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Lie Algebras of Pro-Affine Algebraic
Groups
Dedicated to Gerhard Hochschild on his 85th birthday

Nazih Nahlus

Abstract. We extend the basic theory of Lie algebras of affine algebraic groups to the case of pro-affine
algebraic groups over an algebraically closed field K of characteristic 0. However, some modifications
are needed in some extensions. So we introduce the pro-discrete topology on the Lie algebra L(G) of
the pro-affine algebraic group G over K, which is discrete in the finite-dimensional case and linearly
compact in general. As an example, if L is any sub Lie algebra of L(G), we show that the closure of
[L, L] in L(G) is algebraic in L(G).

We also discuss the Hopf algebra of representative functions H(L) of a residually finite dimensional
Lie algebra L. As an example, we show that if L is a sub Lie algebra of L(G) and G is connected, then
the canonical Hopf algebra morphism from K[G] into H(L) is injective if and only if L is algebraically
dense in L(G).

Introduction

A pro-affine algebraic group G, over an algebraically closed field K, is an inverse limit
of affine algebraic groups over K [H-M2]. This notion was introduced by Hochschild
and Mostow in connection with the representation theory of groups. For example,
every complex analytic group has a pro-affine algebraic group hull whose finite-
dimensional rational representations are in bijective correspondence with the finite-
dimensional complex analytic representations of the given analytic group [H-M3,
p. 1141] (see also [Ma2], [N1]). A similar correspondence exists for residually finite
dimensional Lie algebras over K in characteristic 0 by (4.2) below.

So it is of interest to extend the basic theory (found, for example, in [B], [H3],
[Hu], [S]) concerning the group-Lie algebra correspondence from the category of
affine algebraic groups to the category of pro-affine algebraic groups in characteristic
0. For example, if L is a sub Lie algebra of L(G) , Theorem 2.1 shows the existence
of the smallest algebraic subgroup of G whose Lie algebra contains L. In particular,
L(A∩B) = L(A)∩L(B) whenever A and B are algebraic subgroups of G. Moreover,
a morphism of connected pro-affine algebraic groups is a covering if and only if its
differential is an isomorphism by (3.8).

However, some modifications are needed in extending some of the results in the
affine case to the pro-affine case. So, in Section 3, we introduce the pro-discrete
topology on L(G) which is discrete in the finite-dimensional case and linearly com-
pact in general. For example, Theorem 3.2 shows that if M and N are connected nor-
mal algebraic subgroups of G, then L([M,N]c) = [L(M),L(N)]c where [M,N]c is
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the Zariski closure of [M,N] in G and [L(M),L(N)]c is the (pro-discrete) closure of
[L(M),L(N)] in L(G). Theorem 3.10 shows that if A is any sub Lie algebra of L(G),
then the (pro-discrete) closure of [A,A] in L(G) coincides with its algebraic hull in
L(G). In particular, if [A,A] is finite-dimensional, then [A,A] is algebraic in L(G).
Theorem 3.12 (a) whose proof relies on the linear compactness of L(G) shows that if
G is connected, then G is pro-solvable if and only if the sub Lie algebras of the closed
derived series of L(G) have a zero intersection.

If char(K) = p, some of the results in the affine case do not extend to the pro-
affine case. For example, there exists a connected pro-affine algebraic group G such
that L(G) = 0 although G is non-trivial. Moreover, there exists a morphism f of
connected pro-affine algebraic groups whose differential is surjective although f is
not surjective (Example 3.6).

Most of the proofs in Sections 1–3 are obtained by reduction to the affine case.
However the proof of Theorem 2.4 concerning the existence of algebraic hulls of sub
Lie algebras of L(G), is a slight modification of the proof in the affine case as given by
Hochschild in [H3]. The modification requires a version of Hilbert Nullstellensatz
for commutative Hopf algebras.

In Section 4, we discuss the Hopf algebra of representative functions H(A) of a Lie
algebra A. Theorem 4.1 shows that if A is a sub Lie algebra of L(G) and G is con-
nected, then the canonical Hopf algebra morphism from K[G] into H(A) is injective
if and only if A is algebraically dense in L(G). This result is known in the case where
A = L(G) [H2, Prop. 4.1]. Morover, in Section 4, we obtain the following results on
residually finite dimensional Lie algebras over K. If L is such a Lie algebra and G(L)
is the pro-affine algebraic group such that K[G(L)] = H(L), we have

(i) the finite-dimensional representations of L are in bijective correspondence with
the finite-dimensional rational representations of G(L) by (4.2),

(ii) L is algebraically dense in L
(

G(L)
)

and G(L) is simply connected by (4.4),

(iii) if [L, L] is finite-dimensional, we also have [L, L] =
[
L
(

G(L)
)
,L
(

G(L)
)]

, and
in particular,

(iv) if [L, L] is finite-dimensional, then L is an ideal of L
(

G(L)
)

and L
(

G(L)
)
/L is

abelian.

Property (iv) is known in the case where L is finite-dimensional (see [H1, top p. 521]).

Acknowledgements Some parts of this paper were obtained during the author’s
sabbatical leave at the University of California Berkeley during 1998–1999.

We shall assume that the reader is familiar with the general properties of pro-affine
algebraic groups found in [H-M2, Section 2]. We adopt the following notation and
conventions: K is a fixed algebraically closed field. If G is a pro-affine algebraic group
over K, then K[G] is its Hopf algebra of polynomial functions [HM2, p. 1127], L(G)
is the Lie algebra of G [H2, p. 404], and G1 is the identity component of G [H2,
Thm. 2.1]. Moreover, if A is an algebraic subgroup of G, L(A) will be identified with
its canonical image in L(G).

https://doi.org/10.4153/CJM-2002-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-021-9


Lie Algebras of Pro-Affine Algebraic Groups 597

1 Preliminary Results

Let G be a pro-affine algebraic group over K. Let {Ai | i ∈ I} be the set of all affine
(finitely algebra generated) Hopf subalgebras of K[G]. For each i, let Gi be the affine
algebraic group with K[Gi] = Ai . Then K[G] =

⋃
K[Gi] is a directed union since

every commutative Hopf algebra is the directed union of its affine Hopf subalgebras
[H2, p. 400]. Hence

G = lim←−Gi and L(G) = lim←−L(Gi)

and we refer to these descriptions as the standard limits for G and L(G) respec-
tively [Lu-Ma, p. 77]. We shall need the following result found in [H-M2, Thm. 2.1,
p. 1131], [H2, p. 406].

Lemma 1.1 Let G = lim←−Gi and L(G) = lim←−L(Gi) be the standard limits for G and
L(G). Then

(a) each projection πi : G→ Gi is surjective,
(b) If char(K) = 0, each projection ρi : L(G)→ L(Gi) is surjective.

Notation Let πi : G→ Gi and ρi : L(G)→ L(Gi) be as in (1.1). If A ⊂ G, πi(A) will
be denoted by Ai , and if A ⊂ L(G), ρi(A) will be denoted by Ai . With this notation,
(G)i = Gi since each πi is surjective. Moreover, if char(K) = 0,

(
L(G)

)
i

= L(Gi)
since each ρi is surjective.

Lemma 1.2 Let G = lim←−Gi and L(G) = lim←−L(Gi) be the standard limits for G and
L(G).

(a) Let A be an algebraic subgroup of G. Then A = lim←−Ai and L(A) = lim←−L(Ai).

Moreover, if A = lim←−As (s ∈ S) is the standard limit for A, then {Ai} is a cofinal

subset of {As}.
(b) Let {Ai} be a sub inverse system of {Gi} where each Ai is an algebraic subgroup of

Gi . Then lim←−Ai is an algebraic subgroup of G. Moreover, if {Ai} is a surjective
inverse system, then each projection lim←−Ai → Ai is surjective.

(c) L(G) = L(G1).

Proof (a) Let πi : G→ Gi be as in (1.1) and let π : A→ Ai be the restriction of πi to
A. Then the transpose map πt : K[Ai]→ K[A] is injective since π is surjective. Thus
we may identify K[Ai] with its image in K[A], so πt is the identity. Let ρ : K[G] →
K[A] be the restriction morphism. Then ρ(K[Gi]) = K[Ai]. Now we apply ρ on the
directed union K[G] =

⋃
K[Gi]. This yields K[A] =

⋃
K[Ai] as a directed union.

Hence A = lim←−Ai and L(A) = lim←−L(Ai). Moreover, every finite subset of K[A] lies
in some K[Ai]. Consequently, if A = lim←−As is the standard limit for A, then each
K[As] lies in some K[Ai]. Hence {Ai} is a cofinal subset of {As} which proves (a).

(b) Since {Ai} is a sub inverse system of {Gi}, lim←−Ai =
⋂
π−1

i (Ai). But each

π−1
i (Ai) is closed in G since each Ai is closed in Gi . Hence lim←−Ai is a closed subgroup
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of G. If {Ai} is a surjective inverse system (of algebraic groups), then each projection
lim←−Ai → Ai is surjective [H-M1, Prop. 2.8, p. 505] which proves (b).

(c) Since (G1)i = (Gi)1 [H2, Prop. 2.1], part (a) implies that L(G1) =
lim←−L(G1)i = lim←−L(Gi)1 and this last coincides with lim←−L(Gi) = L(G). Hence

L(G1) = L(G).

Theorem 1.3 Let A be a connected algebraic subgroup of G. If A is normal in G, then
L(A) is an ideal of L(G). Moreover, the converse is true if char(K) = 0 and G is
connected.

Proof A = lim←−Ai and L(A) = lim←−L(Ai) by (1.2)(a). Moreover, the projection
G → Gi is surjective and, if char(K) = 0, the projections L(G) → L(Gi) and
L(A) → L(Ai) are surjective by (1.1). With these facts, the proof of Theorem 1.3
can be easily reduced to the affine case.

Similarly, as in the proof of Theorem 1.3, we may reduce the following theorems
to the affine case.

Theorem 1.4 If G is abelian, then so is L(G). Moreover the converse is true if char(K) =
0 and G is connected.

Theorem 1.5 Let A and B be connected algebraic subgroups of G such that L(A) ⊂
L(B). If char(K) = 0, then A ⊂ B.

Let V be a G-module. Then, as in affine algebraic groups, V is called a rational
G-module if it is a sum of finite-dimensional G-submodules which are rational in the
usual sense. If V is a rational G-module, then V is an L(G)-module in a natural way.

Theorem 1.6 Assume char(K) = 0 and G is connected. Let V be a rational G-module.
Then the G-fixed part of V coincides with the L(G)-annihilated part of V . Moreover,
the G-submodules of V coincide with the L(G)-submodules of V .

Proof Without loss of generality, we may assume that V is of finite dimension. Let
f : G −→ Aut(V ) be the morphism defining the given G-action. Let Fix(G) be
the fixed part of V under the action of G and define Fix

(
f (G)

)
in the same way.

Let Ann
(
L(G)

)
be the annihilated part of V under the action of L(G) and define

Ann
(

L
(

f (G)
))

in the same way. Then, by the affine theory, we have Fix
(

f (G)
)

=

Ann
(

L
(

f (G)
))

. But Fix(G) = Fix
(

f (G)
)

and Ann
(
L(G)

)
= Ann

(
L
(

f (G)
))

.

Moreover, L( f (G) = f o
(
L(G)

)
by (1.1) (since K[ f (G)] can be viewed inside K[G]).

Hence Fix(G) = Ann
(

f o
(
L(G)

))
. Similarly, the G-submodules of V coincide with

the L(G)-submodules of V . This proves Theorem 1.6.

The proof of the following theorem is verbatim that of the affine case (cf. [H3,
Thm. 2.3, p. 66].

Theorem 1.7 If x ∈ L(G) then, as in the affine case, we have the additive Jordan
components x(n) and x(s). These components are in L(G). Furthermore, if f : G −→ H
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is a morphism of pro-affine algebraic group s, one has

f o(x(n)) =
(

f o(x)
) (n)

and f o(x(s)) =
(

f o(x)
) (s)

.

2 Algebraic Hulls

Unless otherwise stated, we shall assume throughout this section that G is a connected
pro-affine algebraic group over K and char(K) = 0.

Let A be a sub Lie algebra of L(G), and let G = lim←−Gi and L(G) = lim←−L(Gi)
be the standard limits for G and L(G). Let G(Ai) be the smallest affine algebraic
subgroup of Gi whose Lie algebra contains Ai , so L

(
G(Ai)

)
= (Ai)+ is the algebraic

hull of Ai in L(Gi) [B, II.7.1][H3, Thm. 2.2, p. 49]. For each j > i, let π ji : G j −→ Gi

be the ( j, i) transition map in G = lim←−Gi . Then (π ji)o : L(G j) −→ L(Gi) is the
( j, i) transition map in L(G) = lim←−L(Gi). Since (π ji)o(A j) = Ai , we must have

(π ji)o
(

(A j)+
)

= (Ai)+ and π ji

(
G(A j)

)
= G(Ai) [B, II.7.2]. Finally, let

G(A) = lim←−G(Ai).

Then G(A) is an algebraic subgroup of G and each projection G(A) −→ G(Ai) is
surjective by (1.2)(b). Hence, by (1.2)(a) L

(
G(A)

)
= lim←−(Ai)+.

We shall write A+ for L
(

G(A)
)

, so A+ = lim←−(Ai)+. In fact, A+ is the smallest
algebraic sub Lie algebra of L(G) containing A by the following theorem.

Theorem 2.1 Let A be a sub Lie algebra of L(G). Then the smallest algebraic subgroup
G(A) of G whose Lie algebra contains A exists. That is, A ⊂ L

(
G(A)

)
and G(A) is

contained in every algebraic subgroup of G whose Lie algebra contains A. Moreover,
G(A) is connected.

Proof Let G(A) be the above constructed algebraic subgroup of G, so G(A) =
lim←−G(Ai) and L

(
G(A)

)
= lim←−(Ai)+. Hence A ⊂ L

(
G(A)

)
since A ⊂ lim←−Ai ⊂

lim←−(Ai)+. Now suppose that A ⊂ L(H) where H is an algebraic subgroup of G.

Then Ai ⊂
(
L(H)

)
i

= L(Hi) by (1.1). Hence G(Ai) ⊂ Hi by the definition of
G(Ai). But G(A) = lim←−G(Ai) by definition and H = lim←−Hi by (1.2)(a). Hence
G(A) ⊂ H. Finally, since each projection G(A) −→ G(Ai) is surjective and each
G(Ai) is connected, it follows that G(A) is connected, and Theorem 2.1 is proved.

Corollary 2.2 Let A and B be algebraic subgroups of G. Then L(A∩B) = L(A)∩L(B).

Corollary 2.3 Suppose A and B are connected algebraic subgroups of G. If L(A) ⊂
L(B), then A ⊂ B.

Let τ ∈ L(G). We shall view τ as a differentiation of K[G]. Let τ[ be the
corresponding derivation of K[G] commuting with the translation action given by
( f .x)(y) = f (yx). Then the dual K-space of K[G] is a K-algebra with the multipli-
cation obtained by dualizing the comultiplication in K[G]. In fact, (τ )n = τ ◦(τ[)n−1

[H3, p. 47]. Let

Jτ = { f ∈ K[G] : (τ )n( f ) = 0 for every integer n}
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where (τ )0( f ) = f (1G) and let Gτ be the annihilator of Jτ in G. Then Jτ is a biideal
of K[G] [H3, bottom p. 46]. Moreover, Jτ is a Hopf ideal since τ

(
s( f )

)
= −τ ( f )

where s is the antipode of K[G]. Hence Gτ is an algebraic subgroup of G.

Theorem 2.4 Let τ ∈ L(G) and let Gτ be the algebraic subgroup of G which is the
annihilator of Jτ . Then Gτ is the smallest algebraic subgroup of G whose Lie algebra
contains τ . Morover, Gτ is connected.

The proof is a slight modification of the proof in the affine case as given in [H3,
Thm. 2.1, p. 47]. Since our base field K is algebraically closed, we shall only need the
first two and a half paragraphs of the proof. In fact, the first two paragraphs apply to
any pro-affine algebraic group, whereas the last half paragraph relies on the fact to be
checked that the ideal Jτ which was shown to be prime is precisely the annihilator of
Gτ in K[G]. This is to make sure that

τ ∈ L(Gτ ).

In the affine case, this is true by Hilbert Nullstellensatz. In the pro-affine case, we
need equivalently the fact that the K-algebra homomorphisms of H = K[G]/ Jτ sep-
arate the elements of H. But this is true since H is a commutative Hopf algebra with
no non-zero nilpotent elements over an algebraically closed field [H-M2, Thm. 2.1,
p. 1131] or [W, Exercise 3(b), p. 119].

Remark As a corollary to Theorem 2.4 we obtain Theorem 2.1 as follows. Given
a sub Lie algebra A of L(G), let GA be the intersection of the family of all algebraic
subgroups of G whose Lie algebras contains A. Then Theorem 2.4 implies immedi-
ately that GA is the smallest algebraic subgroup of G whose Lie algebra contains A.
Moreover, GA is connected by (1.2)(c) since L(GA) = L

(
(GA)1

)
.

Corollary 2.5 Let f : G → H be a morphism of pro-affine algebraic groups over K.
Then L(Ker f ) = Ker f o.

The proof follows easily from Theorem 2.4 as shown in [H3, Thm. IV.2.3].

3 The Pro-Discrete Topology on L(G)

Unless otherwise stated, we shall assume throughout this section that G is a connected
pro-affine algebraic group over K and char(K) = 0.

Let G = lim←−Gi and L(G) = lim←−L(Gi) be the standard limits for G and L(G). We
shall give each L(Gi) the discrete topology and the resulting inverse limit topology on
L(G) will be called the pro-discrete topology of L(G). So a subset A of L(G) is closed
if and only if A = lim←−Ai and the (pro-discrete) closure of A in L(G) will be denoted
by Ac which is given by Ac = lim←−Ai [Bk, Cor. 1.4.4, p. 49].

Since L(G) = lim←−L(Gi) is an inverse limit of discrete finite-dimensional vector
spaces, L(G) is linearly compact in the sense that given any family of closed cosets
(of subspaces) of L(G) with the finite intersection property, then their intersection is
non-empty [Lf, (27.1), (27.6), p. 78].
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Lemma 3.1

(a) Assume char(K) to be arbitrary. If H is an algebraic subgroup of L(G), then L(H)
is closed in L(G). Moreover, the induced topology on L(H) coincides with the pro-
discrete topology on L(H).

(b) Every finite-dimensional subspace of L(G) is closed.

Proof Part (a) follows from (1.2)(a) and before giving a direct proof of (b), we note
that (b) follows from the general theory of linear compactness in linearly topologized
vector spaces [Lf, (27.5), (27.7), p. 78]. If A is a finite-dimensional subspace of L(G),
then the restrictions of the transition maps L(G) → L(Gi) to A are injective for
sufficiently large i. Consequently, A = lim←−Ai and so A is closed in L(G).

Theorem 3.2 Let M and N be connected normal algebraic subgroups of G and let
[M,N]c be the Zariski closure of [M,N] in G. Then L([M,N]c) = [L(M),L(N)]c.
In particular, if [L(G),L(G)] is finite-dimensional, then

L([G,G]c) = [L(G),L(G)].

Proof The proof can be easily reduced to the affine case as follows. By (1.1) and
the continuity of each projection L(G) → L(Gi), we have

(
[L(M),L(N)]c

)
i

=
[L(Mi),L(Ni)]. Moreover,

(
L([M,N]c)

)
i

= L([M,N]c)i = L([Mi ,Ni]) since
[Mi ,Ni] is closed in Gi . But L([Mi ,Ni]) = [L(Mi),L(Ni)] [B, II.7.8]. Hence(

[L(M),L(N)]c
)

i
= L([M,N]c)i for every i. Consequently, [L(M),L(N)]c =

L([M,N]c) since this last is closed by (3.1)(a). In particular, if [L(G),L(G)] is
finite-dimensional, then L([G,G]c) = [L(G),L(G)] by (3.1)(b) which proves The-
orem 3.2.

Similarly, as in the proof of Theorem 3.2, we may reduce the proof of the following
to the affine case [H3, Thm. 1.1, p. 107].

Theorem 3.3 Let L be a sub Lie algebra of nilpotent elements of L(G). Then L is the
Lie algebra of a pro-unipotent algebraic subgroup of G if and only if L is closed in L(G).

Theorem 3.4 Assume char(K) to be arbitrary. Let f : G −→ H be a morphism of
pro-affine algebraic groups over K. Then the differential f o of f is continous and maps
every closed subspace of L(G) onto a closed subspace of L(H).

Proof First we assume that f is surjective. Then the transpose of f is injective, so we
may identify K[H] with its image in K[G]. Let G = lim←−Gi be the standard limit for
G, so K[G] =

⋃
K[Gi] is a directed union. Then K[H] =

⋃
(K[Gi] ∩ K[H]). But

each K[Gi] ∩ K[H] is affine being a Hopf subalgebra of a commutative affine Hopf
algebra [H3, Thm. 4.3, p. 25], [W, Exercise 10, p. 119]. Hence each K[Gi] ∩ K[H] =
K[Hi] for some affine algebraic group Hi . Thus K[H] =

⋃
K[Hi] is a directed union.

Hence H = lim←−Hi and L(H) = lim←−L(Hi). If H = lim←−Hs is the standard limit for
H, then each K[Hs] lies in some K[Hi] since every finite subset of K[H] lies in some
K[Hi]. Hence {Hi} is a cofinal subset of {Hs}.
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The inclusion map K[Hi] −→ K[Gi] yields a surjective morphism fi : Gi −→ Hi

and it is evident that f = lim←− fi and f o = lim←− f o
i . Now each f o

i is continous since
each of L(Gi) and L(Hi) is given the discrete topology. Hence f o is continous with
respect to the pro-discrete toplogies on L(G) and L(H) since {Hi} is a cofinal subset
of {Hs}.

Since L(G) is linearly compact, the continous map f o maps every closed subspace
of L(G) onto a linearly compact closed subspace of L(H) [Lf, (27.3), (27.4), p. 78].
This proves the proposition in case f is surjective.

Similarly, the proposition is valid in case f is the inclusion map of an algebraic
subgroup of H by (1.2)(a) because in this case f is the inverse limit of the evident
inclusion maps Gi −→ Hi where H = lim←−Hi is the standard limit for H. Finally,
Theorem 3.4 follows by combining the above two cases.

Corollary 3.5 Let f : G −→ H be a morphism of pro-affine algebraic groups over K. If
f is surjective, then so is f o. Moreover, the converse is true if H is connected.

Proof Suppose f is surjective. Then, as seen in the proof of Theorem 3.4, f = lim←− fi

where each fi : Gi −→ Hi is surjective. Then f o = lim←− f o
i and since char(K) = 0,

each f o
i is surjective. Moreover, each projection L(G) −→ L(Gi) and L(H) −→

L(Hi) is surjective by (1.1). Hence f o
(
L(G)

)
is algebraically dense in L(H). But

f o
(
L(G)

)
is closed in L(H) by (3.4). Hence f o

(
L(G)

)
= L(H).

Conversely, if f o is surjective, then L
(

f (G)
)

= f o
(
L(G)

)
by the first part of the

proof applied to G
f→ f (G). Hence L

(
f (G)

)
= L(H) since f o is surjective. But H

is connected. Hence f (G) = H by (1.2)(c) and (2.3), so f is surjective.

Example 3.6 Assume K to be of prime characteristic. Let G = lim←−Gn, (n ∈ N)
where Gn is the additive group K and Gn+1 −→ Gn is given by x → xp. Then G
is evidently a non-trivial connected pro-affine algebraic group although L(G) = 0
because L(G) = lim←−L(Gn) where each transition map is the zero map (cf. [Ma1,
Example 3.9]). Moreover, if f : {1} −→ G is the trivial map, then f o is surjective
although f is not surjective.

These examples show that (2.3) and the converse part in (3.5) may fail in charac-
teristic p although they never fail in the affine case for reasons of dimension.

Corollary 3.7 Let N be a normal algebraic subgroup of G. Then L(G/N) ∼=
L(G)/L(N).

Proof Apply (2.5) and (3.5) to the canonical projection G→ G/N.

Now we recall the following definition. A morphism f : G −→ H of connected
pro-affine algebraic groups over K is called a covering if f is surjective, Ker f is pro-
finite, and the bijective morphism G/Ker f −→ H induced by f is an isomorphism
of pro-affine algebraic groups [H2, p. 402]. Moreover, G is called simply connected if
every covering of G is an isomorphism of pro-affine algebraic groups [H2, p. 411].

Proposition 3.8 (cf. [H2, Prop. 3.1]) Let f : G −→ H be a morphism of pro-affine
algebraic groups over K. Then f is a covering if and only if f o is an isomorphism.

https://doi.org/10.4153/CJM-2002-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-021-9


Lie Algebras of Pro-Affine Algebraic Groups 603

Proof Combine (2.5) and (3.5) (with (2.3) and (1.2)(c)).

Proposition 3.9 Let f : G → H be a morphism of connected pro-affine algebraic

groups over K and let A be a sub Lie algebra of L(G). Then f o(A+) =
(

f o(A)
)+

and f
(

G(A)
)

= G
(

f (A)
)

in the notation of Theorem 2.1.

Proof As in the affine case [B, II.7.2], the first part follows from Theorem 4.1 and
the fact that under f o, both the images and inverse images of algebraic Lie algebras
are algebraic by virtue of (2.5), (3.5), and (2.2). Now the first part with (3.5) show
that f

(
G(A)

)
and G

(
f (A)

)
have the same Lie algebra. But they are also connected.

Hence they are equal by (2.3).

Theorem 3.10 Let L be a sub Lie algebra of L(G). Then [L, L]c = [L, L]+ = [L+, L+]c.
In particular, if [L, L] is finite-dimensional, then [L, L] = [L, L]+ = [L+, L+], so L is an
ideal in L+ and [L, L] is algebraic in L(G).

Proof Let πi : G → Gi and πo
i : L(G) → L(Gi) be as in (1.1). Then πo

i [L, L] =
[Li , Li]. Moreover, πo

i [L+, L+] = [(Li)+, (Li)+] by (3.9) and [(Li)+, (Li)+] = [Li , Li]
in the affine case [B, p. 109], [H3, pp. 112–3]. Similarly, πo

i [L, L]+ = [Li , Li]. Hence
[L, L], [L, L]+, and [L+, L+] have the same closure in L(G). Now we assume that
[L, L] is finite-dimensional. Then [L, L] is closed in L(G) by (2.1). Hence [L, L] =
[L, L]+ = [L+, L+]c. In particular, [L, L]+ and [L+, L+] are contained in [L, L], so they
are finite-dimensional and hence they are closed in L(G). Consequently, [L, L] =
[L+, L+] = [L, L]+, so L is an ideal in L+ and [L, L] is algebraic in L(G). This proves
(3.10).

Lemma 3.11 Let f : L(G)→ V be a linear map where V is a vector space (over K) such
that Ker f is closed in L(G). Let {C j : j ∈ J} be a family of closed cosets of L(G) such
that for all r, s in J, there exists t ∈ J such that Ct ⊂ Cr∩Cs. Then f (

⋂
C j) =

⋂
f (C j).

Lemma 3.11 is a consequence of the linear compactness of L(G) as follows (cf. [Lp,
satz 1]). Let y ∈

⋂
f (C j) so each C j ∩ f−1(y) is non-empty. Since Ker f is closed

in L(G), then so is f−1(y). Hence each C j ∩ f−1(y) is a non-empty closed coset
of L(G) (since the intersection of cosets is either empty or a coset). Now the family
{C j ∩ f−1(y)} has the finite intersection property, so their intersection is non-empty
by the linear compactness of L(G). Hence y ∈ f (

⋂
C j) which proves Lemma 3.11.

Let G = lim←−Gi be the standard limit for G. Then G is called pro-nilpotent if each
Gi is nilpotent and G is called pro-solvable if each Gi is solvable.

For every sub Lie algebra L of L(G), let {Dn(L)} be the derived (commutator)
series of L and let {Cn(L)} be the lower central series of L.

Theorem 3.12

(a) G is pro-nilpotent if and only if
⋂(

Cn
(
L(G)

)) c
= 0.

(b) G is pro-solvable if and only if
⋂(

Dn
(
L(G)

)) c
= 0.
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Proof The proof relies on the linear compactness of L(G).
(a) We consider each projection L(G) → L(Gi) where L(G) = lim←−L(Gi) is

the standard limit for L(G). Then

((
Cn
(
L(G)

)) c
)

i

= Cn
(
L(Gi)

)
by (1.1) and

the continuity of each projection L(G) → L(Gi). Consequently, by Lemma 3.11,⋂(
Cn
(
L(G)

)) c
= 0 if and only if

⋂
Cn
(
L(Gi)

)
= 0 for every i. But⋂

Cn
(
L(Gi)

)
= 0 if and only if Gi is nilpotent by the affine theory since G and

hence Gi is connected. Hence ∩
(

Cn
(
L(G)

)) c
= 0 if and only if each Gi is nilpo-

tent. This proves (a), and similarly, (b) is proved.

4 Representative Functions on Lie Algebras

We shall assume throughout this section that char(K) = 0.
Let L be a Lie algebra over K and recall that L is residually finite dimensional if all

its finite-dimensional representations separate the points of L. Let H(L) be the Hopf
algebra (continous) dual of the universal enveloping Hopf algebra U (L) of L. Since
char(K) = 0, H(L) is an integral domain [H2, p. 405]. In fact, H(L) is the algebra
of representative functions on L which are the matrix coordinate functions of the
finite-dimensional representations of L. The proof of this is verbatim of the proof in
the case where L is finite-dimensional [H1, top p. 500]. Consequently, L is residually
finite dimensional if and only if the elements of H(L) separate the points of L.

We define the universal pro-affine algebraic group G(L) associated with L to be
the (connected) pro-affine algebraic group over K associated with H(L). Thus
K[G(L)] = H(L). This can be done since H(L) is an integral domain Hopf alge-
bra [H-M2, Thm. 2.1]. Thus L

(
G(L)

)
is the Lie algebra of all differentiations of

H(L). If µ : L −→ L
(

G(L)
)

is the canonical map by evaluating at elements of L,
then µ is injective if and only if L is residually finite dimensional. So if L is residually
finite dimensional, L will be identified with its canonical image in L

(
G(L)

)
and µ is the

identity.
Let G be a pro-affine algebraic group over K. Then L(G) acts naturally on K[G]

by its proper derivation action which commutes with the translation action f → f .g
where ( f .g)(x) = f (gx) [H2, p. 405]. This makes K[G] into a U

(
L(G)

)
-module.

Consequently, if A is any sub Lie algebra of L(G) we have a canonical Hopf algebra
homomorphism

πG,A : K[G] −→ H(A)

given by πG,A( f )(u) = (u. f )(1G) for every u in U (A).

Theorem 4.1 (cf. [H2, Prop. 4.1]) Let πG,A : K[G] −→ H(A) be as above where A is
a sub Lie algebra of L(G) and assume that G is connected. Then πG,A is injective if and
only if A is algebraically dense in L(G).

Proof We shall write π for πG,A. Suppose that A is algebraically dense in L(G) and
consider the universal pro-affine G(A) associated with A so H(A) = K[G(A)]. Let
ρ : G(A) −→ G be the transpose of π, and let µ : A −→ L

(
G(A)

)
be the canonical
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map (as above). If f ∈ K[G] and a ∈ A, we have ρo
(
µ(a)

)
( f ) = µ(a)

(
ρt ( f )

)
=

µ(a)
(
π( f )

)
= π( f )(a) = (a. f )(1G) = a( f ) where a is viewed in the last equality as

a differentiation on K[G]. Thus ρo ◦ µ : A −→ L(G) is the identity on A. Hence A ⊂
ρo
(

L
(

G(A)
))
⊂ L(G). But A is algebraically dense in L(G) and ρo

(
L
(

G(A)
))

is algebraic in L(G) by (3.5). Hence ρo is surjective. Consequently ρ is surjective by
(3.5), so its transpose π is injective.

Conversely, suppose π is injective. Let A+ = L(H) where H is some algebraic
subgroup of G and consider the following diagram.

K[G]
π−−−−→ H(A)y ρ

yα

K[H]
πH−−−−→ H

(
L(H)

)
where ρ is the surjective restriction map to the algebraic subgroup H, πH = πH,L(H)

and α is the morphism induced by the identity map L −→ L(H). Then, by defini-
tions, (α ◦ πH ◦ ρ)( f )(u) = (πH ◦ ρ)( f )(u) =

(
u.ρ( f )

)
(1H) = (u. f )(1G). Hence

the above diagram is commutative. But π is given to be injective. Hence ρ is injec-
tive. Consequently, ρ : K[G] −→ K[H] is an isomorphism and G = H. Hence A is
algebraically dense in L(G). This completes the proof of Theorem 4.1.

Corollary 4.2 Let L be a residually finite dimensional Lie algebra over K, so we may
identify L with its canonical image in L

(
G(L)

)
. Then G(L) has the following universal

property. Let H be any connected pro-affine algebraic group over K and let i : L −→
L(H) be a Lie algebra homomorphism whose image is algebraically dense in L(H). Then
there exists a canonical surjective morphism f : G(L) −→ H whose differential agrees
with i on L.

Let L be as in (4.2), so L ⊂ L
(

G(L)
)

. Then U (L) acts naturally on K[G(L)] by

the proper derivation action of L
(

G(L)
)

on K[G(L)] which commutes with every
translation action f → f .g. Moreover, H(L) = K[G(L)] and U (L) acts naturally on
H(L) by the left translation action given by (u. f )(x) = f (xu) for every u and x in
U (L).

Lemma 4.3 The above two natural actions of U (L) on H(L) = K[G(L)] are identical.

To see this, we need to recall some definitions. Let H be a Hopf algebra over
K. Then the Lie algebra L(H) of H consists of all differentiations of H. That is,
all linear maps l : H −→ K such that l( f .g) = l( f )ε(g) + ε( f )l(g) where ε is the
co-unit of H. Every differentiation l of H determines a derivation l[ = (id⊗l) ◦ ∆
where ∆ is the comultiplication of H. All such derivations are called proper and
we have a Lie algebra isomorphism from L(H) onto the Lie algebra of all proper
derivations of H [H2, p. 404], [H3, p. 36]. Now let l be an element of L. Since
L ⊂ L

(
G(L)

)
= L

(
H(L)

)
, l[ is a derivation of K[G(L)] = H(L). With respect

to K[G(L)], the proper derivation action l[ of l is the usual derivation action which
commutes with every translation action f → f .x [H-M2, p. 1128]. With respect to
H(L), the formula l[ = (id⊗l) ◦∆ implies that (l[. f )(x) =

∑
fi(x) f ′i (l) = f (xl) for
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every x in U (L) where ∆( f ) =
∑

fi ⊗ f ′i . Hence (u. f )(x) = f (xu) for every u and
x in U (L). This proves the Lemma.

Proposition 4.4 Let L be a residually finite dimensional Lie algebra over K and let G(L)
be the universal pro-affine algebraic group associated with L. Then

(a) L+ = L
(

G(L)
)

, i.e., L is algebraically dense in L
(

G(L)
)

, and
(b) G(L) is simply connected.

Proof Put G = G(L). To prove (a), let π : K[G] −→ H(L) be as in Theorem 4.1
where π = πG,L(G). We claim that π is the identity map on K[G] = H(L). So let
f ∈ K[G], let u ∈ U (L), and let i : K[G] −→ H(L) be the identity map (for clarity).
Then by definitions, we have (π◦ρ)( f )(u) = (u. f )(1G) = εG(u. f ) where εG is the co-
unit of K[G]. If εH(L) is the co-unit of H(L), we have εG(u. f ) = εH(L)

(
u.i( f )

)
(1) =(

i( f )
)

(u) where the first equality follows from Lemma 4.3 and the other equality fol-
lows by definition. Thus, π = i. Hence π is injective. Consequently L is algebraically
dense in L(G) by Theorem 4.1.

To prove (b), let β : A −→ G be a covering and let βt : K[G] −→ K[A] be its
transpose map. Then βt is injective. To prove that βt is surjective, let f ∈ K[A].
Since β is a covering, βo is bijective by (3.8). Thus we may view L inside L(A), so
βo is the identity on L. Since L is algebraically dense in L(G) by part (a), it follows
that L is algebraically dense in L(A) by (3.9). Now by the universal property of G
or G(L) in (4.2), there exists a surjective morphism σ : G → A whose differential
agrees with βo on L. Since βo is the identity on L, (σ ◦ β)o is the identity on L. But
L is algebraically dense in L(A). Hence (σ ◦ β)o is the identity on L(A). Since A is
connected by assumption, it follows that σ ◦ β is the identity on A and β is injective.
Hence, every covering β : A → G is an isomorphism. This shows that G is simply
connected and Proposition 4.4 is proved.

In view of (3.9) and (3.10), Proposition 4.4 has the following consequences.

Corollary 4.5 In the setting of Proposition 4.4, let f : G(L) → H be a surjective mor-
phism onto an affine algebraic group H. Then f o(L) is algebraically dense in L(H).

Corollary 4.6 (cf. [H1, top p. 521]) In the setting of Proposition 4.4, suppose [L, L]
is finite-dimensional. Then [L, L] =

[
L
(

G(L)
)
,L
(

G(L)
)]

= L(D) where D is the

Zariski closure of [G(L),G(L)]. In particular, L is an ideal of L
(

G(L)
)

and L
(

G(L)
)
/L

is abelian.

References
[B] A. Borel, Linear algebraic groups. 2nd edition, Graduate Texts in Math. 126, Springer-Verlag,

1991.
[Bk] N. Bourbaki, General Topology. Chapters 1–4, Springer-Verlag, 1989.
[H1] G. Hochschild, Algebraic Lie algebras and representative functions. Illinois J. Math. 3(1959),

499–523.
[H2] , Coverings of pro-affine algebraic groups. Pacific J. Math. 35(1970), 399–415.
[H3] , Basic theory of algebraic groups and Lie algebras. Graduate Texts in Math. 75,

Springer-Verlag, 1981.

https://doi.org/10.4153/CJM-2002-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-021-9


Lie Algebras of Pro-Affine Algebraic Groups 607

[H-M1] G. Hochschild and G. D. Mostow, Representations and representative functions of Lie groups.
Ann. of Math. 66(1957), 495–542.

[H-M2] , Pro-affine algebraic groups. Amer. J. Math. 91(1969), 1127–1140.
[H-M3] , Complex analytic groups and Hopf algebras. Amer. J. Math. 91(1969), 1141–1151.
[Hu] J. E. Humphreys, Linear algebraic groups. Graduate Texts in Math. 21, Springer-Verlag, 1975.
[Lf] S. Lefschetz, Algebraic topology. AMS Colloquium Publications 27, Amer. Math. Soc.,

Providence, R.I., 1942.
[Lp] H. Leptin, Linear kompakte modulun und ringe. Math. Z. 62(1955), 241–267.
[Lu-Ma] A. Lubotzky and A. Magid, Cohomology of unipotent and pro-unipotent groups. J. Algebra

74(1982), 76–95.
[Ma1] A. R. Magid, The universal group cover of a pro-affine algebraic group. Duke Math. J. 42(1975),

43–49.
[Ma2] , Module categories of analytic groups. Cambridge University Press, 1982.
[N1] N. Nahlus, Representative functions on complex analytic groups. Amer. J. Math. 116(1994),

621–636.
[N2] , Basic groups of Lie algebras and Hopf algebras. Pacific J. Math. 180(1997), 135–151.
[S] T. A. Springer, Linear algebraic groups. 2nd edition, Birkhäuser, 1998.
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