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Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP4) which,
in turn, associates with another serum protein, transthyretin (TTR), to form a ternary
retinol-RBP4-TTR complex. At some tissues, retinol-bound (holo-) RBP4 is recognised
by a receptor termed stimulated by retinoic acid 6 (STRA6) which transports retinol into
cells. This mini-review summarises evidence demonstrating that, in addition to functioning
as a retinol transporter, STRAG6 is also a signalling receptor which is activated by holo-
RBP4. The data show that STR A6-mediated retinol transport induces receptor phosphoryl-
ation, in turn activating a Janus kinases2/signal transducers and activators of transcription
(STAT)3/5 cascade that culminates in induction of STAT target genes. STRA6-mediated
retinol transport and cell signalling are inter-dependent, and both functions critically rely
on intracellular retinol trafficking and metabolism. Hence, STRAG6 couples ‘sensing’ of vita-
min A homeostasis and metabolism to cell signalling, allowing it to control important bio-
logical functions. For example, by inducing the expression of the STAT target gene
suppressor of cytokine signalling 3, STRAG6 potently suppresses insulin responses. These
observations provide a rationale for understanding the reports that elevation in serum levels
of RBP4, often observed in obese mice and human subjects, causes insulin resistance. The
observations indicate that the holo-RBP4 /STRAG6 signalling cascade may comprise an im-
portant link through which obesity leads to insulin resistance and suggest that the pathway
may be a novel target for treatment of metabolic diseases.

Vitamin A: Cytokine signalling: Retinol binding protein: Janus kinases/signal transducers
and activators of transcription: Insulin response

Vitamin A was recognised as an essential dietary factor
necessary for growth about a century ago'"?. The vita-
min is critical for embryonic development, and in the
adult, it is necessary for vision and immunity and plays
key roles in regulation of metabolism and cell growth,
differentiation and survival. Upon its absorption by in-
testinal enterocytes, retinol is esterified to retinyl esters
which are incorporated into chylomicrons and secreted
to the circulation to be taken up by the liver®. The
liver stores the vitamin and provides it to the body in
times of insufficient dietary vitamin A intake. Retinol is

secreted from the liver into blood bound to retinol-
binding protein (RBP; encoded for by the RBP4 gene)
which delivers it to extrahepatic tissues”. Indeed, in
RBP-null mice, vitamin A is sequestered in the liver
and animals rapidly become deficient if it is not provided
in the food®.

While the liver comprises the main site of RBP4 syn-
thesis, some extra-hepatic tissues, including lung, adipose
tissue, kidney, testis, brain and retinal pigment epithe-
lium in the eye also express and secrete RBP. In blood,
retinol-bound RBP4 (holo-RBP) is associated with
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another protein, transthyretin (TTR), to form a ternary
TTR-RBP4-retinol complex.

Retinol can spontaneously dissociate from RBP4 and,
due to its hydrophobic nature, readily moves into cells by
diffusion through the plasma membranes®®. In add-
ition, at some tissues, holo-RBP4 is recognised by a
plasma membrane receptor termed stimulated by retinoic
acid 6 (STRAG6), that transports retinol from the binding
protein into cells"”. In the adult, STRAG is expressed in
blood-organ barriers, retinal pigment epithelium cells
of the eye, brain, spleen, kidney, testis, female
genital tract and adipose tissue but not in the liver or
in the colon""'?. Surprisingly, characterization of
STRAG6-null mice showed that the receptor is not neces-
sary for maintaining proper retinoid content of tissues
other than the eye, and that its ablation does not disrupt
physiological functions that critically depend on vitamin
A either during embryonic development or in the
adult'*' Furthermore, ablation of STRA6 does not
impair embryonic development even when dams were
fed a vitamin A deficient diet throughout pregnancy'¥.
Hence, the contribution of STRAG6 to retinol uptake by
most cells is modest, and the receptor is not essential
for vitamin A homeostasis in tissues other than the eye.
These observations suggest that STRA6 has important
biological functions other than to transport retinol into
cells.

STRAG, a cytokine signalling receptor activated by
holo-retinol-binding protein

We recently discovered that STRAG6 functions as a sur-
face signalling receptor™®!1?. Such receptors are acti-
vated by extracellular cytokines, hormones and growth
factors and they transduce signalling cascades by activat-
ing protein kinases termed Janus kinases (JAK) and their
associated transcription factors called signal transducers
and activators of transcription (STAT). Upon their acti-
vation, STAT move to the nucleus where they regulate
the transcription of specific target genes which contain
STAT response elements in the regulatory regions®’ 2.

We found that treatment of STRAG6-expressing cells
with holo-RBP4 leads to phosphorylation of STRAG6,
in turn triggering recruitment and activation of JAK?2
and, in a cell-specific manner, STAT3 or STAT5!9.
STRAG6 recruits STAT through an amino acid sequence
in the receptor’s intracellular domain that contains a con-
sensus phosphotyrosine motif'?. Holo-RBP4 thus func-
tions as a classical cytokine to activate a STRA6/JAK?2/
STAT3/5 pathway. Remarkably, unlike other cytokine
receptors, STRAG is activated not simply by binding its
ligand but by the act of transporting retinol.
Consequently, STRAG6 signalling critically depends on
STRAG6-mediated retinol transport. Our data further
showed that, in turn, retinol transport cannot proceed
if STRA6 phosphorylation is impaired*'®. The two
functions of STRAG6 are thus critically inter-dependent.
Moreover, we found that STRAG6 not only binds
holo-RBP4 but also directly associates with the intracel-
lular RBP termed CRBP1. Hence, the receptor does not
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Fig. 1. (Colour online) Model for the retinol-binding protein (RBP4)/
STRA6 pathway. STRA6 binds extracellular holo-RBP4 and
transports retinol to receptor-associated cellular retinol-binding
protein (CRBP). Retinol transfer activates STRA6, thereby
triggering a signalling cascade mediated by the kinase Janus
kinases 2 (JAK2) and its associated transcription factors signal
transducers and activators of transcription 3 (STAT3) or STATS5.
Activated STAT translocates to the nucleus where it induces target
gene expression. Upon binding retinol, CRBP dissociates from
STRA6 and delivers retinol enzymes that can metabolise it.

transport vitamin A into the cytoplasm but, instead, dir-
ectly transfers it from extracellular RBP4 to intracellular
CRBPI1, bypassing the need for the lipophilic vitamin to
dissociate into the aqueous milieu of the cytosol'®.
Upon binding retinol, CRBP1 dissociates from STRA6
and delivers the vitamin to a retinol-metabolizing en-
zyme. One such enzyme is Lecithin:retinol acyltransfer-
ase, which catalyses the conversion of retinol to its
storage species retinylesters. Lecithin:retinol acyltransfer-
ase receives its substrate directly from CRBP1®Y,
unloads retinol from CRBP1 and, by metabolizing it,
maintains an inward-directed retinol concentration gra-
dient allowing continuing retinol uptake''**¥. As retinol
transport is required for activation of STRAG signalling,
both the cellular RBP and the retinol metabolizing en-
zyme are necessary for enabling receptor phosphoryl-
ation'®!” A model for the mechanism of action of
STRAG is shown in Fig. 1.

As mentioned earlier, holo-RBP4 circulates in blood
bound to TTR. We found that although TTR does not
interfere with the movement of retinol into cells by free
diffusion, it prevents holo-RBP4 from binding to
STRAG6. TTR thus inhibits both STRA6-mediated ret-
inol transport and STRAG6-initiated signalling!!”. As
the binding affinity of holo-RBP4 to TTR and STRA6
are similar’ %>, STRA6 can function only when its ex-
pression level in particular cells is very high, allowing it
to locally compete with TTR for holo-RBP, or when
serum level of holo-RBP4 exceeds that of TTR. The
high expression level of STRAG6 in the retinal pigment
epithelium thus allows the receptor to significantly con-
tribute to vitamin A uptake by the eye"”. Interestingly,
it was reported that serum level of RBP4 is elevated in
obese mice and human subjects"" **?” but the level of
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TTR is not"'”. Under these circumstances, the high RBP
: TTR ratio in blood may lead to hyperactivation of
STRAG. It was also reported that increasing the blood
level of RBP4 either by feeding mice a high
fat-containing diet or by direct injection of the protein
causes insulin resistance!'’?°?®. These observations
raise the intriguing possibilities that RBP-induced activa-
tion of STRA6 may be involved in regulation of insulin
responses, and that such an activity may underlie the
well-established but incompletely understood link be-
tween obesity and insulin resistance.

Involvement of retinol-binding protein/STRAG6 signalling
in regulation of insulin responses

The discovery of the holo-RBP/STRAG6 signalling cas-
cade and the observations that this pathway activates
STAT suggest a possible mechanism through which
RBP4 may control insulin responses. A prominent
STAT target in the insulin-responsive tissues adipose tis-
sue and muscle is the gene that encodes suppressor of
cytokine signalling 3*”, a potent negative regulator of
the insulin receptor. Indeed, we found that holo-RBP4
suppresses insulin receptor in cultured cells and that the
effect required activation of STRA6, JAK2 and STATS
as well as up-regulation of suppressor of cytokine signal-
ling 3", In accordance, administration of RBP4 to mice
activated STRA6, JAK2 and STATS, up-regulated sup-
pressor of cytokine signalling 3 and decreased the phos-
phorylation status of insulin receptor in adipose tissue
and muscle, but not in liver, a tissue that does not express
STRA6®.  Additional experiments showed that
STRAG6-null mice are completely protected from insulin
resistance caused by administration of RBP4 and partial-
ly protected from obesity-induced glucose intolerance. It
was recently reported in regard to this that even partial
reduction on STRAG6 only in adipose tissues improves in-
sulin responsiveness in obese mice®”. These observations
conclusively demonstrate that STRA6 mediates
RBP4-induced suppression of insulin signalling and
that elevated RBP4 levels in blood of mice contribute
to the well-documented but incompletely understood
link through which obesity leads to insulin resistance.

Concluding remarks and future directions

The discovery that retinol in conjunction with its blood
carrier RBP4 can control cellular functions by activating
STRA6-mediated cell signalling reveals a new mechan-
ism by which vitamin A exerts its biological functions.
The observations show that holo-RBP4/STRAG signal-
ling regulates insulin responses, but the complete spec-
trum of the biological activities of the path remain to
be clarified. Interestingly, it has been reported that
STRAG is up-regulated in several human cancers'".
STRA6 and its associated components may thus be
involved in oncogenic activities. While available infor-
mation indicates that STRA6 can trigger a JAK2/
STATS3/5 cascade, it is possible that, like other cytokine
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receptors, STRAG6 can also activate other signalling path-
ways. The complete spectrum of the signalling networks
that may be activated by this receptor and cross-talk be-
tween this pathway and others remain to be explored.
The observations open a new window on vitamin A biol-
ogy, and they suggest that STRA6 may be a druggable
target for novel approaches for therapy of metabolic dis-
ease and perhaps other pathologies.
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