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Abstract

In this paper, we study real-dihedral harmonic Maass forms and their Fourier
coefficients. The main result expresses the values of Hilbert modular forms at twisted
CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main
theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math.
163 (2006), 229–288] and provides evidence that the individual Fourier coefficients
are logarithms of algebraic numbers in the appropriate real-quadratic field. From this
result and numerical calculations, we formulate an algebraicity conjecture, which is
an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we
give a conjectural description of the primes appearing in CM-values of Hilbert modular
functions.

1. Introduction

In the theory of modular forms, those of weight k = 1 are important because of their connection
to Galois representations. By the theorem of Deligne–Serre [DS75], one can functorially attach
to each weight-one newform f a continuous, odd, irreducible representation

ρf : Gal(Q/Q) −→ GL2(C),

where Q ⊂ C is a fixed algebraic closure of Q. Since ρf is continuous, it has finite image and
ker ρf fixes an algebraic extension M/Q. Let ρ̃f be the composition of ρf and the surjection
GL2(C) −→ PGL2(C). Then the image of ρ̃f is isomorphic to either a dihedral group or one of
the following groups: A4, S4, A5. In the dihedral case, ρf is induced from a character of Gal(K/K)
for some quadratic field F in M . We say that f or ρf is imaginary-dihedral, respectively real-
dihedral, if F is an imaginary, respectively a real, quadratic field. Note that f could be both
imaginary-dihedral and real-dihedral.

A harmonic Maass form of weight k ∈ Z is a real-analytic function F : H −→ C such that
it is modular and annihilated by the hyperbolic Laplacian ∆k of weight k

∆k := y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky

(
∂

∂x
+ i

∂

∂y

)
= ξ2−k ◦ ξk,

ξk := 2iyk∂z,

(1.1)

where we write z = x+ iy. Furthermore, it is only allowed to have polar-type singularities in the
cusps. Since ξk commutes with the slash operator while changing the weight from k to 2−k, ξk(F)
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is a modular form of weight 2 − k. Every harmonic Maass form F can be written canonically
as the sum of a holomorphic part f̃ and a non-holomorphic part f∗. The holomorphic part
f̃ is also known as a mock-modular form, which has been extensively studied by many people
[BO07, BO10, DIT11] after Zwegers’ ground-breaking thesis [Zwe02] (see [Zag09] for a good
exposition) and has connections to many different areas of mathematics (see [Ono08] for a
comprehensive overview). When k = 1, we call F imaginary-dihedral, respectively real-dihedral,
if ξ1(F) is imaginary-dihedral, respectively real-dihedral.

The imaginary-dihedral harmonic Maass forms and their Fourier coefficients have recently
been studied and are well understood. Relying on the technique of Rankin–Selberg for computing
heights of Heegner divisors as developed in [GZ86], we studied those with prime level in [DL15]
and showed that their Fourier coefficients are logarithms of algebraic numbers in the Hilbert
class field of the imaginary quadratic field K. In addition, we formulated a conjecture about the
prime factorizations of the ideals generated by these algebraic numbers, which has been verified
in the prime level case by Viazovska [Via12] and generalized to and proved in the square-free
level case by Ehlen [Ehl13] using the techniques of theta-lifting.

In comparison, the real-dihedral case is much less well understood. The goal of this paper
is to study a family of real-dihedral harmonic Maass forms and relate their Fourier coefficients
to CM-values of Hilbert modular functions. Suppose D ≡ 1 (mod 4), p ≡ 5 (mod 8) are primes
satisfying conditions (2.1) and (2.2). Let F = Q(

√
D) be a real quadratic field with quadratic

character χD(·) = ( ·D ). Denote by φp a character of conductor p and order 4, which satisfies
φp(−1) = −1 since p ≡ 5 (mod 8). Then the space of cusp forms S1(Dp, χDφp) is one dimensional
(see Proposition 2.9) and spanned by a newform

fϕ(z) :=
∑
a⊂OF

ϕ(a)qNm(a) =
∑
n>1

cϕ(n)qn, (1.2)

where q = e2πiz and ϕ is the ray class group character of F defined in (2.6). The representation
associated to fϕ by the theorem of Deligne–Serre is

ρϕ := IndQ
F (ϕ).

When D = 5, p = 29, the form fϕ was studied by Stark in the context of explicitly generating
class fields of real-quadratic fields using special values of L-functions [Sta77a, Sta77b].

Since S1(Dp, χDφp) is one dimensional, there exists a harmonic Maass form Fϕ(z) such that
ξ1(Fϕ) = fϕ and its holomorphic part f̃ϕ has the following Fourier expansion at infinity:

f̃ϕ(z) = c+
ϕ (−1)q−1 + c+

ϕ (0) +
∑
n>2

χD(n) 6=−1

c+
ϕ (n)qn. (1.3)

Furthermore, with a mild condition on the growths of Fϕ at other cusps of Γ0(Dp), the form
Fϕ is unique and the coefficients c+

ϕ (−1), c+
ϕ (0) can be written explicitly as algebraic multiples

of logarithms of the fundamental unit in F (see Theorem 5.6).
In the imaginary-dihedral setting, we showed that linear combinations of c+

ϕ (n) are equal to
CM-values of elliptic modular functions [DL15, Theorem 2]. Thus, it is not a surprise that an
analogous relation also holds in the real-dihedral setting, with elliptic modular functions replaced
by Hilbert modular functions.

Let F2 = Q(
√
p), OF2 its ring of integers and XF2 the open Hilbert modular surface whose

complex points are SL2(OF2)\H2. It is a connected component of the moduli space parametrizing
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isomorphisms of abelian surfaces with real multiplication. Let M8 denote the field fixed by ker ρ̃ϕ.
It contains two pairs of CM extensions K4/F2 and K̃4/F̃2, which are reflex fields of each other
under the appropriate CM types Σ = {1, σ} and Σ̃ = σ3Σ = {1, σ−1}. Here, σ is an element of
order 4 in the dihedral group Gal(M8/Q) ∼= D8 of order 8.

Let Cl0(K4) be the kernel of the norm map Nm : Cl(K4) −→ Cl(F2) on class groups. Each
class in Cl0(K4) gives rise to an isomorphism class of abelian surfaces on XF2 with complex
multiplication by (K4,Σ), which is a ‘big’ CM point in the sense of [BKY12]. For A ∈ Cl0(K4),
let ZA,Σ ∈ XF2(C) denote the corresponding CM point. Since the 2-rank of Cl(K4) is 1, it has a
unique quadratic character ψ2. Then we can define the twisted CM 0-cycle CM(K4, ψ2) by

CM(K4,Σ, ψ2) :=
∑

A∈Cl0(K4)

ψ2(A)ZA,Σ, (1.4)

CM(K4, ψ2) :=

3∑
j=0

CM(K4, σ
jΣ, ψ2). (1.5)

It is algebraic and defined over the real quadratic field F .
For m ∈ N, let Tm be the mth Hirzebruch–Zagier divisor on XF2 (see (3.12) in § 3.3). A

holomorphic Hilbert modular form on XF2 is called normalized integral if its Fourier coefficients
at the cusp infinity are integers with greatest common divisor 1. Let Ψ(z1, z2) be a normalized
integral Hilbert modular function on XF2 , i.e. the ratio of two holomorphic normalized integral
Hilbert modular forms. If the divisor of Ψ(z1, z2) has the form∑

m>1
gcd(pD,m)=1

c(−m)Tm,

with c(−m) ∈ Z, then its value at CM(K4, ψ2) is related to the coefficients c+
ϕ (n) in (1.3) as

follows.

Theorem 1.1. Let p,D, c+
ϕ (n) and Ψ be as above. Then

log |Ψ(CM(K4, ψ2))| = −
cϕ(p)h+

F̃2

hF̃2

∑
m>1

c(−m)bϕ(m), (1.6)

where hF̃2
and h+

F̃2
are the class number and narrow class number of F̃2 = Q(

√
Dp), respectively,

and

bϕ(m) :=
∑
d|m

aϕ

(
m2

d2

)
φp(d), (1.7)

aϕ(n) :=
∑
k∈Z

c+
ϕ

(
Dn− pk2

4

)
δD(k), (1.8)

δD(k) :=

{
1, D - k,
2, D | k. (1.9)

Remark 1.2. The terms bϕ(m), aϕ(n) and the sum on the right-hand side of (1.6) all have a finite
number of summands.

1161

https://doi.org/10.1112/S0010437X15007770 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007770


Y. Li

In [GZ85], Gross and Zagier gave a factorization of the norms of the differences of singular
moduli. The crucial input to the analytic proof is a real-analytic Eisenstein series of parallel
weight one studied by Hecke [Hec24]. It is also an incoherent Eisenstein series in the sense
of Kudla [Kud97]. Building on this idea, Bruinier and Yang generalized the Gross–Zagier
factorization formulas [GZ85] to the setting of Hilbert modular forms [BY06]. Later, in [BY09],
they combined this with the idea of Schofer [Sch09] and gave a more concise proof of the
Gross–Zagier formula.

In order to prove Theorem 1.1, we will replace the diagonal restriction of the incoherent
Eisenstein series in [BY06] with another real-analytic modular object of weight 2. This is
constructed from Fϕ(z) by applying the Shimura lift to its product with the classical theta
function of weight 1/2. In [Coh77], Cohen observed that applying this construction to a cusp
form of weight k yields the diagonal restriction of its Doi–Naganuma lift. This suggests that
the incoherent Eisenstein series in [BY06] could come from the Doi–Naganuma lift of a modular
object of weight one. We plan to address this in the future.

Another crucial observation en route to prove Theorem 1.1 is that the restriction of ρϕ
to Gal(Q/F̃2) is isomorphic to the representation induced from an unramified character ψ̃ of
Gal(Q/K̃4). This special feature enables us to relate an ideal counting function with the coeffi-
cients cϕ(n) in Proposition 4.1 and construct the automorphic Green’s function from the non-
holomorphic part of Fϕ. Furthermore, the character ψ2 is the composition of ψ̃ and the type
norm map (see Proposition 3.4). This explains how the left-hand side of (1.6) depends on ρϕ.

Combining with the theory of complex multiplication [Shi98], Theorem 1.1 suggests that
certain linear combinations of the c+

ϕ (n) are logarithms of algebraic numbers.
When n 6 0, these algebraic numbers are units in the real quadratic field F . This is a

particular case of Stark’s conjecture for the adjoint representation ad(ρϕ), which was proved
by Stark [Sta71, II] as ad(ρϕ) is an Artin representation with rational character. In this case,
it is essentially a consequence of the analytic class number formula for F . When n > 0,
numerical calculations suggest the following conjecture in the spirit of Stark’s conjecture [Sta77a,
Conjecture 2].

Conjecture 1.3. For any rational prime `, there exist uRe(`), uIm(`) ∈ OF [1/`]× such that
Nm(uRe(`)) = Nm(uIm(`)) = 1 and

c+
ϕ (`) = log |uRe(`)|+ i log |uIm(`)|.

Remark 1.4. It is very intriguing to compare this with the p-adic overconvergent modular form
of weight one studied in [DLR15], whose nth Fourier coefficient vanishes whenever ( nD ) = 1.
When n = ` is an inert prime, the `th Fourier coefficient is the p-adic logarithm of an `-unit,
which is the Gross–Stark unit studied in [DD06].

Since cϕ(n) = 0 whenever ( nD ) = −1, Conjecture 1.3 is interesting for those primes ` that split
or ramify in F . In the last section, we will provide precise numerical evidence to support and
refine this conjecture. Together with Theorem 1.1, we have the following conjecture concerning
the CM-value Ψ(CM(K4, ψ2)).

Conjecture 1.5. Let Ψ be a Hilbert modular function as in Theorem 1.1 with divisor∑
16m6m0

c(−m)Tm. Then there exists α ∈ OF such that

Ψ(CM(K4, ψ2)) =
α

α′

and the norm of any prime ideal in OF containing α is a rational prime dividing (Dm2 − pk2)/4>
0 for some 1 6 m 6 m0 and k ∈ Z.
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Remark 1.6. Factorization formulas of CM-values of modular functions have appeared in both
proven and conjectural forms before. When the Hilbert modular surface is the product of two
modular curves, the values of Ψ at small CM points are the norms of differences of singular moduli
studied by Gross and Zagier [GZ85]. When the values of Ψ are averaged over all CM points, a
precise factorization formula is given in [BKY12, BY06]. When Ψ is replaced by the twisted
Borcherds product, a conjectural factorization formula is given in [BY07]. In the case of Siegel
modular forms, bounds for the primes appearing in the denominator of the CM-values of Igusa
invariants are given in [GL12].

The structure of the paper is as follows. In § 2, we will give the necessary facts of the field
extension M/Q, the Galois representation ρϕ and the newform fϕ, including its Petersson norm.
In § 3, we will recall the construction of the big CM 0-cycle and Hilbert modular functions on
XF2 following [BY06], and then introduce the twisted CM 0-cycle. In § 4, we present the proof
of the counting argument. Section 5 contains basic facts about harmonic Maass forms and the
proof of existence and uniqueness of Fϕ (Theorem 5.6). Finally, we give the proof of Theorem 1.1
in § 6 and some numerical evidence towards a conjectural form of c+

ϕ (n) in § 7.

2. Number fields and Galois representations

This section describes certain ray class fields of real quadratic fields and the complex Galois
representations induced from the corresponding ray class group characters. These facts will be
crucial when we study the twisted CM points on Hilbert modular surfaces in § 3 and prove the
counting argument in § 4.

2.1 Number fields
Fix an embedding Q ↪→ C throughout. Let F ⊂ Q be the real quadratic field with discriminant
D satisfying

D ≡ 1 (mod 4) is prime and F has class number one. (2.1)

Let OF be the ring of integers of F and uF ∈ O×F the fundamental unit satisfying uF > 1. Denote
the non-trivial element in Gal(F/Q) by τ . Then τ(uF ) < 0, since D ≡ 1 (mod 4) is prime.

Let p be a rational prime that splits into pp′ in F , p′ = τ(p), such that

p ≡ 5 (mod 8) and ordp(u
(p−1)/4
F − 1) > 0. (2.2)

Notice that the primes p and p′ are distinguished by this condition. If uF = (a+ b
√
D)/2, then the

condition above is equivalent to the polynomial X8− aX4− 1 having a root modulo p. For fixed
D, this happens for a positive proportion of primes p by the Chebotarev density theorem. Since
p ≡ 5 (mod 8), the second condition in (2.2) is equivalent to (uFp ) = 1. This is then equivalent to

( pD )4(Dp )4 = 1 by Scholz’s reciprocity law [Sch34], where ( ··)4 is the quartic residue symbol.

Let m = p(1, 0) be a modulus and P (m), respectively Pm, the group of principal ideals in
F with a generator α such that (α) is relatively prime to p, respectively ordp(α − 1) > 0, and
α > 0. Since F has class number one and OF /p ∼= Z/pZ, the ray class group with modulus m
is just P (m)/Pm and there exists cF ∈ (Z/pZ)× such that ordp(uF − cF ) > 0. Let P (F ) be the
group of principal ideals in F . Then, under the map

F −→ P (F )× {±1}
α 7→ ((α), sgn(α)),
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whose kernel is generated by uF , the ray class group P (m)/Pm is isomorphic to (Z/pZ)××{±1}
modulo the subgroup generated by (cF , 1) and (−1,−1) and hence is cyclic. By condition (2.2),
the order of cF in (Z/pZ)× divides (p− 1)/4. So, there exists a unique surjection

P (m)/Pm � Z/4Z.

Let L ⊂ Q be the ray class field of F with modulus m and K8, F4 the subfields of L
corresponding to the quotient groups Z/4Z and Z/2Z of P (m)/Pm, respectively. Notice that
τ(L) ⊂ Q is the ray class field of F with modulus m′ := p′(0, 1). Then we can apply [CDO98,
Theorem 3.3] to compute the discriminants and signatures of K8, F4 as

disc(K8/F ) = p3, [K8 : Q] = 8 = 4 + 2 · 2,
disc(F4/F ) = p, [F4 : Q] = 4 = 4 + 2 · 0,
disc(K8/Q) = D4p3, disc(F4/Q) = D2p.

By Lemma 2.2 below, p is totally ramified in K8 and p′ is unramified. So, neither K8/Q nor
F4/Q is Galois. Let M ⊂ Q be the Galois closure of K8/Q; we have the following result about
Gal(M/Q).

Proposition 2.1. The Galois groups Gal(M/F ),Gal(M/Q) are isomorphic to (Z/4Z)2 and

G := (Z/4Z)2 o Z/2Z, (2.3)

respectively, where the non-trivial element in Z/2Z acts on (Z/4Z)2 by

(Z/4Z)2 −→ (Z/4Z)2

(a, b) 7→ (b, a).

Proof. Fix K8
∼= F [X]/(g1(X)), where g1(X) = X4 +

∑3
k=0 akX

k ∈ OF [X]. Denote g2(X) :=
X4+

∑3
k=0 τ(ak)X

k and K ′8 := F [X]/(g2(X)), which is then the unique subfield of τ(L) satisfying
Gal(τ(K8)/F ) ∼= Z/4Z. Since K8 ∩K ′8 is Galois over Q and F4/Q is not Galois, the two fields
K8 and K ′8 are disjoint over F . Let M32 ⊂ Q be the composite of K8 and K ′8. It is Galois
over Q and Gal(M32/F ) ∼= Gal(K8/F )×Gal(K ′8/K8 ∩K ′8) ∼= (Z/4Z)2. So, we can write M32

∼=
F [X,Y ]/(g1(X), g2(Y )) and naturally extend τ ∈ Gal(F/Q) to an involution τ ∈ Gal(M32/Q).
Thus, the following short exact sequence splits:

Gal(M32/F ) −→ Gal(M32/Q) −→ Gal(F/Q)

and Gal(M32/Q) ∼= (Z/4Z)2 oZ/2Z, where Z/2Z acts on (Z/4Z)2 by switching the coordinates.
2

From now on, we will write M = M32 to signify its degree and use a triple (a, b, c) to represent
an element in the group Gal(M32/Q) ∼= G. Define σ, τ ∈ G to be1

σ := (1, 0, 0), τ := (1, 0, 1). (2.4)

The group G is generated by σ and τ . Using their corresponding subgroups in Gal(M32/Q), we
can define some subfields of M32. The subscripts of these fields indicate their degrees over Q.

For convenience, we also include the character table of the group G and the field extension
diagrams in the appendix.

Now, we will justify the ramifications and discriminants of these number fields. First, we will
require the following standard lemma.

1 This is compatible with, albeit a slight abuse of, the earlier notation τ ∈ Gal(F/Q).
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Table 1. Field extensions.

MH
32 Subgroup of H 6 G Normality Discriminant No. of real embeddings

F2 〈(2, 0, 0), (1, 1, 0), (0, 0, 1)〉 Yes p 2
F 〈(1, 0, 0), (0, 1, 0)〉 Yes D 2

F̃2 〈(2, 0, 0), (1, 0, 1)〉 Yes Dp 2

K4 〈(1, 1, 0), (0, 0, 1)〉 No Dp3 0

K̂4 〈(2, 0, 0), (1, 1, 0)〉 Yes D2p2 4

K̃4 〈(1, 0, 1)〉 No D2p3 0
F4 〈(1, 0, 0), (0, 2, 0)〉 No D2p 4
M4 〈(3, 1, 0), (0, 0, 1)〉 Yes p3 0

M8 〈(1, 1, 0)〉 Yes D4p6 0

M̂8 〈(2, 0, 0), (0, 2, 0)〉 Yes D4p4 8

M̃8 〈(1, 3, 0)〉 Yes D4p6 0
K8 〈(1, 0, 0)〉 No D4p3 4
F8 〈(0, 0, 1), (2, 2, 0)〉 No D2p6 0

M16 〈(2, 2, 0)〉 Yes D8p12 0
K16 〈(2, 0, 0)〉 No D8p10 0
F16 〈(0, 0, 1)〉 No D6p12 0

M32 〈(0, 0, 0)〉 Yes D16p24 0

Lemma 2.2. Let L/K be an extension of a number field and P a prime in K with characteristic
p, ramification indices e1, . . . , er and residue field extensions of degrees f1, . . . , fr. Then the order
of P in the relative discriminant of L/K is at least

r∑
i=1

(ei − 1)fi,

with equality if gcd(ei, p) = 1 for all 1 6 i 6 r.

Proof. This follows from the factorization of the relative different ideal [Lan94, § III.2,
Proposition 8] and the formula relating the norm of the relative different to the relative
discriminant [Lan94, § III.3, Proposition 14]. 2

From the construction, we know that M32 is totally imaginary and ramified only at D
and p. To calculate the discriminants and signatures of various subfields of M32, it suffices
to find the inertia subgroups in Gal(M32/Q) ∼= (Z/4Z)2 o Z/2Z. Let c ∈ Gal(Q/Q) be complex
conjugation. Suppose D and P are prime ideals in M32 lying above D and p, respectively. Let
ID 6 Gal(M32/Q), respectively IP 6 Gal(M32/F ), be the inertia subgroup of D, respectively P.
Then we have the following result concerning the discriminants and the inertia subgroups.

Proposition 2.3. The discriminant of M32/Q is D16p24 and

c ∼ (2, 0, 0), ID ∼ 〈(0, 0, 1)〉, IP ∼ 〈(0, 1, 0)〉. (2.5)
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Proof. Since F4 and τ(F4) are both totally real, so is their composite M̂8 and

c ∈ 〈(2, 0, 0), (0, 2, 0)〉.
The fields K8/F and K ′8/F ramify at different infinite places of F . So, the conjugacy class of c
in Gal(M32/Q) consists of at least two elements, both fixing M̂8, which means that c ∼ (2, 0, 0)
in G.

Since K8/F and K ′8 are unramified at primes above D, the same holds for their composite
M32. So, the intersection of ID and Gal(M32/F ) is the identity and ID = 〈(a,−a, 1)〉 for some
a ∈ Z/4Z. This means that the ramification index of a prime in M32 above D is 2. By Lemma 2.2,
the power of D dividing disc(M32/Q) is exactly 16.

Since p is totally ramified in K8/F and unramified in K ′8, the ramification index of p in
M32 is exactly 4 and any prime in K8 lying above p is unramified in M32. This means that
IP ∼ 〈(0, 1, 0)〉 in Gal(M32/F ). Applying Lemma 2.2 to M32/Q and the prime p then finishes
the proof. 2

From the proposition above, we could also deduce the discriminant and infinity type of
each subfield of M32. For example, the fields F2, F̃2, F, K̂4 are totally real, and the extensions
K4/F2, K̃4/F̃2,M8/K̂4 are CM extensions. Since F2 is fixed by (0, 0, 1), it is unramified at D and
isomorphic to Q(

√
p). By similar reasonings, M32/M4,M32/K̃4 and M32/K4 are unramified at

primes above p and M4/Q only ramifies at p and infinity. Thus, M4 is the unique quartic subfield
of Q(ζp), where ζp is a pth root of unity and disc(M4/Q) = p3. Also, M32/K̃4 and F8/K4 are
abelian and unramified with

Gal(M32/K̃4) ∼= Z/8Z.

The other discriminants in Table 1 can be verified by the same procedure.
Let uF̃2

∈ O×
F̃2

be the fundamental unit and p̃ the unique prime in F̃2 above p. Since

disc(F̃2/Q) = Dp is composite, the norm of uF̃2
is either 1 or −1. Here, we record a result

concerning its effect on p̃ in the class group of F̃2.

Lemma 2.4. If uF̃2
has norm −1, then p̃ is not principal in F̃2 and p̃OK̃4

is not principal in K̃4.

Before stating the proof, we need the following general lemma.

Lemma 2.5. Let k be a real quadratic field and K/k a CM extension such that:

(1) ±1 are the only roots of unity in K;

(2) there is a place v of k not above 2 such that K/k is ramified at v.

Then O×k ↪→ O×K is an isomorphism.

Proof. Let uK be a generator of the infinite part of O×K and write uK = ±umK . We are done
if uK = uK . Since every complex embedding of uKu

−1
K = ±um−1

K has absolute value 1, it is a
root of unity and m = 1. If uK = −uK , then uK is purely imaginary and K ∼= k[X]/(X2 + u),
where u := uKuK ∈ k is a totally positive unit, and K/k is unramified at places away from 2.
This contradicts the second assumption in the statement of the lemma. Thus, we must have
uK = uK . 2

Proof of Lemma 2.4. Suppose p̃ = (α̃) with α̃ = (pa+ b
√
Dp)/2 � 0 in F̃2; then both α̃ and

α̃′ = (pa− b√Dp)/2 are generators of p̃. So, there exists an integer r such that

u2r
F̃2

=
α̃

α̃′
= (a
√
p+ b

√
D)2.
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The exponent of uF̃2
is even, since uF̃2

has norm −1. But a
√
p + b

√
D 6∈ F̃2, which is a

contradiction.
Suppose p̃OK̃4

= (β̃) with β̃ ∈ OK̃4
; then (β̃)2 = pOK̃4

. By Lemma 2.5, there exists ε ∈ {±1},
t ∈ Z such that

β̃2 = ε · ut
F̃2
· p

and K̃4
∼= F̃2[X]/(X2 − ε · ut

F̃2
· p). Since K̃4 is totally complex, ε = −1, 2 | t and

F̃2[X]/(X2 − ε · ut
F̃2
· p) ∼= F̃2[X]/(X2 + p).

However, K̃4 does not contain a subfield isomorphic to Q[X]/(X2 + p), which is a
contradiction. 2

Remark 2.6. By the same reasoning, the unique prime in K4 above p is not principal either.

2.2 Genus field and genus character
Given a finite extension of number fields K/k, the genus field Kgen is the composition of K and
the maximal subfield of the Hilbert class field of K that is abelian over k. The case when k = Q
and K/k is imaginary quadratic was studied by Gauss. For any prime in K, its factorization in
Kgen is determined by its relative norm in k. In [Sta76], the notion of relative genus field was
introduced to study a similar phenomenon.

Let K/k be a finite extension of number fields and M/K, k1/k,M1/k normal extensions such
that M1 contains k1 and M . Also, let

K1 := Kk1, K2 := M ∩K1, k2 := K2 ∩ k1 = M ∩ k1.

They all fit into the following field extension diagram.

M1

M

K1

K2

K k1

k2

k

The field K2 is called the genus field of M/K relative to k1/k. If k2/k is normal, then K2 is the
composite ofK and the maximal subfield of k1 contained inM . For any character χ of Gal(M1/k),
denote its restriction to Gal(M1/K) by χ̃. Then χ̃ is called a genus character of M/K relative
to k1/k if χ factors through Gal(k2/k). Let p be a prime in k and P be any prime in K lying
above p. Then part of the main theorem in [Sta76] gives us the following theorem.

Theorem 2.7 [Sta76, Theorem]. Suppose p does not ramify in M1.

(1) For any character χ of Gal(M1/k),

χ̃(P) = χ(NmK/k(P)).
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(2) Suppose NmK/k(P) = pf for some positive integer f . Then the splitting behavior of p in k2

and f determines the splitting behavior of P in the genus field K2.

The picture simplifies significantly if M contains k1 and is normal over k, in which case

M = M1,K2 = K1 and k2 = k1. In the cases we are interested in, let

(i): k = Q, K = K̃4, k1 = k2 = F, K1 = K2 = M8, M = M1 = M32,

(ii): k = F2, K = K4, k1 = k2 = M4, K1 = K2 = F8, M = M1 = M32.

The field extension diagram simplifies as follows with χj the non-trivial quadratic characters.

M32

M8

K̃4

F

Q

χ̃1

χ1

M32

F8

K4 M4

F2

χ̃2

χ2

Theorem 2.7 now gives us the following simple consequence.

Proposition 2.8. Let L̃ be a prime ideal in K̃4 lying above a rational prime ` unramified in

M8. Then L̃ is inert in M8 if and only if NmK̃4/Q(L̃) = ` and ( `D ) = ( `p) = −1. In this case, the

ideal `OF2 is a prime ideal and splits completely in M8. Furthermore, any prime ideal L in K4

lying above such ` is inert in F8.

Proof. Applying Theorem 2.7 to case (i) gives us

χ̃1(L̃) = χ1(NmK̃4/QL̃) = χ1(`f ),

where f is the residue class degree of L̃. Then L̃ is inert in M8 if and only if χ̃1(L̃) = −1, which

happens if and only if f = 1 and χ1(`) = ( `D ) = −1. In this case, ` splits in F̃2 ⊂ K̃4, which implies

that ( `
Dp) = 1 and ( `p) = −1. Also, the prime in M8 above L̃ has residue class degree 2. Thus, `

is inert in F2 and there are four primes in M8 above it.

Recall that M4/Q is the quartic subfield of the cyclotomic field Q(ζp). Since ` is inert in F2,

its decomposition group in Gal(Q(ζp)/Q) is the whole group and it is inert in Q(ζp). Applying

Theorem 2.7 to case (ii) gives us

χ̃2(L) = χ2(NmK4/F2
(L)) = χ2(`) = −1

and L is inert in F8. 2

2.3 Galois representation and modular forms

In this section, we will study the complex Galois representations attached to the number fields

in § 2.1 and calculate the Petersson norm of the associated holomorphic weight-one newform.
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Let ϕ be a character of P (m)/Pm of order 4. Then, by class field theory, one can view it as
a character of Gal(M32/F ) defined by

ϕ : Gal(M32/F ) −→ C×

(a, b, 0) 7→ eπib/2.
(2.6)

Denote the induced representation and the associated projective representations by ρϕ and ρ̃ϕ,
respectively. In Gal(M32/Q), complex conjugation corresponds to the conjugacy class (2, 0, 0).
Thus, ρϕ is odd as

det(ρϕ(2, 0, 0)) = −1.

By the conductor formula for induced representation, we know that the conductor of ρϕ is

disc(F ) ·NmF/Q(p) = Dp.

From the character table of G in the appendix, we see that ρϕ ∼= ρ0 is irreducible. An element
(a, b, c) ∈ G is in the kernel of ρ̃ϕ if and only if a = b and c = 0. Thus, the subfield of M32 fixed
by the kernel of ρ̃ϕ in G is M8 and

Im(ρ̃ϕ) ∼= Gal(M8/Q) ∼= D8.

The kernel of det(ρϕ) contains the commutator subgroup of G, which is generated by (1, 3, 0).
So, det(ρϕ) factors through Gal(M32/M̃8) and is a character of

Gal(M̃8/Q) ∼= Gal(M4/Q)×Gal(F/Q) ∼= Z/4Z× Z/2Z.

Notice that the first isomorphism above is canonical, and we can use it to write

det(ρϕ) = χDφp, (2.7)

where χD : Gal(F/Q) −→ C× is the quadratic Dirichlet character and φp : Gal(M4/Q) −→ C×
is a character of order 4 satisfying

φp(`) =

{
ϕ(l)ϕ(l) if (`) = ll in OF ,
ϕ(`) if (`) is inert in OF

(2.8)

for all primes ` - Dp. The following result shows that ρϕ is the only odd, irreducible Galois
representation with such conductor and determinant.

Proposition 2.9. Let D, p be primes satisfying conditions (2.1), (2.2) and χD, φp the characters
as above. Then any odd and irreducible representation ρ : Gal(Q/Q) −→ GL2(C) with conductor
Dp and determinant χDφp is isomorphic to ρϕ. Equivalently, the spaces of cusp forms S1(Dp,
χDφp) and S1(Dp, χDφp) are both one dimensional over C.

Proof. For a prime `, let I` be the inertia subgroup in Gal(Q/Q). Since cond(ρ) = Dp is square
free, the representation ρ is unramified at ` - Dp and tamely ramified at ` | Dp. This implies that
there exists χ` : I` −→ C× non-trivial for ` | Dp such that

ρ |I`∼= ρ̃ |I`∼= 1⊕ χ`,

where ρ̃ : Gal(Q/Q) −→ PGL2(C) is the projective representation associated to ρ. Since det(ρ) =
χDφp, the order of χ` is divisible by 2 for ` |Dp and the image of ρ̃ contains two distinct subgroups
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of index 2. They correspond to the two real quadratic fields F = Q(
√
D) and F2 = Q(

√
p)

contained in Qker(ρ̃)
. This rules out the possibilities of im(ρ̃) ∼= A4, S4 or A5. So, ρ is isomorphic

to an induced representation. From the conductor formula and its determinant, we know that

ρ could only be isomorphic to IndQ
F (ϕ′) for some ray class group character ϕ′ having the same

modulus as ϕ. Thus, the characters ϕ′ and ϕ, which differ by some character of Cl(F ), are the

same, since Cl(F ) is trivial by condition (2.1).

The equivalent result is an immediate consequence of the theorem of Deligne–Serre [DS75]

and that the map f(z) 7→ f(z) is an isomorphism between S1(Dp, χDφp) and S1(Dp, χDφp). 2

We denote the weight-one newform associated to ρϕ by fϕ, which was defined in (1.2). Its

Fourier coefficients cϕ(n) are multiplicative and given by

cϕ(n) =
∑

a⊂OF ,Nm(a)=n

ϕ(a).

With this, it is easy to check that cϕ(n) satisfies the conditions

χD(n)cϕ(n) = cϕ(n) for all n relatively prime to D,

φp(n)cϕ(n) = cϕ(n) for all n relatively prime to p.
(2.9)

Let ρϕ : Gal(Q/Q) −→ C be the representation induced from ϕ, the complex conjugate of ϕ.

Then it is isomorphic to the dual representation ρ∨ϕ and the tensor product ρϕ⊗ρϕ is isomorphic

to 1⊕ ad(ρϕ), where ad(ρϕ) is the adjoint representation. From the character table, we have

ad(ρϕ) ∼= χD ⊕ IndQ
F2
ϕ2
∼= χD ⊕ IndQ

F̃2
ϕ̃2, (2.10)

where ϕ2 and ϕ̃2 are the non-trivial quadratic characters of Gal(K4/F2) and Gal(K̃4/F̃2),

respectively. This means that the L-function associated to ρϕ ⊗ ρϕ factors as

L(ρϕ ⊗ ρϕ, s) = LF (s)
LK4(s)

LF2(s)
= LF (s)

LK̃4
(s)

LF̃2
(s)

,

where L∗(s) is the Dedekind zeta function of the number field ∗.
By the standard Rankin–Selberg method (see e.g. [DL15, Proposition 3.1]), we have

〈fϕ, fϕ〉 =
Dp

2π2
Ress=1 L(ρϕ ⊗ ρϕ, s). (2.11)

Since K4 and K̃4 are non-Galois quartic fields, we have wK4 = wK̃4
= 2. Furthermore, p is totally

ramified in both K4 and K̃4. So, Lemma 2.5 implies that O×
K̃4

= O×
F̃2
,O×K4

= O×F2
. Combining

this with the analytic class number formula yields the following proposition.

Proposition 2.10. Let fϕ ∈ S1(Dp, χDφp) be as defined in (1.2). Then we have

〈fϕ, fϕ〉 =
2hK4

hF2

log uF =
2hK̃4

hF̃2

log uF , (2.12)

where h∗ is the class number of the number field ∗ and uF > 0 is the fundamental unit of F .
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3. Twisted CM 0-cycle and Hilbert modular functions

In this section, we will first review the definition of CM 0-cycles on Hilbert modular surfaces
following [BY06]. Then, using the character ϕ defined in (2.6), we will construct twisted CM
0-cycles. Finally, we will recall the Hilbert modular forms studied in [BY06], which are Borcherds
lifts of elliptic modular functions. The factorizations of their values at the CM 0-cycles, which
are defined over Q, are given in [BY06]. We will express their values at the twisted CM 0-cycles
as an infinite sum in the same way as in [BY06]. This will be used in proving the main theorem
in § 6.

3.1 CM 0-cycle
For a number field L, let I(L) and P (L) denote the groups of fractional ideals and principal
ideals, respectively. Then Cl(L) := I(L)/P (L) is the class group of L. If L is totally positive, let
P+(L) 6 P (L) be the subgroup consisting of principal ideals with a totally positive generator
and Cl+(L) := I(L)/P+(L) be the narrow class group. For a subset S ⊂ L, let S+ be the subset
of totally positive elements in S. Given an extension L′/L, define the subgroups I0(L′) 6 I(L′)
and Cl0(L′) 6 Cl(L′) by

I0(L′) := {b′ ∈ I(L′) : NmL′/L(b′) ∈ P+(L)},
Cl0(L′) := I0(L′)/P (L′).

From now on, we will resume the notation from § 2 and recall the construction of CM points
on Hilbert modular surfaces in [BY06, § 3]. Let OF2 ⊂ F2 be the ring of integers, Γ(OF2) 6
SL2(F2) the principal congruence subgroup and XF2 = X(OF2) := Γ(OF2)\H2 the open Hilbert
modular surface. It is one component of the moduli space classifying abelian surfaces with real
multiplication by OF2 .

Recall that σ, τ ∈ G are defined in (2.4). We will use the same letters to denote the
corresponding cosets in Gal(M32/Q)/Gal(M32/Q) ∼= Gal(M8/Q). Let Σ = {1, σ} be a CM type
of K4/F2 with values in M8. Fix a non-zero, totally imaginary element ξΣ ∈ K4 such that
Σ(ξΣ) = (ξΣ, σ(ξΣ)) ∈ H2. Let dK4/F2

⊂ K4 be the relative different of K4/F2 and define

fa,Σ := ξΣdK4/F2
aa ∩ F2

for any fractional ideal a ⊂K4. When [a] ∈ Cl0(K4), the ideal fa,Σ = (ra,Σ) is principal. By [BY06,
Lemma 3.1], the data (a, ra,Σ) gives an abelian surface of CM type Σ and hence a CM point in
the space X(OF2).

Two pairs (a, ra,Σ) and (a′, ra′,Σ) are equivalent, i.e. give isomorphic abelian surfaces, if there
exists α ∈ K4 such that

a′ = (α)a, ra′,Σ = ra,Σαα.

Let [a, ra,Σ] denote the equivalence class of such pairs. The kernel of the forgetful map from the
set of such equivalence classes to Cl0(K4) is O×,+F2

/NmK4/F2
(O×K4

). Since disc(F2) is a prime and
K4/F2 is non-Galois, the fundamental unit of F2 has norm −1 and Lemma 2.5 implies that this
forgetful map is bijective. For A = [a] ∈ Cl0(K4), write a = OF2α + OF2β such that α/β ∈ K4

satisfies

Σ

(
α

β

)
:=

(
α

β
, σ

(
α

β

))
∈ H2. (3.1)

Then the SL2(OF2)-orbit of Σ(α/β) depends only on the class of a and gives the corresponding
point on XF2(C). By the theory of complex multiplication, this point is defined over Q and we
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denote it by ZA,Σ ∈ XF2(Q). Define the untwisted CM 0-cycle CM(K4,OF2) by

CM(K4,Σ,OF2) =
∑

A∈Cl0(K4)

ZA,Σ,

CM(K4,OF2) =
3∑
j=0

CM(K4, σ
jΣ,OF2),

(3.2)

where the set σjΣ := {σj , σj+1} is another CM type for 0 6 j 6 3.
Under the CM type Σ, the CM extension K̃4/F̃2 is the reflex field of K4/F2 and Σ̃ = {1, σ−1}

the reflex CM type. Let NmΣ̃ be the type norm defined on I(K̃4) by

NmΣ̃ : I(K̃4) −→ I0(K4),

b̃ 7→ ((b̃σ−1(b̃))M8) ∩ K̃4.

Notice that NmK4/F2
(NmΣ̃(b̃)) = NmK̃4/Q(b̃)OF2 ∈ I0(K4). The type norm NmΣ : I(K4) −→

I0(K̃4) is defined similarly. They induce the following maps on class groups:

NmΣ̃ : Cl(K̃4) −→ Cl0(K4),

NmΣ : Cl0(K4) −→ Cl0(K̃4).
(3.3)

Example 3.1. Let L be an unramified prime in M8 such that the associated Frobenius element
FrobL is conjugate to τ . Then the subfield of M8 fixed by the decomposition group of L is a
conjugate of K̃4. So, L lies above a prime L̃ in K̃4, which has residue field degree 1 and is inert
in M8. Denote its norm in Q by `. By Proposition 2.8, ` is inert in F and F2 and `OF2 splits
completely in M8. In this case, the type norm of L̃ is one of the two prime ideals in K4 above
the inert prime ` in F2.

Concerning the images of the type norm maps, we have the following results, which are
analogues of [BY06, Lemma 5.3].

Proposition 3.2. The type norm maps in (3.3) are surjective. Furthermore, the sizes of their
respective kernels are hF̃2

and h+
F̃2
/hF̃2

.

Proof. By [BY06, Lemma 5.3], the composition NmΣ̃ ◦ NmΣ, respectively NmΣ ◦ NmΣ̃, is the

square map on Cl0(K4), respectively Cl0(K̃4). So, it suffices to prove the surjectivity of NmΣ̃,

respectively NmΣ, onto the 2-part of Cl0(K4), respectively Cl0(K̃4).
By [Oka00, Lemma 17], given a CM extension K/k with the 2-rank of Cl(k) being zero, the

2-rank of Cl(K) is one less than the number of primes in k that ramify in K. Since disc(F2) = p
is an odd prime, the 2-part of Cl(F2) is trivial and the 2-part of Cl0(K4) is isomorphic to the
2-part of Cl(K4). Since disc(K4) = Dp3 and D is a prime, there are two primes in F2 that ramify
in K4. So, the 2-rank of Cl(K4) is 1 and the 2-part of Cl(K4) is isomorphic to Z/2tZ for some
positive integer t. Recall that F8/K4 is unramified. So, t > 1 and

Gal(F8/K4) ∼= Cl(K4)/2Cl(K4) ∼= Cl0(K4)/2Cl0(K4).

Let L̃ be a prime in K̃4 as in Example 3.1. Then L := NmΣ̃(L̃) is a prime in K4 lying above
the inert prime (`) in F2 and hence inert in F8 by Proposition 2.8. This means that [L] ∈
Cl(K4)/2Cl(K4) is non-trivial. Set

b̃ := L̃hF2 ∈ Cl(K̃4).
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Then NmΣ̃(b̃) ∈ I0(K4) and the class [NmΣ̃(b̃)] is non-trivial in Cl0(K4)/2Cl0(K4), since hF2 is

odd. Together with NmΣ̃ : Cl0(K̃4) � 2Cl0(K4), we know that NmΣ̃ in (3.3) is surjective. The
size of the kernel can be calculated from

#Cl0(K̃4) ·
h+
F̃2

hF̃2

=
hK̃4

hF̃2

=
hK4

hF2

= #Cl0(K4) ·
h+
F2

hF2

(3.4)

and the fact that hF2 = h+
F2

.

For NmΣ, let uF̃2
be the fundamental unit of F̃2. Since the 2-part of Cl0(K4) is isomorphic

to Z/2tZ and NmΣ̃ ◦NmΣ is the square map, the image of Z/2tZ under NmΣ in Cl0(K̃4) and the

2-part of Cl0(K̃4) both have size at least 2t−1. When the norm of uF̃2
is 1, we have h+

F̃2
= 2hF̃2

and the size of the 2-part of Cl0(K̃4) is 2t−1 by (3.4). This means that the 2-part of Cl0(K̃4) is
isomorphic to Z/2t−1Z and NmΣ : Cl0(K4) −→ Cl0(K̃4) is a two-to-one surjection. When the
norm of uF̃2

is −1, we have #Cl0(K4) = #Cl0(K̃4). Let p̃, respectively P, be the unique prime

in F̃2, respectively K4, above p. Since p is totally ramified in F̃2 and K4, we have

NmΣ(P) = p̃OK̃4
.

By Lemma 2.4, the class [p̃OK̃4
] is non-trivial, which implies that [P] is non-trivial in Cl0(K4).

Since P2 = NmK4/F2
(P) =

√
pOF2 , the classes [p̃OK̃4

] and [P] have order 2 in Cl0(K̃4) and

Cl0(K4), respectively. Then the image of the generator of Z/2tZ has order 2t in Cl0(K̃4) and the
map NmΣ is an isomorphism between the 2-parts of Cl0(K4) and Cl0(K̃4). 2

Via the type norm NmΣ̃, the group I(K̃4) acts on [a, ra,Σ] by

σb̃[a, ra,Σ] := [aNmΣ̃b̃, ra,ΣN b̃]. (3.5)

In the same way, it acts on ZA,Σ. Let H(K̃4) 6 I(K̃4) be the subgroup containing the fractional
ideals b̃ satisfying

NmΣ̃(b̃) = µOK4 , N b̃ = µµ

for some µ ∈ K×4 , where N b̃ := #(OK̃4
/b̃). The CM ideal class group CC(K̃4, Σ̃) is defined

by I(K̃4)/H(K̃4). Notice that it is a quotient group of Cl(K̃4). By Proposition 3.2, the group
CC(K̃4, Σ̃) acts on the set {[a, ra,Σ] : [a] ∈ Cl0(K4)} transitively and faithfully.

Let M̃ ⊂ Q be the Hilbert class field of K̃4 and M̃CC 6 M̃ the subfield corresponding to the
subgroup H(K̃4)/P (K̃4) 6 Cl(K̃4). For any A ∈ Cl0(K4), the CM point ZA,Σ is defined over
M̃CC . Given a class Ã ∈ H(K̃4)/P (K̃4), let L̃ be a prime in OK̃4

representing it. Suppose L̃ lies

above the rational prime ` not dividing Dp. If NmK̃4/Q(L̃) = `f with f > 2, then L̃ splits in M8 by

Proposition 2.8. If f = 1, then we can write NmΣ̃(L̃) = (µ) with µ = a+b
√
−∆ ∈ F2(

√
−∆) ∼= K4

satisfying
a2 + b2∆ = `,

since L̃ ∈ H(K̃4). From the discriminants of F2 and K4, we know that ∆/
√
p ∈ OF2 . By

considering the equation above in OF2/
√
pOF2

∼= Z/pZ, we see that ( `p) = 1. Again, by

Proposition 2.8, the ideal L̃ splits in M8. Thus, the element σÃ ∈ Gal(M̃/K̃4) associated to

Ã via the Artin map is contained in Gal(M̃/M8) and we have proved the following lemma.

Lemma 3.3. The field M̃CC contains M8.
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3.2 Twisted CM 0-cycle
Now, we are ready to construct the twisted CM 0-cycle using the character ϕ in (2.6). The group
Gal(M32/F̃2) ∼= 〈τ, σ2〉 is a generalized dihedral group with the relation

τ8 = (σ2)2 = τ3σ2τσ2 = Id.

Since K̃4/F̃2 is a CM extension, the action of σ2 is complex conjugation. Recall that
ρϕ := IndQ

F (ϕ) is the odd, irreducible representation in § 2.3. Since M32/K̃4 is abelian with

Gal(M32/K̃4) ∼= 〈τ〉 ∼= Z/8Z, the restriction ρϕ|Gal(M32/K̃4) is a reducible representation and can
be written as

ρϕ|Gal(M32/K̃4)
∼= ψ̃ ⊕ ψ̃σ2

, (3.6)

where ψ̃(τ) is an eighth root of unity ζ8 and

ψ̃σ
2
(τ) := ψ̃(σ2τ(σ2)−1) = ψ̃(τ5).

The characters ψ̃ and ϕ are closely related as follows.

Proposition 3.4. The restriction of ψ̃ to Gal(M32/M8) has the following decomposition:

Gal(M32/M8) ↪→ Gal(M32/F )� Gal(K8/F )
ϕ−→ C×. (3.7)

Proof. Let (a, a, 0) ∈ Gal(M32/M8) for some a ∈ Z/4Z. Then its image under Gal(M32/M8) ↪→

Gal(M32/F )� Gal(K8/F ) is a. Also, the matrix ρϕ(a, a, 0) =
( ϕ(a)

ϕ(a)

)
is a constant multiple

of the diagonal matrix and hence is stable under conjugation. On the other hand, since ψ̃(a, a,
0) = ψ̃σ

2
(a, a, 0), (3.6) tells us that

ρϕ(a, a, 0) =

(
ψ̃(a, a, 0)

ψ̃(a, a, 0)

)
.

Thus, we have ψ̃(a, a, 0) = ϕ(a). 2

Define the character ψ̃2 by

ψ̃2 := ψ̃−1ψ̃σ
2

= ψ̃(ψ̃σ
2
)−1, (3.8)

which is the quadratic character with kernel Gal(M32/M8). Since M32/K̃4 is unramified, we can
treat ψ̃ and ψ̃2 as characters of Cl(K̃4). The composite of the type norm maps NmΣ ◦ NmΣ̃
measures the difference between the classes of an ideal a and its complex conjugate a. Thus, it
is natural to expect the following result.

Proposition 3.5. The character ψ̃2 has the following decomposition:

Cl(K̃4)
NmΣ̃−→ Cl0(K4)

NmΣ−→ Cl0(K̃4)
ψ̃−→ C×. (3.9)

Proof. Let [L̃] ∈ Cl(K̃4) be a class with L̃ a prime in K̃4. Then we have

NmΣ ◦NmΣ̃(L̃) = (L̃2σ(L̃OM8)σ−1(L̃OM8)) ∩ K̃4

from the definition of type norm. Since #(OK̃4
/L̃) = L̃L̃σ(L̃)σ−1(L̃), the class of NmΣ ◦NmΣ̃(L̃)

in Cl0(K̃4) is [L̃L̃
−1

], which depends only on the class of L̃ in Cl(K̃4). Let FrobL̃,Frob
L̃
∈
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Gal(M32/K̃4) be the Frobenius elements associated to L̃ and L̃, respectively. Then, as elements
in Gal(M32/F̃2), they are conjugates under σ2. So, we have

ψ̃ ◦NmΣ ◦NmΣ̃([L̃]) = ψ̃([L̃L̃
−1

]) = ψ̃(FrobL̃)ψ̃(Frob
L̃
)−1

= ψ̃(FrobL̃)ψ̃σ
2
(FrobL̃)−1 = ψ̃2([L̃]). 2

Now, we view ψ̃ as a character of Cl(K̃4) and define ψ2 : Cl0(K4) −→ C× by

ψ2 := ψ̃ ◦NmΣ. (3.10)

Then Proposition 3.5 is equivalent to ψ̃2 = ψ2 ◦NmΣ̃. Since the type norm NmΣ̃ is surjective and
#Cl(K4)/#Cl0(K4) = h+

F2
is odd, one can extend ψ2 to a unique quadratic character of Cl(K4),

which we also denote by ψ2. Then it has kernel Gal(M32/F8), since F8/K4 is unramified and the
2-part of Cl(K4) is cyclic.

Let CM(K4,Σ, ψ2) be the twisted CM 0-cycle defined in (1.4). For an arbitrary class A0 ∈
Cl0(K4), the surjectivity of NmΣ̃ in Proposition 3.2 enables us to write

CM(K4,Σ, ψ2) =
1

hF̃2

∑
Ã∈Cl(K̃4)

ψ̃2(Ã)σÃ(ZA0,Σ).

By Lemma 3.3, the character ψ̃2 factors through CC(K̃4, Σ̃). So, CM(K4,Σ, ψ2) is defined over M8

and not trivially zero. Remark 3.5 in [BY06] then implies that CM(K4, ψ2) is defined over F ,
the real quadratic subfield of M8 fixed by σ.

3.3 Hilbert modular forms
Now we will recall some results on Borcherds lifts and Hilbert modular forms following [BY06].

In the notation of the previous section, let χp be the quadratic Dirichlet character modulo
p. Define the rational quadratic space V by

V :=

{
A =

(
a λ

σ(λ) b

) ∣∣∣∣ a, b ∈ Q, λ ∈ F2

}
, (3.11)

which the Hilbert modular group SL2(OF2) acts on via

γ ·A := σ(γ)Aγt.

Consider the lattice

L =

{
A =

(
a λ

σ(λ) b

) ∣∣∣∣ a, b ∈ Z, λ ∈ dF2

}
⊂ V,

where dF2 =
√
pOF2 is the different of F2. For a positive integer m, denote

Lm = {A ∈ L : det(A) = m/p}.

The subset

Tm =
⋃(

a λ
σ(λ) b

)
∈Lm/{±1}

{(z1, z2) ∈ H2 | az1z2 + λz1 + σ(λ)z2 + b = 0} (3.12)
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defines an SL2(OF2)-invariant analytic divisor on H2 and descends to an algebraic divisor on the
Hilbert modular surface XF2 . This is the Hirzebruch–Zagier divisor of discriminant m, which
was first studied in [HZ76]. Notice that Lm = ∅ and Tm = 0 whenever χp(m) = −1.

Let M !,+
0 (p, χp) ⊂ M !

0(p, χp) be the subspace consisting of modular functions f(z) =∑
n�−∞ c(f,m)qm satisfying c(f,m) = 0 whenever χp(m) = −1. Let δp be the function defined

in (1.9) (with D replaced by p). If δp(m)c(m) ∈ Z for all m < 0, then there exists a meromorphic
Hilbert modular form Ψf (z1, z2) for SL2(OF2) with weight c(f, 0) and divisor

Tf =
∑
m>1

δp(m)c(f,−m)Tm

by [BB03, Theorem 9]. This Hilbert modular form Ψf (z1, z2) is called the Borcherds lift of f .
It is normalized integral and its Fourier expansion is given in [BY06, Theorem 2.4(iii)]. Suppose
c(f, 0) = 0; then Ψf (z1, z2) is a Hilbert modular function and its value can be expressed in terms
of an automorphic Green’s function as follows.

For s ∈ C with Re(s) > 1 and (z1, z2) ∈ H2\Tm, define the automorphic Green’s function for
Tm by

Φm(z1, z2, s) :=
∑(

a λ
σ(λ) b

)
∈Lm

Qs−1

(
1 +
|az1z2 + λz2 + σ(λ)z1 + b|2

2y1y2m/p

)
, (3.13)

where zj = xj + iyj and Qs−1(t) is the Legendre function of the second kind defined by

Qs−1(t) =

∫ ∞
0

(
t+
√
t2 − 1 coshu

)−s
du, Re(s) > 1, t > 1,

Q0(t) =
1

2
log

(
1 +

2

t− 1

)
.

(3.14)

As s approaches 1, the Green’s function Φm(z1, z2, s) has a simple pole with residue R(m)
independent of z1 or z2. Define the regularized Green’s function Φm(z1, z2) for the divisor Tm as

Φm(z1, z2) := lim
s→1

(
Φm(z1, z2, s)−

R(m)

s− 1

)
. (3.15)

By [BY06, Theorem 2.8], the logarithm of |Ψf (z1, z2)| is related to the regularized automorphic
Green’s function by

2 log |Ψf (z1, z2)| = C(f)−
∑
m>0

δp(m)c(f,−m)Φm(z1, z2). (3.16)

Here, C(f) is an explicit constant depending only on f and both sides are invariant under the

action of SL2(OF2). Since M !,+
0 (p, χp) has an integral basis, (3.16) can be extended to hold for

any f ∈M !,+
0 (p, χp).

For A ∈ Cl0(K4), let ZA,Σ be the associated CM point on XF2 . Using a relationship between
the lattice Lm ⊂ L and the number field K̃4, we can express the value Φm(ZA,Σ, s) in terms of
the arithmetic of K̃4 and K4. First, choose a representative a ⊂ OK4 in the class of A and write
a = OF2α+OF2β such that α/β satisfies (3.1). Then define two Q-quadratic forms on K̃4 by

Q−(ρ) = TrF̃2/Q
ρρ√
Dp

, Q+(ρ) = TrF̃2/Q ρρ (3.17)
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and the map ρα,β : V −→ K̃4 by

ρα,β : V −→ K̃4

A 7→ (σ(α)), σ(β))A

(
α

β

)
.

A key fact here is that ρα,β is a Q-isometry between the quadratic spaces (K̃4,−(N f0/Na)Q−)
and (V,det) by [BY06, Proposition 4.3]. The image of Lm under ρα,β could also be described
precisely. Since disc(K4) = Dp3 and D ≡ 1 (mod 4) is a split prime in F2, [BY06, condition
(4.20)] is satisfied and [BY06, Proposition 4.8] implies that

ρα,β(Lm) =

{
ρ ∈ d−1

K̃4/F̃2
NmΣ(a) :

ρρ

Na
=
pk −m√Dp

2p
∈ d−1,+

K̃4/F̃2

}
, (3.18)

where dK̃4/F̃2
⊂ OK̃4

and dK̃4/F̃2
⊂ OF̃2

are the relative different and relative discriminant of

K̃4/F̃2, respectively. Since disc(K̃4) = D2p3 and disc(F̃2) = Dp, the relative different dK̃4/F̃2
is

P̃, the unique prime in K̃4 above p, and dK̃4/F̃2
= NmK̃4/F̃2

(dK̃4/F̃2
).

For A =
(

a λ
σ(λ) b

)
∈ V and z := α/β ∈ K4, define

ρ := ρα,β(A),

µ(z,A) :=
ρρ

Na
=
Q+(ρ) +

√
DpQ−(ρ)

2Na
,

dA(z, σ(z)) := 1 +
|azσ(z) + λσ(z) + σ(λ)z + b|2

2 Im(z) Im(σ(z)) det(A)
= 1 +

2ρρ

4 Im(z) Im(σ(z)) det(A)

=
Q+(ρ)√
Dp

1

NadetA
.

Then we can write

Φm(ZA,Σ, s) =
∑
A∈Lm

Qs−1(dA(z, σ(z)))

=
∑

µ=(pk−m
√
Dp)/2p∈d−1,+

K̃4/F̃2

Qs−1

(
pk

m
√
Dp

) ∑
A∈Lm

µ(z,A)=µ

1.
(3.19)

Since K̃4/Q is non-Galois, ±1 are the only roots of unity in K̃4. Thus, the following map is a
two-to-one surjection:

ρα,β(Lm) −→ {b̃ ⊂ dK̃4/F̃2
: [b̃] = [d2

K̃4/F̃2
][NmΣ(a)]−1}

ρ 7→ ρd2
K̃4/F̃2

(NmΣ(a))−1.

From this, we can deduce that

#{A ∈ Lm : µ(z,A) = µ} = #{ρ ∈ d−1
K̃4/F̃2

NmΣ(a) : ρρ = µNa}

= 2 ·#{b̃ ∈ [d2
K̃4/F̃2

][NmΣ(a)]−1 integral : NmK̃4/F̃2
b̃ = pµ}.

Let P ⊂ OK4 be the unique prime above p. Then [P]2 is the identity in Cl(K4),NmΣ(P) = P̃2 =
d2
K̃4/F̃2

and we have

#{A ∈ Lm : µ(z,A) = µ̃/p} = 2 ·#{b̃ ∈ [NmΣ(Pa)]−1 integral : NmK̃4/F̃2
b̃ = µ̃} (3.20)
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for any µ̃ = (pk −m√Dp)/2 ∈ d+
K̃4/F̃2

. Summing these together with a twist by ψ2 over all the

[a] ∈ Cl0(K4) gives us∑
[a]∈Cl0(K4)

∑
A∈Lm

µ(z,A)=µ̃/p

ψ2(a) = 2
∑

[a]∈Cl0(K4)

b̃⊂dK̃4/F̃2

[b̃]=[NmΣ(Pa)]−1

NmK̃4/F̃2
b̃=µ̃

ψ2(a) = 2ψ2(P)
∑

[a′]∈Cl0(K4)

b̃⊂OK̃4

[b̃]=[NmΣ(a′)]−1

NmK̃4/F̃2
b̃=µ̃

(ψ̃ ◦NmΣ)(a′)

= 2ψ2(P)
h+
F̃2

hF̃2

∑
b̃⊂OK̃4

NmK̃4/F̃2
b̃=µ̃

ψ̃(b̃) =
2h+

F̃2

hF̃2

ψ2(P)cψ̃(µ̃).

The last two steps follow from the surjectivity of NmΣ : Cl0(K4) −→ Cl0(K̃4), whose kernel

has size h+
F̃2
/hF̃2

, and the definition of cψ̃(µ̃) in (4.1). Thus, the value of the Green’s function

Φm(z1, z2, s) at the twisted CM 0-cycle CM(K4,Σ, ψ2) is

Φm(CM(K4,Σ, ψ2), s) =
2h+

F̃2

hF̃2

ψ2(P)
∑

µ̃=(pk−m
√
Dp)/2∈d+

K̃4/F̃2

Qs−1

(
pk

m
√
Dp

)
cψ̃(µ̃).

This is the analogue of [BY06, Theorem 5.1] for the twisted CM 0-cycle. Similarly, for another

CM type Σ′ := σ3Σ = {1, σ−1}, the value of Φm(z1, z2, s) at CM(K4,Σ
′, ψ2) is

Φm(CM(K4,Σ
′, ψ2), s) =

2h+
F̃2

hF̃2

ψ2(P)
∑

µ̃′=(pk+m
√
Dp)/2∈d+

K̃4/F̃2

Qs−1

(
pk

m
√
Dp

)
cψ̃(µ̃′)

= Φm(CM(K4,Σ, ψ2), s).

The second equality follows from Proposition 4.1, which implies that cψ̃(µ̃) = cψ̃(σ(µ̃)). Since

ψ2 is a non-trivial character, the value of the regularized Green’s function Φm(z1, z2), which was

defined in (3.15), at the twisted CM 0-cycle CM(K4, φ2) can be expressed as

Φm(CM(K4, ψ2)) =
8h+

F̃2

hF̃2

ψ2(P) lim
s→1

∑
µ̃=(pk−m

√
Dp)/2∈d+

K̃4/F̃2

Qs−1

(
pk

m
√
Dp

)
cψ̃(µ̃).

Combining this with (3.16) yields

log |Ψf (CM(K4, ψ2))|

= −
4ψ2(P)h+

F̃2

hF̃2

∑
m>1

δp(m)c(f,−m) lim
s→1

∑
µ̃=(pk−m

√
Dp)/2∈d+

K̃4/F̃2

Qs−1

(
pk

m
√
Dp

)
cψ̃(µ̃).

(3.21)

Note that log |(C ·Ψf )(CM(K4, ψ2))| = log |Ψf (CM(K4, ψ2))| for any non-zero constant C, since

ψ2 is a non-trivial character.
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4. Counting result

Recall that ψ̃ is the character defined in (3.6) and can be viewed as a character of Cl(K̃4). For
any integral ideal I in F̃2, define the ideal counting function cψ̃(I) by

cψ̃(I) :=
∑

b̃⊂OK̃4

NmK̃4/F̃2
(b̃)=I

ψ̃(b̃). (4.1)

Notice that if I = I1I2 with I1, I2 relatively prime in F̃2, then

cψ̃(I) = cψ̃(I1)cψ̃(I2). (4.2)

For I = (µ̃) principal, the quantity cψ̃(µ̃) can be thought of as the µ̃th Fourier coefficient of a
Hilbert modular form with parallel weight one associated to the Galois representation

ρψ̃,F̃2
:= IndF̃2

K̃4
ψ̃ : Gal(M32/F̃2) −→ GL2(C). (4.3)

On the other hand, we can compare characters to obtain

ρψ̃,F̃2

∼= ρϕ|Gal(M32/F̃2), (4.4)

where the right-hand side is related to the Doi–Naganuma lift of fϕ. The goal of this section
is to establish a precise relationship between cψ̃ and cϕ through Proposition 4.1, which will be
crucial in proving Theorem 1.1.

Proposition 4.1. For any totally positive element µ̃ = (k −m√Dp)/2 ∈ F̃+
2 , we have

cψ̃(µ̃) =
ordD̃(µ̃) + 1

ordD(gcd(k,m)) + 1

∑
d|gcd(k,m)

cϕ

(
k2 −m2Dp

4d2

)
φp(d), (4.5)

where DOF̃2
= D̃2. In particular, when ordD(k) > ordD(n),

cψ̃(µ̃) = 2
∑

d|gcd(k,m)

cϕ

(
k2 −m2Dp

4d2

)
φp(d). (4.6)

Proof. First, we can factor (µ̃) as

(µ̃) =

2∏
j=1

l̃
rj
j

M1∏
j=3

(̃l
aj
j σ(̃lj)

bj )

M∏
j=M1+1

l̃rj ,

where l̃1 = p̃, l̃2 = D̃. Each l̃j is above a distinct rational prime `j , which is split in F̃2 for
3 6 j 6M1 and is inert in F̃2 for M1 + 1 6 j 6M . In this notation, the norm of µ̃ factors as

Nm(µ̃) =

2∏
j=1

`
rj
j

M1∏
j=3

`
aj+bj
j

M∏
j=M1+1

`
2rj
j , gcd(k,m) =

M∏
j=1

`
tj
j .

The exponents tj satisfy

tj =


brj/2c, 1 6 j 6 2,

min(aj , bj), 3 6 j 6M1,

rj , M1 + 1 6 j 6M.

(4.7)
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By (4.2) and the multiplicativity of cϕ, the two sides of (4.5) can be expressed as

cψ̃(µ̃) =
2∏
j=1

cψ̃ (̃l
rj
j )

M1∏
j=3

cψ̃ (̃l
aj
j )cψ̃(σ(̃lj)

bj )
M∏

j=M1+1

cψ̃(`
rj
j ), (4.8)

∑
d|gcd(k,n)

cϕ

(
k2 −m2Dp

4d2

)
φp(d) =

2∏
j=1

( tj∑
νj=0

cϕ(`
rj−2νj
j )φp(`

νj
j )

)

·
M1∏
j=3

( tj∑
νj=0

cϕ(`
aj+bj−νj
j )φp(`

νj
j )

)

·
M∏

j=M1+1

( tj∑
νj=0

cϕ(`
2(rj−νj)
j )φp(`

νj
j )

)
. (4.9)

Thus, it is enough to prove (4.5) by considering each prime `j separately. For convenience, we
will drop the subscript j in l̃j , `j , rj , νj , aj and bj from now on.

When ` - Dp, let L be a prime in M32 above l̃ and FrobL,F̃2
∈ Gal(M32/F̃2) be the associated

Frobenius element. By (4.4), the following identity between power series in QJXK holds:∑
r>0

cψ̃ (̃lr)Xr = det(1− ρψ̃,F̃2
(FrobL,F̃2

)X)−1 = det(1− ρϕ(FrobL,F̃2
)X)−1. (4.10)

There are three cases depending on the splitting behavior of ` in F̃2.

Case 1: ` is inert in F̃2. Let FrobL ∈ Gal(M32/Q) be the Frobenius element associated to L.
Then, for all b ∈M32,

Frob2
L(b) ≡ b2` (modL).

Since ` is inert in F̃2, Frob2
L is conjugate to FrobL,F̃2

in Gal(M32/Q) and hence also in

Gal(M32/F̃2). Then (4.10) implies that∑
r>0

cψ̃(`r)Xr = det(1− ρψ̃,F̃2
(FrobL,F̃2

)X)−1 = det(1− ρϕ(Frob2
L)X)−1. (4.11)

Let α, β be the two eigenvalues of ρϕ(FrobL). Then α2, β2 are the eigenvalues of ρψ̃,F̃2
(FrobL,F̃2

)
and

αβ = det(ρϕ(FrobL)) = χD(`)φp(`) =

(
Dp

`

)(
p

`

)
φp(`) = −φp(`).

So, we can write

r∑
ν=0

cϕ(`2r−2ν)φp(`)
ν

=
r∑

ν=0

(2(r−ν)∑
j=0

αjβ2r−2ν−j
)

(−αβ)ν =
r∑

ν=0

(−1)ν
2r−ν∑
w=ν

αwβ2r−w

=

2r∑
w=0

αwβ2r−w
min(w,2r−w)∑

ν=0

(−1)ν =

2r∑
w=0
w even

αwβ2r−w

=

r∑
u=0

(α2)u(β2)r−u = cψ̃(`r).

The last step follows from the first equality in (4.11).
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Case 2: ` splits in F̃2. In this case, FrobL,F̃2
∈ Gal(M32/F̃2) is also the Frobenius element

associated to L in Gal(M32/Q) and (4.10) implies that for any r > 0,

cψ̃ (̃lr) = cψ̃(σ(̃l)r) = cϕ(`r).

Recall from (4.7) that t = min(a, b). Then Lemma 4.2 implies that

cψ̃ (̃la)cψ̃(σ(̃l)b) = cϕ(`a+b−t)cϕ(`t) =
t∑

ν=0

cϕ(`a+b−2ν)φp(`)
ν
.

Case 3: ` ramifies in F̃2. If ` = p, then p̃OK̃4
= P̃2 ramifies. Let FrobP̃ ∈ Gal(M32/K̃4) be

the Frobenius element associated to P̃. Since ( pD ) = 1, the ideal P̃OM8 splits and FrobP̃ ∈
Gal(M32/M8). Write pOF = pτ(p) with τ(p) unramified in K8/F . Since the norm of P̃ is
p, the element FrobP̃ is sent to the Frobenius element of τ(p) in Gal(K8/F ) under the map
Gal(M32/M8) ↪→ Gal(M32/F )� Gal(K8/F ). Combining this with Proposition 3.4 yields

cψ̃(p̃r) = ψ̃(FrobP̃)r = ϕ(Frobτ(p))
r = cϕ(pr) =

t∑
ν=0

cϕ(pr−ν)φp(pν).

If ` = D, then l̃ = D̃ splits completely in M8, since there are four primes in M8 above

D. So, we can write D̃OK̃4
= L̃L̃, DOF = D2 with corresponding Frobenius elements FrobL̃,

Frob
L̃
∈ Gal(M32/M8) and FrobD ∈ Gal(K8/F ). Notice that σ2(L̃) = L̃ and

Frob
L̃

= σ2 FrobL̃ σ
−2 = FrobL̃ .

By the same reasoning as in the case ` = p, we have ψ̃(FrobL̃) = ϕ(FrobD) = cϕ(D) and

cψ̃(D̃r) =
r∑

ν=0

ψ̃(FrobL̃)νψ̃(Frob
L̃
)r−ν =

r∑
ν=0

ψ̃(FrobL̃)νψ̃(FrobL̃)r−ν

= (r + 1)ψ̃(FrobL̃)r = (r + 1)ϕ(FrobD)r = (r + 1)cϕ(Dr).

On the other hand, φp(D) = ϕ(D) = ϕ(D2) = cϕ(D2) ∈ {±1} and

t∑
ν=0

cϕ(Dr−2ν)φp(D)
ν

= (t+ 1)cϕ(Dr).

Notice that r + 1 = 2(t+ 1) when ordD(k) > ordD(n), since

r =

{
2t, ordD(k) 6 ordD(n),

2t+ 1, ordD(k) > ordD(n).

Finally, combining the three cases together and comparing (4.8) with (4.9) produces (4.5). 2

Lemma 4.2. Let ` be a prime that splits in F̃2. Then, for all 0 6 2t 6 r,

cϕ(`r−t) · cϕ(`t) =

t∑
ν=0

cϕ(`r−2ν)φp(`)
ν
. (4.12)
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Remark 4.3. When r = 2 and t = 1, (4.12) follows from the fact that the eigenvalue of fϕ under
the `th Hecke operator is cϕ(`).

Proof. Let Frob` ∈ Gal(M32/Q) be an element in the conjugacy class of the Frobenius element
associated to `, and α, β be the eigenvalues of ρϕ(Frob`). Since ` splits in F2, we have

αβ = det(ρϕ(Frob`)) = χD(`)φp(`) =

(
Dp

`

)(
p

`

)
φp(`) = φp(`).

So, the left- and right-hand sides of (4.12) become

LHS =

( r−t∑
j1=0

αj1βr−t−j1
)
·
( t∑
j2=0

αj2βt−j2
)

=
r−t∑
j1=0

t∑
j2=0

αj1+j2βr−j1−j2 =
r∑

u=0

αuβr−uCL(u),

RHS =

t∑
ν=0

(r−2ν∑
j=0

αjβr−2ν−j
)

(αβ)ν =

t∑
ν=0

r−2ν∑
j=0

αj+νβr−ν−j =

r∑
u=0

αuβr−uCR(u),

CL(u) := #{(x, y) ∈ Z2 : 0 6 x 6 t, 0 6 y 6 r − t, x+ y = u},
CR(u) := #{(x, y) ∈ Z2 : 0 6 x 6 t, 0 6 y 6 r − 2x, x+ y = u}.

x

y

t

(t, r − 2t)

(t, r)

t

r − t

x

y

t

r

(t, r − 2t)

t

r − t

When 0 6 u 6 r− t, it is clear from the picture above that CL(u) = CR(u). When r− t+1 6
u 6 r, we also have CL(u) = CR(u), since the involution

(x, y)↔ (t− x, 2x+ y − t)

switches the two shaded regions while preserving x+ y. Thus, (4.12) holds. 2

5. Harmonic Maass forms

In this section, we will review some background information on harmonic Maass forms
following [BF04]. Then we will prove Theorem 5.6 concerning the properties of a unique preimage
of fϕ under the differential operator ξ1 defined in (1.1).

Let k ∈ Z, N ∈ N and ν : (Z/NZ)× −→ C× be a character. It is also a character of the
congruence subgroup Γ0(N) via ν

((
a b
Nc d

))
:= ν(d). Recall that the weight-k hyperbolic Laplacian

∆k and differential operator ξk are defined in (1.1). We call a real-analytic function F : H→ C
a harmonic Maass form of weight k, level N and character ν if the following are satisfied:
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(i) (F |k γ)(z) = ν(γ)F(z) for all γ ∈ Γ0(N);

(ii) ∆k(F) = 0;

(iii) the function F(z) is only allowed to have polar-type singularities at the cusps of Γ0(N).

Let Hk(N, ν) be the space of harmonic Maass forms of weight k, level N and character ν,
whose image under ξk is a cusp form. Denote by M !

k(N, ν),Mk(N, ν) and Sk(N, ν) the usual
subspaces of weakly holomorphic modular forms, holomorphic modular forms and cusp forms.
Every F ∈ Hk(N, ν) can be written canonically as the sum of a holomorphic part and a non-
holomorphic part

F(z) = f̃(z) + f∗(z),

where f̃(z) has the following Fourier expansion at the cusp infinity:

f̃(z) =
∑

n�−∞
c+(n)qn.

If the cusp form f(z) := ξk(F(z)) ∈ S2−k(N, ν) has Fourier expansion
∑

n>1 c(n)qn at infinity,
then the non-holomorphic part f∗(z) looks like

f∗(z) = −
∑
n>0

c(n)βk(n, y)q−n

at the cusp infinity, where, for n > 0,

βk(n, y) :=

∫ ∞
y

e−4πntt−k dt (5.1)

is the incomplete Gamma function after a suitable change of variables.
Property (ii) and (1.1) give the following map:

ξk : Hk(N, ν) −→ S2−k(N, ν), (5.2)

whose kernel is M !
k(N, ν).

Proposition 5.1. The map (5.2) is surjective.

A proof of this proposition for vector-valued modular forms on a congruence subgroup of
SL2(Z) is given in [BF04] using Serre duality. The same argument is also applicable to the weight-
one case. Using the relationship between vector-valued and scalar-valued modular forms (see
e.g. [BB03]), the surjectivity of ξk can be translated to the setting of scalar-valued modular forms.
Since ξk commutes with the slash operator, one could add nebentypus character by imposing
conditions on harmonic Maass forms on the congruence subgroup Γ1(N).

In [BF04], Bruinier and Funke introduced a pairing between F = f̃ + f∗ ∈ Hk(N, ν) and
g ∈ S2−k(N, ν), which is given by the Petersson inner product 〈g, ξk(F)〉. Using Stokes’ theorem,
they expressed this pairing in terms of the Fourier coefficients of g and the principal parts of f̃
at various cusps of Γ0(N) (see [BF04, Proposition 3.5] for vector-valued modular forms). When
N is odd and square free, the cusps of Γ0(N) are indexed by the divisors of N . For d | N , let
σd ∈ GL2(R) be a scaling matrix sending the cusp ∞ to the cusp 1/d. Then this pairing can be
expressed as

{g,F} := 〈g, ξk(F)〉 = Constant term of

(∑
d|N

(f̃ · g) |2 σd
)
. (5.3)
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Proposition 5.2. The pairing defined in (5.3) is a perfect pairing between S2−k(N, ν) and
Hk(N, ν)/M !

k(N, ν).

Proof. By Proposition 5.1, the pairing is non-degenerate in g ∈ S2−k(N, ν). On the other hand,
suppose there exists {ad(−n) ∈ C : n > 1, d | N} such that ad(−n) = 0 for n sufficiently large
and ∑

d|N

∑
n>1

c(g |2−k σd, n)ad(−n) = 0 (5.4)

for all g ∈ S2−k(N, ν). When k < 1, one could use Poincaré series to explicitly construct F ∈
M !
k(N, ν) such that

(F |k σd)(z) =
∑
n>1

ad(−n)q−n +O(1)

for all d | N , and the pairing is perfect, since S2−k(N, ν) is a finite-dimensional vector space.
Let ∆(z) ∈ S12 be the unique cusp form of weight 12 on SL2(Z). When k = 1, let S∆

13(N, ν)
be the image of the map

S1(N, ν) −→ S13(N, ν)

g(z) 7→ g(z)∆(z),

which is a subspace of S13(N, ν). The coefficients {ad(−n) : n > 1, d | N} satisfy (5.4) for all
g(z) ∈ S1(N, ν), which can be written as∑

d|N

∑
n>1

c

(
(h |13 σd)(z)

∆(z)
, n

)
ad(−n) = 0

for all h ∈ S∆
13(N, ν). Since h ∈ S13(N, ν) is in the subspace S∆

13(N, ν) if and only if
c((h |13 σd)(z)/∆(z), n) = 0 for all n 6 0, d | N , we could find {ad(n) ∈ C : n > 0, d | N}
such that ∑

d|N

∑
n∈Z

c

(
(h |13 σd)(z)

∆(z)
, n

)
ad(−n) = 0

for all h ∈ S13(N, ν). By the perfect pairing for k = −11, there exists G(z) ∈ M !
−11(N, ν) such

that

(G |−11 σd)(z) =

∑
n∈Z ad(n)qn

∆(z)

for all d |N . Then F(z) := G(z)∆(z) ∈M !
1(N, ν) has the desired principal part

∑
n>1 ad(−n)q−n+

O(1) at the cusp 1/d for all d | N . 2

For certain characters ν, one could use various projection operators to decompose the space
Hk(N, ν) into various eigenspaces under the Atkin–Lehner involutions. The pairing on these
eigenspaces can then be expressed in terms of the Fourier coefficients at the cusp infinity. For
a prime ` | N , let W` =

(
`α β
N `

)
be the Atkin–Lehner involution and U` :=

∑`
λ=1

(
1 λ
`

)
the

U -operator.
Write N = N ′`′ and ν = νN ′ν`, where νN ′ and ν` have conductors N ′ and `, respectively. If

νN ′ is a quadratic character, define

prεν`(F)(z) :=
1

2

(
ε
νN ′(`)ν`(−N ′)

G(ν`)
(F |k U`W`)(z) + F(z)

)
(5.5)
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for ε = ±1 and F(z) =
∑

n∈Z c(F , n, y)qn ∈ H1(N, ν). Here, G(ν`) is the Gauss sum associated
to the character ν`. Then, as a generalization of [BB03, § 3], we have the following lemma.

Lemma 5.3 [Li13, Proposition 2.4.1]. Using the same notation as above, the following are
equivalent:

(1) for all n ∈ Z relatively prime to `,

ν`(n)c(F , n, y) = −εc(F , n, y); (5.6)

(2) prεν`(F) = 0;

(2)′ pr−εν` (F) = F ;

(3)

F |k W` = −εν`(N
′)

G(ν`)
F |k U`. (5.7)

If ν` has order greater than 2 and νN ′ is a quadratic character, there is a similar result. Let

prεν`(F)(z) :=
1

2

(
ε
νN ′(`)ν`(−N ′)

G(ν`)
(F |k U`W`)(z) + Fc(z)

)
(5.8)

for ε = ±1. Here, Fc(z) := F(z) ∈ H1(N, ν) and νN ′ being quadratic are necessary, since W`

sends H1(N, ν) to H1(N, ν). Then we have the following analogue of Lemma 5.3.

Lemma 5.4 [Li13, Proposition 2.4.2]. Using the same notation as above, the following are
equivalent:

(1) for all n ∈ Z relatively prime to `,

ν`(n)c(F , n, y) = −εc(F , n, y); (5.9)

(2) prεν`(F) = 0;

(2)′ pr−εν` (F) = Fc;
(2)′′ pr−εν` (iF) = 0;

(3)

F |k W` = −εν`(N
′)

G(ν`)
Fc |k U`. (5.10)

Note that the subspace of forms in H1(N, ν) satisfying one of the conditions in Lemma 5.4
is a real vector space. When ν` and νN ′ are both quadratic, the definitions (5.5) and (5.8) agree
when F ∈ H1(N, ν) satisfies F = Fc. Since the projection operators are defined using slash
operators, they commute with each other and ξk as follows.

Lemma 5.5 [Li13, Proposition 2.4.4]. Let `, `′ | N be distinct primes and ε, ε′ ∈ {±1}. Suppose
νN/`′(·) = ( ·

N/`′ ) and ν`′ has order greater than 2. Then the projection operators satisfy the

following properties:
pr−εν` ◦ prεν` = pr−εν`′

◦ prεν`′ = 0,

prεν` ◦ prε
′
ν`′

= prε
′
ν`′
◦ prεν` ,

prεν` ◦ ξk = ξk ◦ prεν`(−1)
ν`

,

prεν`′ ◦ ξk = ξk ◦ pr
εν`′ (−1)
ν`′

.

(5.11)

Let D, p, χD, φp and fϕ be the same as in § 2.3. In this setting, there are two Eisenstein series
in M1(Dp, χDφp) linearly independent over C given by [DS05, § 4.8]
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E
1,χDφp
1 (z) := L(0, χDφp) + 2

∑
n>1

( ∑
m|n, m>0

χD(m)φp(m)

)
qn,

E
χD,φp
1 (z) := 2

∑
n>1

( ∑
m|n, m>0

χD(n/m)φp(m)

)
qn.

Here, L(s, χDφp) is the Dirichlet L-function associated to the character χDφp. Since χDφp is odd,
the special value L(0, χDφp) is a non-zero multiple of L(1, χDφp) via the functional equation and
hence it does not vanish [Was97, Theorem 4.9]. Define E1(z) ∈M1(Dp, χDφp) by

E1(z) := E
1,χDφp
1 (z) + E

χD,φp
1 (z) = L(0, χDφp) + 4q +O(q2). (5.12)

From its explicit Fourier coefficients, one could verify that

pr−χD
(E1) = pr−φp(E1) = 0. (5.13)

Proposition 2.9 tells us that the space S1(Dp, χDφp) is spanned over C by fϕ. Together with
Lemmas 5.3 and 5.4, (2.9) implies that

pr+
χD

(fϕ) = pr+
φp

(f cϕ) = fϕ. (5.14)

So, for any F = f̃ + f∗ ∈ H1(Dp, χDφp) satisfying

pr+
χD

(F) = pr+
φp

(F) = F ,

the pairing {fϕ,F} becomes

〈fϕ, ξ1(F)〉 = {fϕ,F} =
∑
n∈Z

(cϕ(n)c+(−n) + cϕ(pn)c+(−pn))δD(n), (5.15)

where f̃(z) =
∑

n�−∞ c
+(n)qn and δD(n) is defined in (1.9). Note that the sum on the right-hand

side is a finite sum. Since the pairing is perfect, any non-trivial solution of the c+(n) to the
equation ∑

n∈Z
(cϕ(n)c+(−n) + cϕ(pn)c+(−pn))δD(n) = 0

forms the principal part of a modular form F ∈M !
1(Dp, χDφp).

By the perfect pairing in Proposition 5.2, the space H1(Dp, χDφp)/M
!
1(Dp, χDφp) is spanned

over C by a harmonic Maass form Fϕ(z) satisfying ξ1(Fϕ) = fϕ. Using the projection operators,
we can choose a unique representative Fϕ ∈ H1(Dp, χDφp) to study.

Theorem 5.6. There exists a unique harmonic Maass form Fϕ ∈ H1(Dp, χDφp) with
holomorphic part

f̃ϕ(z) = c+
ϕ (−1)q−1 + c+

ϕ (0) +
∑
n>2

χD(n)6=−1

c+
ϕ (n)qn,

c+
ϕ (−1) = 〈fϕ, fϕ〉 =

2hK̃4

hF̃2

log uF ,

c+
ϕ (0) = − 2〈fϕ, fϕ〉

L(0, χDφp)

such that ξ1(Fϕ) = fϕ and |(Fϕ |Wp)(z)| has exponential decay as y →∞.
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Proof. Given two such harmonic Maass forms, denote their difference by D(z). It is holomorphic

and O(q2) at the cusp infinity. Furthermore, it satisfies pr−χD
(D(z)) = 0. By Lemma 5.3 and

the exponential decay of (Fϕ | Wp)(z), the form D(z) vanishes at the other cusps of Γ0(Dp)

and hence is a cusp form. Proposition 2.9 tells us that the only cusp form in S1(Dp, χDφp) is

fϕ(z) = q +O(q2), which implies that D(z) = 0.

To show the existence of such Fϕ, we begin with any F(z) ∈H1(Dp, χDφp) satisfying ξ1(F) =

fϕ by Proposition 5.1. Applying Lemma 5.5 and φp(−1) = −1 to (5.14), we can replace F with

(pr+
χD
◦ pr−φp)(Fc) to make sure that

pr−χD
(F) = pr+

φp
(F) = 0.

Suppose the holomorphic part of F , denoted by f̃ , has the Fourier expansion

f̃(z) =
∑

n>−n0
χD(n)6=−1

c+(n)qn

at the cusp infinity. By the perfect pairing between the one-dimensional C vector spaces H1(Dp,

χDφp)/M
!
1(Dp, χDφp) and S1(Dp, χDφp), we can take n0 = 1. Equation (5.15) then reduces

to

c+(−1) = 〈fϕ, fϕ〉.

By (5.13) and (5.14), we know that

pr−χD
(Ec1) = pr−χD

(f cϕ) = 0.

Since the constant term of Ec1 is non-zero, subtracting appropriate multiples of Ec1 and f cϕ from

F guarantees that the holomorphic part of F | Wp is O(q) and c+(1) = 0. Since β1(n, y)q−n

decays exponentially for all n > 1, the form (f |Wp)(z) also decays exponentially. Finally, (5.15)

with fϕ replaced by E1 becomes

4c+(−1) + 2L(0, χDφp)c
+(0) = 0,

which yields c+(0) = −2〈fϕ, fϕ〉/L(0, χDφp). 2

6. Proof of Theorem 1.1

In the same notation as § 5, let Fϕ(z) ∈ H1(Dp, χDφp) be the unique harmonic Maass form in

Theorem 5.6 with Fourier expansion

Fϕ(z) =
∑
n∈Z

ĉϕ(n, y)qn = c+
ϕ (−1)q−1 + c+

ϕ (0) +
∑
n>2

c+
ϕ (n)qn −

∑
n>1

cϕ(n)β1(n, y)q−n.

To prove Theorem 1.1, we will first construct a modular form Ξϕ(z) ∈ M2(p, χp) from Fϕ
and calculate its Fourier expansion. This will be the replacement of the cusp form in [BY06,

Theorem 8.1].

Let θ(z) =
∑

n∈Z q
n2

be the Jacobi theta function. For γ =
(
a b
c d

)
∈ Γ0(4), let γ̃ = [γ, j(γ, z)]

∈ Γ̃0(4) be the element in the metaplectic cover of Γ0(4), where j(γ, z) := θ(γz)/θ(z). Define the
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character χ′ : (Z/4p)× −→ C× by

χ′(·) =

(−4

·

)
φp(·). (6.1)

Let W̃D :=
[(DαD βD

4Dp D

)
, D−1/4

√
4Dpz +D

]
, W̃p :=

[( pαp βp
4Dp p

)
, p−1/4

√
4Dpz + p

]
be the Atkin–

Lehner involutions. Consider the real-analytic function Fϕ(4z)θ(pz). It is a modular form of

weight 3/2, level 4Dp and character χ′(·)( ·D ).

Define the function Ω̃ϕ(z) by

Ω̃ϕ(z) := D−1/4((Fϕ(4z)θ(pz)) |3/2 W̃D + (Fϕ(4z)θ(pz)) |3/2 ŨD)(z)

=
∑
n∈Z

c(Ω̃ϕ, n, y)qn. (6.2)

By [Li13, Lemma 2.3.6], it is a real-analytic modular form of weight 3/2, level 4p and character

χ′. Using the calculations

((Fϕ(4z)θ(pz)) |3/2 W̃D)(z) = p−1/4

(
Fϕ |1

(
DαD 4βD
Dp D

))
(4z) ·

(
θ |1/2

[(
p

1

)
, p−1/4

]
W̃D

)
(z)

= D1/4

(
1

D

D−1∑
j=0

Fϕ
(

4z + j

D

))
· θ(Dpz),

((Fϕ(4z)θ(pz)) |3/2 ŨD)(z) = D1/4

(
1

D

D−1∑
j=0

Fϕ
(

4

(
z + j

D

))
θ

(
p

(
z + j

D

)))
,

one can write c(Ω̃ϕ, n, y) as

c(Ω̃ϕ, n, y) =
∑
k∈Z

ĉϕ

(
Dn− pk2

4
,
4y

D

)
δD(k) = aϕ(n) + a∗ϕ(n, y),

a∗ϕ(n, y) := −
∑
k∈Z

cϕ

(
pk2 −Dn

4

)
β1

(
pk2 −Dn

D
4πy

)
δD(k)

(6.3)

with aϕ(n) defined in (1.8).

Since D, p ≡ 1 (mod 4), the coefficient c(Ω̃ϕ, n, y) vanishes whenever n ≡ 2, 3 (mod 4). This

means that Ω̃ϕ(z) is in the Kohnen plus space of weight 3/2, level 4p and character χ′. By [Li13,

Lemmas 2.3.3 and 2.3.4], the function Ω̃ϕ |3/2 W̃p equals

((Fϕ |WpUD)(4z)θ(Dz) + ((Fϕ |Wp)(4z)θ(pz)) |3/2 ŨD

up to a non-zero constant factor. Similar calculations and the exponential decay of Fϕ | Wp

imply that Ω̃ϕ |3/2 W̃p is contained in Kohnen’s plus space and has exponential decay at the

cusp infinity. Since β1 decays exponentially, the function Ω̃ϕ is 2c+
ϕ (0) +O(q) at the cusp infinity

and O(q) at all other cusps of Γ0(p). Let E3/2,p ∈ M3/2(4p, χ′) be the unique Eisenstein series

in Kohnen’s plus space such that E3/2,p(z) is 1 + O(q) at infinity and O(q) at all other cusps.

Its existence follows from the dimension formula of half-integral weight Eisenstein series [CO77].
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Then Ω̃ϕ(z)− 2c+
ϕ (0)E3/2,p(z) is O(q) at all cusps of Γ0(4p) and we can apply the holomorphic

projection operator πhol to it and obtain

Ωϕ(z) := πhol(Ω̃ϕ(z)− 2c+
ϕ (0)E3/2,p(z)) ∈ S3/2(4p, χ′) (6.4)

in Kohnen’s plus space.

In [Koh82], Kohnen studied the space of half-integral weight cusp forms satisfying Kohnen’s

plus space condition and showed that the Shimura lifting maps it isomorphically to the space of

cusp forms as Hecke modules when the character is quadratic and the level is odd and square

free. After many people’s work [MRV90, Pei82, Tsu99, Ued93, van83], the Shimura lifting has

been generalized to modular forms of weight k+1/2 for all integers k > 1, odd level and arbitrary

character. In our situation, we can apply the Shimura lifting to Ωϕ(z) (in the notation of [Koh82,

Theorem 2]) and define

Ξϕ(z) := S1,1,p,φp(Ωϕ(z) + 2c+
ϕ (0)E3/2,p(z)) ∈M2(p, χp). (6.5)

The following lemma calculates the Fourier coefficients of Ξϕ.

Lemma 6.1. The modular form Ξϕ(z) has the Fourier expansion Ξϕ(z) =
∑

n>0 c(Ξϕ,m)qm at

infinity, where

c(Ξϕ,m) =

{
L(0, φp)c

+
ϕ (0), m = 0,

bϕ(m)− cϕ(p)b′ϕ(m), m > 1, p - m,

b′ϕ(m) := lim
s→1

∑
k′∈Z

( ∑
d|gcd(k′,m)

φp(d)cϕ

(
(pk′)2 − pDm2

4d2

)
δD(k′)

)
2Qs−1

(
pk′√
pDm

)
,

(6.6)

bϕ(m) is defined in (1.7) and Qs−1(t) is the Legendre function of the second kind in (3.14).

Proof. Let c(Ωϕ, n) and c(E3/2,p, n) be the nth Fourier coefficients of Ωϕ and E3/2,p, respectively.

By the definition of holomorphic projection [Stu80], the coefficient c(Ω, n) comes from the inner

product between Ω̃ϕ − 2c+
ϕ (0)E3/2,p and the nth Poincaré series of weight 3/2, level 4p and

character χ′ defined by taking the limit of the following function:

Pn(z, s) :=
∑

γ=
(
a b
c d

)
∈Γ∞\Γ0(4p)

χ′(d)j(γ, z)−3e2nπiγzIm(γz)(s−1)/2

as s approaches 1. Since Ω̃ϕ − 2c+
ϕ (0)E3/2,p decays exponentially at all cusps of Γ0(4p), one

can switch the limit in s and inner product. After applying Rankin–Selberg unfolding, we obtain

c(Ωϕ, n) =
(4πn)1/2

Γ(1/2)

〈
Ω̃ϕ − 2c+

ϕ (0)c(E3/2,p, n), lim
s→0
Pn,s

〉
= lim

s→1

(
aϕ(n)− 2c+

ϕ (0)c(E3/2,p, n) +
(4πn)1/2

Γ(1/2)

∫ ∞
0

a∗ϕ(n, y)e−4πnyys/2
dy

y

)
= aϕ(n)− 2c+

ϕ (0)c(E3/2,p, n)− cϕ(p)a′ϕ(n),
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where a′ϕ(n) is defined by

a′ϕ(n) := lim
s→1

∑
k∈Z

cϕ

(
(pk)2 − pDm

4

)
δD(k)%s−1

(
pk2

Dm
− 1

)
,

%s(µ) :=

∫ ∞
1

du

(µu+ 1)(1+s)/2
u, µ > 0.

Here, we have used the multiplicative property cϕ(pn) = cϕ(p)cϕ(n) for all n ∈ N. With the

following comparisons (see [GZ85, § 7] for similar arguments):

%0(µ) = 2Q0(
√
µ+ 1),

Qs−1(
√
µ+ 1)− sΓ(s)2

22−sΓ(2s)
%s−1(µ) = O(µ−1/2−s/2),

we can substitute %s−1(pk2/Dm − 1) with 2Qs−1(pk/
√
pDm) in the limit as s goes to 1 and

obtain

c(Ωϕ, n) + 2c+
ϕ (0)c(E3/2,p, n) = aϕ(n)− cϕ(p)a′ϕ(n),

a′ϕ(n) = lim
s→1

∑
k∈Z

cϕ

(
(pk)2 − pDn

4

)
δD(k)2Qs−1

(
pk√
pDn

)
.

(6.7)

Now, given g(z) =
∑

n>0 c(g, n)qn ∈ M3/2(4p, χ′) satisfying Kohnen’s plus space condition,

its Shimura lift S1,1,p,φp(g) ∈M2(p, χp) has the shape (see [Koh82, Theorem 2(ii)])

S1,1,p,φp(g)(z) :=
L(0, φp)c(g, 0)

2
+
∑
m>1

(∑
d|m

φp(d)c

(
g,
m2

d2

))
qm. (6.8)

Applying this to (6.5) yields c(Ξϕ, 0) = L(0, φp)aϕ(0)/2 = L(0, φp)c
+
ϕ (0) and

c(Ξϕ,m) =
∑
d|m

φp(d)

(
aϕ

(
m2

d2

)
− cϕ(p)a′ϕ

(
m2

d2

))
= bϕ(m)− cϕ(p)

∑
d|m

φp(d)a′ϕ

(
m2

d2

)

= bϕ(m)− cϕ(p) lim
s→1

∑
d|m

∑
k∈Z

φp(d)cϕ

(
(pkd)2 − pDm2

4d2

)
δD(k)2Qs−1

(
pkd√
pDm

)

= bϕ(m)− cϕ(p) lim
s→1

∑
k′∈Z

∑
d|gcd(k′,m)

φp(d)cϕ

(
(pk′)2 − pDm2

4d2

)
δD(k′)2Qs−1

(
pk′√
pDm

)
= bϕ(m)− cϕ(p)b′ϕ(m)

when p - m. 2

Proof of Theorem 1.1. Let Ψ(z1, z2) be a normalized integral Hilbert modular function with

divisor ∑
m>1

gcd(pD,m)=1

c(−m)Tm.
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By [BY06, Theorem 2.8], there exists a modular function f(z) =
∑

m>1 c(−m)q−m + O(q) ∈
M !,+

0 (p, χp) such that Ψ = C ·Ψf for some non-zero constant C. By Proposition 4.1, we know that

cψ̃

(
pk′ −m√Dp

2

)
=

∑
d|gcd(k′,m)

φp(d)cϕ

(
(pk′)2 − pDm2

4d2

)
δD(k′)

when D - k′ and k′ > m
√
Dp/p. Furthermore, ψ2(P) = ϕ(p′)2 = cϕ(p)2. Thus, we can

rewrite (3.21) as

log |Ψ(CM(K4, ψ2))| = log |(C ·Ψf )(CM(K4, ψ2))| = log |Ψf (CM(K4, ψ2))|

= −
cϕ(p)2h+

F̃2

hF̃2

∑
m>1

c(−m)b′ϕ(m).

Using the perfect pairing between S2(p, χp) and M !,+
0 (p, χp), we can deduce that

0 =
∑
m>1

c(−m)c(Ξϕ,m) =
∑
m>1

c(−m)bϕ(m)− cϕ(p)
∑
m>1

c(−m)b′ϕ(m).

Putting together the two equations above gives us (1.6). 2

7. Numerical calculations and conjectures

When D = 29, p = 5 and φ5(2) = i, the newform fϕ ∈ S1(145, χ29φ5) has the Fourier expansion

fϕ(z) = q + iq4 + iq5 + (−i− 1)q7 − iq9 + (−i+ 1)q13 − q16 +O(q20).

In this case, we have

uF = 5+
√

29
2 , L(0, χDφp) = −2− 2i, p = (3+

√
29

2 ), cϕ(p) = i,

hF̃2
= h+

F̃2
, hF2 = 1, hK4 = 2, 〈fϕ, fϕ〉 = 4 log uF .

Let Fϕ be the harmonic Maass form in Theorem 5.6 and c+
ϕ (n) the nth Fourier coefficients of its

holomorphic part.
Using the modularity of Fϕ(z), one could substitute in various z ∈ H and numerically

compute the coefficients c+
ϕ (n) using linear algebra. This idea goes back at least to Hejhal [HD83]

and has been implemented in [BSV06] to compute the Fourier coefficients of Maass cusp forms.
Using the computer program SAGE [Ste12], we have numerically computed c+

ϕ (n) for n 6 1000
with precision at least 10−20. The numerically computed coefficients

c+
ϕ (−1) = 6.588924585484 . . . , c+ϕ (0) = 1.64723114637110 . . .− i · 1.64723114637110 . . .

agree with the values given by Theorem 5.6

c+
ϕ (−1) = 4 log uF , c+

ϕ (0) = (1− i) log uF .

Let Ψ(z1, z2) be a normalized integral Hilbert modular function on XF2 with divisor T6−2T1.
It is the Borcherds lift of a weakly holomorphic modular function of level 5 and nebentypus
character ( ·5), whose Fourier expansion has the form q−6−2q−1+242q+O(q2) (see [BB03, BY06]).
Its value at the untwisted CM 0-cycle CM(K4,OF2) is an integer and has the factorization

Ψ(CM(K4,OF2)) = 264 · 328 · 174 · 1814 · 2414.
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In comparison, its numerical value at CM(K4, ψ2) is an algebraic number in F and seems to
have the factorization

Ψ(CM(K4, ψ2)) =

(
π181

π′181

)4

·
(
π241

π′241

)4

· u16
F , (7.1)

where π181 = (1 + 5
√

29)/2, π241 = (35 + 3
√

29)/2 each generate a prime ideal in F above 181
and 241, respectively.

The other side of (1.6) is

RHS of (1.6) =− i(bϕ(6)− 2bϕ(1)) = −i(aϕ(36) + iaϕ(9)− iaϕ(4) + aϕ(1)) + 2iaϕ(1)

=− 2i(c+
ϕ (261) + c+

ϕ (256) + c+
ϕ (241) + c+

ϕ (216) + c+
ϕ (181) + c+

ϕ (136)

+ c+
ϕ (81) + c+

ϕ (16)) + 2(c+
ϕ (64) + c+

ϕ (54) + c+
ϕ (34) + c+

ϕ (4))− 2(c+
ϕ (29)

+ c+
ϕ (24) + c+

ϕ (9)) + 2ic+
ϕ (6).

Numerically, the coefficients c+
ϕ (n) appearing in the sum above are given by

c+
ϕ (4) = c+

ϕ (6) = c+
ϕ (24) = c+

ϕ (29) = c+
ϕ (34) = c+

ϕ (81) = c+
ϕ (261) = 0,

c+
ϕ (9) = −ic+

ϕ (16) = c+
ϕ (54) = c+

ϕ (64) = −ic+
ϕ (136) = ic+

ϕ (216) = ic+
ϕ (256) = 4 log uF ,

c+
ϕ (181) = 2i log

∣∣∣∣π181

π′181

∣∣∣∣+ 4i log uF , c+
ϕ (241) = 2i log

∣∣∣∣π241

π′241

∣∣∣∣.
This agrees with Theorem 1.1.

Let ΛF := Z[i] · log uF ⊂ C be a lattice. For a rational prime `, let l be a prime in F above `
and πl ∈ OF a generator. Define the quantity C +

ϕ (`) ∈ C/Λ by

C +
ϕ (`) := (ϕ(l)− ϕ(l′)) log

∣∣∣∣πlπ′l
∣∣∣∣+ Λ. (7.2)

Note that a choice of πl corresponds to a lift of C +
ϕ (`) to C. Numerical calculations suggest the

following refinement of Conjecture 1.3.

Conjecture 7.1. For all rational primes `, the image of c+
ϕ (`) in C/Λ is C +

ϕ (`).

Under this conjecture, there should exist b(πl) ∈ Z[i] such that

c+
ϕ (`) = (ϕ(l)− ϕ(l′)) log

∣∣∣∣πlπ′l
∣∣∣∣+ b(πl) log uF .

In the following table, we have listed the values of π` and b(π`) for all primes ` 6 100 satisfying
( `

29) 6= −1.

` 5 7 13 23 29

(πl, b(πl)) (3+
√

29
2 ,−2) (6 +

√
29, 0) (49+9

√
29

2 , 0) (11+
√

29
2 , 0) (

√
29, 0)

` 53 59 67 71 83

(πl, b(πl)) (13 + 2
√

29, 0) (28 + 5
√

29, 8) (23+3
√

29
2 , 0) (10 +

√
29, 0) (19+

√
29

2 , 0)
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Applying the `th Hecke operator T` to f̃ϕ yields the following relationship:

κD,p · (T`f̃ϕ − cϕ(`)f̃ϕ − c+
ϕ (`)fϕ) ∈ ΛF ((q)),

where κD,p := |L(0, χDφp)|2 ∈ Z. From this relationship, one could deduce the following formula
for c+

ϕ (n) from Conjecture 7.1:

κD,p · c+
ϕ (n) = κD,p ·

∑
`r‖n

cϕ

(
n

`r

)
Jϕ(`r−1) · C +

ϕ (`) ∈ C/ΛF , (7.3)

where
∑

n>1 Jϕ(n)n−s := (
∑

n>1 cϕ(n)n−s)2.
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Appendix. Field extension diagrams and character table

M32

M16 F16

M8 F8

K̃4 K̂4 K4

F̃2 F F2

Q

ur

ur

ur
CM ur

CM ur CM

M32

K16 M16

K8 M̂8

F4 K̂4

F F̃2

Q

CM

ur

ur
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