CoV such that older participants had greater RT
CoV. Thus, there appears to be a preclinical effect of APOE ε4
status on moment-to-moment consistency of attention.

RMSSD as an alternative RT variability measure

As described earlier, we also attempted to provide converging
evidence from a different measure of variability. To address this
concern, we also calculated the RMSSD at each individual session
and then averaged across these sessions for participant-level scores.
We repeated the above regression analyses replacing RT CoV with
RMSSD as the outcome to see if a different measure of variability
would produce similar patterns.

The results of the RMSSD models are displayed in Table 5. In
the full sample, RMSSD was related to age and the number of
completed sessions. Critically, CDR status was again a significant
predictor with CDR 0.5 participants showing increased variability
(i.e., higher RMSSD) compared to cognitively healthy participants.
Restricting this to only the CDR 0 participants, we again found the
critical APOE ε4 effect. Specifically, APOE ε4 carriers showed
greater variability (i.e., higher RMSSD values) compared to
noncarriers. Thus, our main results were largely consistent across
two different measures of variability.

Evidence for convergent and discriminant validity of
naturalistically assessed RT variability

We next examined the correlations between the RT variability
measures and several conventional cognitive measures to test if
there was an association between the ability to successfully
maintain moment-to-moment attention in naturalistic settings
and various cognitive abilities (tested in a supervised clinic setting).
The resulting correlation matrix is presented in Table 6. First, both
measures of variability were strongly correlated with each other
(r= .78). Thus, these two measures appear to be largely redundant
with one another.

In terms of correlations with other cognitive variables, as
expected, both measures of variability showed moderate correla-
tions (based on Cohen’s 1988 framework) with the in-clinic
cognitive composite measures. As expected, cognitively normal
(CDR 0) participants who had greater variability in the ARC
Symbols task had lower scores on the cognitive composites for
episodic memory, semantic memory, attention control, and
processing speed.

We next tested if part, or all, of the relationship between APOE
ε4 status and in-clinic cognition could be explained by RT
variability. Table 7 shows the resulting direct and indirect effects of
several mediation models. In general, the results across both
measures of RT variability were rather similar. Aside from episodic
memory, all relationships between APOE ε4 status and the

Table 3. Reliabilities for symbols CoV and RMSSD measure

Sessions Symbols CoV Symbols RMSSD

4 0.723 0.898
7 0.830 0.944
16 0.907 0.980
27 0.941 0.989

ARC Participants received 4 sessions/day for 7 days.

Table 4. Linear regressions predicting symbols RT CoV

Model 1 – Full Sample Model 2 – CDR 0 Only

b (SE) b (SE)

Age (years) .003 (.001)*** .003 (.001)***
Gender −.000 (.007) .004 (.007)
Education (years) .000 (.001) −.001 (.001)
Sessions Complete −.001 (.000) −.000 (.000)
APOE ε4 status .013 (.007)^ .014 (.007)*
CDR Status .031 (.012)**
R2 .105 .104
Adjusted R2 .090 .091
Observations 377 345

APOE ε4 = Apolipoprotein ε4; CDR= Clinical Dementia Rating.
^ p= .070; * p< .05; ** p< .01; *** p< .001.
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cognitive composites could be fully explained by RT variability.
Specifically, APOE ε4 carriers exhibited greater variability which in
turn predicted poorer cognitive composite scores. The only
relationship that could not be fully explained was that of episodic
memory. That is, there was still a direct effect of APOE ε4 status on
episodic memory performance even after accounting for RT
variability.

Discussion

The current study examined variability in RTs using a novel
smartphone application that measures cognition repeatedly in a
variety of contexts in the participants natural environment over the
course of 7 days. There were several key findings. First, RT
variability can be reliably assessed using EMA approaches (and this
was true across two different metrics of variability, CoV and
RMSSD). Second, measures of RT variability appear sensitive to
both clinical status (i.e., CDR status) and genetic disposition of AD
(i.e., APOE ε4 status). Specifically, older adults who were already
showing cognitive symptoms of AD had increased RT variability.
Among cognitively normal participants, those at risk for AD also
showed increased RT variability. Finally, measures of RT
variability were correlated with conventional cognitive measures
in theoretically meaningful ways and could largely explain the
relationship between APOE ε4 status and conventional measures.

Can RT variability be reliably measured using EMA?

Our results suggest that variability in attention over the course of
several seconds can be assessed using remote assessments across a
variety of contexts and can leverage the strengths of EMA designs
to obtain reliable estimates of RT variability. Between-person
reliability estimates for both CoV and RMSSD surpassed tradi-
tional standards for “good” reliability of > .75 (Bruton et al., 2000).
Specifically, both RT CoV and RMSSD only required four tests
(which collectively took no more than 4 minutes) to get reliability
that exceeds an in-lab test of the same construct and would take
more than fourminutes to administer. Further, these twomeasures
of variability were strongly correlated with one another suggesting
some redundancy. Previous work has also suggested that CoV
measures are not recommended as they confound changes inmean
RT with changes in the standard deviation (e.g., Hultsch et al.,
2011; Stawski et al., 2019). However, the results of the current study
suggest there are largely similar patterns regardless of the RT
variability metric used. Thus, the heightened reliability and strong
correlation between the two measures could minimize concerns
that CoV is a confounded measure of variability.

These measures of variability also do not appear to be
susceptible to floor or ceiling effects. As displayed in Figures 2
and 3, there was substantial inter-individual variation in RT CoV
(and this was also true for RMSSD). One discrepancy between the

Figure 3. Raincloud plots (Allen et al., 2019)
depicting differences in RT CoV by CDR group.
Individual dots represent participant values with
the corresponding distribution.Open circles reflect
the group means and the corresponding 95%
confidence interval. Asymptomatic (CDR= 0)
N= 345; symptomatic (CDR= 0.5) N= 32.

Figure 4. Raincloud plots (Allen et al., 2019)
depicting differences in RT CoV by APOE ε4
status. Individual dots represent participant
values with the corresponding distribution.
Open circles reflect the group means and the
corresponding 95% confidence interval. APOE ε4
negative N = 228; APOE ε4 positive N = 117.
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RT variability measures appeared in terms of improvement in
these scores over time (i.e., practice effects). Specifically, RT CoV
was not associated with the number of completed sessions (either
in the full sample or in the CDR 0 subsample), while RMSSD was
associated with completed sessions. Thus, at least in some cases,
how RT variability is measured can produce slightly different
results. When assessing trial-to-trial variability using EMA,
though, RMSSD might not be a gold standard approach for
assessing RT variability. RT CoV, on the other hand, might be a
suitable measure for longitudinal assessments that avoids common
pitfalls of conventional cognitive measures.

Is RT variability measured with EMA sensitive to AD risk
factors?

Our measures of RT variability also showed consistent patterns
regarding group differences. Specifically, CDR status predicted
unique variance in RT CoV and RMSSD suggesting that
individuals showing clinical symptoms of dementia had more
difficulty maintaining moment-to-moment attention. These
results replicate several studies using in-clinic measures to assess
RT variability (e.g., Cherbuin et al., 2010; Duchek et al., 2009;
Jackson et al., 2012; Tse et al., 2010).

This effect of increased RT variability was also evident in
cognitively normal individuals who carry a genetic risk for
developing AD. Our results are consistent with previous work
showing that genetic risk for AD (as defined as APOE ε4 status) is
associated with increased performance variability within a task
(e.g., Duchek et al., 2009). As noted earlier, some studies have
reported null effects of APOE ε4 status on RT variability measures
when using more basic RT tasks. These studies tested participants
using amore traditional “one-shot” assessment of cognition during
a supervised clinic session. Such tasks may be too short to allow
attention to fluctuate on a trial-to-trial basis. For example, Lu et al.
(2020) noted that the choice RT task they used lasted less than
threemins. In the current study, the total time to complete Symbols
over the week was closer to 8–10 minutes. Thus, capturing
variability using a more natural testing platform in ARC highlights
the sensitivity of ARC testing.

How is EMA-assessed RT variability related to conventional
cognitive measures?

Previous work has proposed that attentional processes might
underly some of the declines in memory, and cognition more
broadly, found in AD (e.g., Balota & Faust, 2001). This suggests
that individuals who are at risk, or even showing early signs of AD,

Table 5. Linear regressions predicting symbols RT RMSSD

Model 1 – Full Sample Model 2 – CDR 0 Only

b (SE) b (SE)

Age (years) 39.71 (7.22)*** 43.37 (7.27)***
Gender 71.31 (86.29) 102.49 (85.75)
Education (years) −11.39 (17.75) −14.59 (17.74)
Sessions Complete −9.42 (3.87)* −9.33 (3.84)*
APOE ε4 status 156.56 (88.16)^ 181.55 (88.21)*
CDR Status 424.41 (151.91)**
R2 .128 .128
Adjusted R2 .114 .116
Observations 377 345

APOE ε4 = Apolipoprotein ε4; CDR= Clinical Dementia Rating.
^ p= .077; * p< .05; ** p< .01; *** p< .001.
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might have cognitive issues partially because they have difficulty
maintaining attention. The correlational, and, importantly, the
mediation results of the current study appear to largely support this
claim. RT variability accounted for significant variance in the
relationship between APOE ε4 status and in-clinic cognition. The
only relationship that was not fully accounted for by RT variability
was episodic memory. Given how central episodic memory deficits
are to AD, it is perhaps unsurprising that individuals at risk for AD
showed poorer episodic memory even after accounting for
attentional abilities.

One possible explanation for these results is that older adults
who are at risk for developing AD (e.g., APOE ε4 carriers) might
also be susceptible to, or in the early stages of, accumulation of
abnormal levels of β-amyloid and phosphorylated tau, which
might be contributing to larger memory impairments beyond the
attentional contributions. If this is the case, then one might expect
to see episodic memory impairments even after accounting for
attentional ability. Although we could not adequately examine AD
biomarkers in the current study (due to disruptions in biomarker
collection brought on by the COVID-19 pandemic), future
research should examine the link between AD biomarkers and
RT variability measures assessed in EMA studies of cognition.

The results of the current study also align with recent work from
our group examining the utility of RT variability in other repeated
testing contexts. Aschenbrenner et al., (2023) recently showed that
over the course of 21 days of repeated testing, RT CoV in a go/no-
go task was significantly correlated with n-back performance.
Thus, brief, and repeated assessments, of attentional fluctuations
represent a meaningful and reliable construct, is are related to
cognitive performance in other domains.

Limitations

It is worth noting some limitations of the current study. First, an
obvious limitation is that we usedAPOE ε4 status as a proxy for AD
rather than measuring amyloid directly (although we did so in
conjunction with CDR as a marker of AD severity which could be
seen as a strength). Given that ARC testing started at the same time
at the COVID-19 pandemic, collection of routine biomarker data
was halted, and many participants may have outdated biomarker
data which might lead to incorrect classification of AD status.
Future work should also consider how biomarkers are related to
naturalistic assessments of RT variability. Second, while we were
able to find reliable differences in RT variability in a brief cognitive
task, it is possible that 12 trials, which take roughly 20–40 s, might
not fully capture differences in variability. Although some have
identified attentional fluctuations in as little as 16 s (Esterman
et al., 2013) future studies might consider increasing the number of
trials to better capture moment-to-moment RT variability. As is

typical of studies of AD, Knight ADRC participants are typically
highly educated and primarily White older adults with high
motivation and willingness to engage in studies. Our results might
not generalize to a more diverse population where different
contextual and environmental factors might make maintaining
consistent attention difficult. The Knight ADRC is making
continued efforts to connect with more participants from
underrepresented groups in the St Louis metropolitan and
surrounding areas. It is our hope that through these efforts we
will be better able to make more generalizable conclusions from
our studies in the future.

Conclusions

This study extends previous findings that trial-to-trial RT
variability is sensitive to AD risk factors by assessing variability
using EMA methods, rather than in the constraints of a lab. RT
variability differences we evident between cognitively normal
participants and participants with very mild dementia. Within the
cognitively normal participants, increased RT variability was
associated with APOE ε4 status, such that carriers showed
increased variability compared to noncarriers. Finally, measures
of naturalistic RT variability were moderately correlated with
conventional cognitive tests and could, in most cases, fully explain
the relationship between APOE ε4 and cognition. This study
highlights the utility of using brief, remote, cognitive testing to
measure subtle variations in attention during everyday life.
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