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Abstract A self-consistent model for charged particles, accounting for quantum confinement, diffusive
transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three-
dimensional Poisson equation with the particle density as the source term. This density is the product of a
two-dimensional surface density and that of a one-dimensional mixed quantum state. The surface density
is the solution of a drift–diffusion equation with an effective surface potential deduced from the fully
three-dimensional one and which involves the diagonalization of a one-dimensional Schrödinger operator.
The overall problem is viewed as a two-dimensional drift–diffusion equation coupled to a Schrödinger–
Poisson system. The latter is proven to be well posed by a convex minimization technique. A relative
entropy and an a priori L2 estimate provide sufficient bounds to prove existence and uniqueness of a
global-in-time solution. In the case of thermodynamic equilibrium boundary data, a unique stationary
solution is proven to exist. The relative entropy allows us to prove the convergence of the transient
solution towards it as time grows to infinity. Finally, the low-order approximation of the relative entropy
is used to prove that this convergence is exponential in time.

Keywords: Schrödinger equation; drift–diffusion system; relative entropy; long-time behaviour;
subband method; convex minimization
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1. Introduction and main result

The drift–diffusion equation is one of the most used models for charged particle trans-
port in various areas such as gas discharges, plasmas or semiconductors. It consists in a
conservation equation for the particle density, in which the current density is the sum
of two terms. One is proportional to the particle density and to the electrostatic forces.
This term is referred to as the drift current. The second term is the diffusion current and
is proportional to the gradient of the particle density [9,10,18,19,25,26].

The drift–diffusion model can be derived from kinetic theory when the mean-free path
related to particle interactions with a thermal bath is small compared with the sys-
tem length scale. In semiconductors, one of the most important mechanisms driving the
electrons towards a diffusive regime is collisions with phonons (vibrations of the semicon-
ductor crystal lattice) which drive the electrons towards a local equilibrium at the lattice
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temperature [25,32]. We refer the reader to [21,31] for a rigorous derivation from the
Boltzmann equation and to [18,19,25,26] and references therein for the analysis of this
system when coupled to the Poisson equation for the electrostatic potential.

Quantum systems at global thermodynamic equilibrium can be described as a statis-
tical mixture of eigenstates of the Schrödinger operator. The occupation number of each
state is given by a thermodynamic equilibrium statistic function. Typically, it is given by

exp
(

EF − E

kBT

)
for Boltzmann statistics or (

1 + exp
(

E − EF

kBT

))−1

for Fermi–Dirac statistics, where E is the energy of the considered state, kB is the
Boltzmann constant, T is the temperature and EF is the so-called Fermi energy which,
at zero temperature, represents the threshold between occupied and unoccupied states
[27–29,35].

In nanoscale semiconductor devices like ultrashort channel double gate MOSFETs
(DGMOSs), electrons might be extremely confined in one of several directions that we
shall refer to as the confining directions. This leads to a partial quantization of the
energy. In the non-confined direction(s), which we shall also refer to as the transport
direction(s), following the length and energy scales, transport might have a quantum
nature or be purely classical in the kinetic or diffusive regimes. In the present work, we
are interested in the last regime. Namely, we consider a particle system which is partially
quantized in one direction (denoted by z) and which, in the transport direction denoted
by x, has a diffusive motion. The system is at equilibrium in the confined direction with a
local Fermi level εF which depends on the transport variable x. The variable x is assumed
to lie in a bounded regular domain ω ∈ R

2 while z belongs to the interval (0, 1). The
spatial domain is then Ω = ω × (0, 1). At a time t and a position (x, z), the particle
density N(t, x, z) is given by

N(t, x, z) =
+∞∑
k=1

eεF (t,x)−εk(t,x)|χk(t, x, z)|2, (1.1)

where εF is the Fermi level and (χk, εk) is the complete set of eigenfunctions and eigen-
values of the Schrödinger operator in the z-variable:

− 1
2∂2

zχk + V χk = εkχk, k � 1,

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0
χkχ� dz = δk�.

⎫⎪⎬⎪⎭ (1.2)

The electrostatic potential V is a solution of the Poisson equation

−∆x,zV = N. (1.3)
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The surface density

Ns(t, x) =
∫ 1

0
N(t, x, z) dz = eεF

+∞∑
k=1

e−εk(t,x) (1.4)

satisfies the drift–diffusion equation

∂tNs − divx(∇xNs + Ns∇xVs) = 0, (1.5)

where the effective potential Vs is given by

Vs = − log
∑

k

e−εk . (1.6)

Note also that N can be rewritten as

N(t, x, z) =
Ns(t, x)
Z(t, x)

+∞∑
k=1

e−εk(t,x)|χk(t, x, z)|2, (1.7)

where the repartition function Z is given by

Z(t, x) =
+∞∑
k=1

e−εk(t,x). (1.8)

The unknowns of the overall system are the surface density Ns(t, x), the eigenenergies
εk(t, x), the eigenfunctions χk(t, x, z) and the electrostatic potential V (t, x, z). The Fermi
level εF is determined by

εF (t, x) = log
Ns(t, x)
Z(t, x)

. (1.9)

This will be useful for the study of global equilibria. The system (1.2)–(1.8) is completed
with the initial condition

Ns(0, x) = N0
s (x) (1.10)

and with the following boundary conditions:

Ns(t, x) = Nb(x), V (t, x, z) = Vb(x, z), for x ∈ ∂ω, z ∈ (0, 1),

∂zV (t, x, 0) = ∂zV (t, x, 1) = 0, for x ∈ ω.

}
(1.11)

In applications like the DGMOS [4], the frontier ∂ω × [0, 1] includes the source and
the drain contacts as well as an insulating or artificial boundary. On the other hand,
ω × {0} and ω × {1} represent the gate contacts (in addition to possible insulating
boundaries). Mixed-type boundary conditions are then to be prescribed. The boundary
conditions (1.11) do not take into account this complexity and are chosen for mathemat-
ical convenience: elliptic regularity properties of the Poisson equation (1.3) are needed in
our proofs.
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1.1. Main results

Assumption 1.1.

(i) The initial condition satisfies N0
s ∈ L2(ω) and N0

s � 0, a.e.

(ii) The boundary data for the surface density satisfy 0 < N1 � Nb � N2 a.e., where
N1 and N2 are positive constants and Nb ∈ C2(∂ω).

(iii) The Dirichlet datum for the potential satisfies Vb ∈ C2(∂ω × [0, 1]) and the com-
patibility condition

∂Vb

∂z
(x, 0) =

∂Vb

∂z
(x, 1) = 0, ∀x ∈ ∂ω.

The first result of this paper is the following existence and uniqueness theorem.

Theorem 1.2. Let T > 0 be fixed. Under Assumption 1.1, the system (1.2)–(1.11)
admits a unique weak solution such that

Ns ∈ C([0, T ], L2(ω)) ∩ L2((0, T ), H1(ω)), V ∈ C([0, T ], H2(Ω)).

The second result concerns the asymptotic behaviour of the solution as t → ∞. To
this aim, we shall first define the notion of global equilibrium for boundary data, under
which we show that there exists a unique stationary solution, and finally prove that the
time-dependent solution converges exponentially fast to this stationary solution.

Assumption 1.3. The boundary is said to be at global equilibrium if there exists a
real number u∞ > 0 such that ∀x ∈ ∂ω, Nb(x) = u∞e−V ∞

s (x), where V ∞
s is defined by

V ∞
s (x) = − log

(∑
k

e−εk[Vb](x)
)

.

In view of (1.9), it means that the Fermi level at the boundary is constant.

In this assumption, as well as in the remainder of the paper, for each potential V , the
notation εk[V ] stands for the kth eigenvalue of the Hamiltonian − 1

2∂2
z + V and χk[V ]

denotes the corresponding eigenfunction (solving (1.2)).
The stationary problem reads

− divx(∇xN∞
s + N∞

s ∇xV ∞
s ) = 0,

− 1
2∂2

zχ∞
k + V ∞χ∞

k = ε∞
k χ∞

k ,

−∆x,zV
∞ = N∞ =

N∞
s

Z∞

+∞∑
k=1

|χ∞
k |2e−ε∞

k ,

Z∞ =
+∞∑
�=1

e−ε∞
� ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.12)
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with the boundary conditions

N∞
s (x) = Nb(x), V ∞(x, z) = Vb(x, z) for x ∈ ∂ω, z ∈ (0, 1),

∂zV
∞(x, 0) = ∂zV

∞(x, 1) = 0 for x ∈ ω,

}
(1.13)

where we have used the shorthand notation ε∞
k for εk[V ∞] and χ∞

k for χk[V ∞].

Proposition 1.4. Under Assumptions 1.1 and 1.3, the stationary problem (1.12),
(1.13) admits a unique solution such that N∞

s ∈ C2(ω̄) and V ∞ ∈ C2(Ω̄).

The following theorem proves the exponential convergence of the time-dependent solu-
tion towards the stationary one.

Theorem 1.5. Let Assumptions 1.1 and 1.3 hold. Let Ns, V and N∞
s , V ∞ respectively

be the time-dependent and the stationary solutions defined respectively in Theorem 1.2
and Proposition 1.4. There exist two constants λ > 0 and C > 0 such that for all t � 0,

‖Ns − N∞
s ‖L2(ω)(t) + ‖V − V ∞‖H1(ω)(t) � Ce−λt.

The outline of the paper is as follows. In the next subsection, we briefly explain how
the drift–diffusion–Schrödinger system can be derived as a diffusion limit of a Boltzmann-
type model. In § 2, we prove Theorem 1.2. The strategy of the proof as well as various
notations are detailed in § 2.1. Note that two essential ingredients are used: the first is
a relative entropy inequality that provides preliminary estimates on the solution which
are then completed with an L2 estimate on the surface density. The second ingredient
is the analysis of the Schrödinger–Poisson system (1.2), (1.3), which is shown to be
uniquely solvable by convex minimization techniques in the spirit of [27–29]. Section 3
is devoted to the proof of Theorem 1.5, which uses a quadratic approximation of the
relative entropy given in § 2 and which is a Lyapunov functional for the linearized system
around the stationary solution. The appendix is devoted to some technical lemmas and
to classical results for Sturm–Liouville operators.

1.2. Formal derivation from kinetic theory

The drift–diffusion–Schrödinger system (1.2), (1.5), (1.6) can be derived as a diffusion
limit of a kinetic system for partially quantized particles, called the kinetic subband
system. More precisely, for a partially quantized system, the particle density can be
written

N(t, x, z) =
+∞∑
k=1

ρk(t, x)|χk(t, x, z)|2

where χk is given by (1.2). In the physics terminology [5,12,17], the wave function χk

is called the wave function of the kth subband and εk its energy. The surface densi-
ties ρk(t, x) are the occupation numbers of the subbands and are given in the kinetic
framework by

ρk(t, x) =
∫

R2
fk(t, x, v) dv,
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where fk are solutions of kinetic equations in which the electrostatic potential energy V

is replaced by the subband energy εk. In the collisionless case, such a model, which in
quantum chemistry is related to the so-called Born–Oppenheimer approximation [22,
33,34], was obtained in [7] by a partial semi-classical limit of the Schrödinger equation
and analysed in [6,8]. In order to obtain the diffusive regime, we introduce intersubband
collisions [1,5] in the Fermi golden-rule approximation

∂tf
η
k +

1
η
{Hk, fη

k } =
1
η2 Q(fη)k, (1.14)

where η is the scaled mean-free path assumed to be small and {· , ·} is the Poisson bracket
{g, h} = ∇xh · ∇vg − ∇vh · ∇xg, Moreover, Hp is the energy of the system in the kth
subband:

Hk(t, x, v) = 1
2v2 + εk(t, x),

where we recall that εk is the subband energy. The collision operator Q is defined by

Q(f)p =
∑
k′

∫
R2

αk,k′(v, v′)(Mk(v)fk′(v′) − Mk′(v′)fk(v)) dv′,

where α depends on the system and the function Mk is the Maxwellian:

Mk(t, x, v) =
1

2πZ e−Hk(t,x,v).

The diffusion limit consists in letting η → 0 (a rigorous study of this limit will be the
object of a future work). Admitting that fη

k converges towards a limit f0
k as η → 0, we

then have f0
k ∈ ker Q, which can be shown to be equal to

ker Q = {f such that ∃ρ ∈ R : fk = ρMk, ∀k � 1}.

Therefore,
f0

k (t, x, v) = Ns(t, x)Mk(t, x, v).

We remark that Ns(t, x) =
∑

k

∫
R2 f0

k (t, x, v) dv is the surface density of particles. Iden-
tifying the terms in (1.14) and letting η → 0, one can prove, in the same spirit as in
previous works on diffusion approximation [21,31], that Ns satisfies the drift–diffusion
equation

∂tNs − divx(D(∇xNs + Ns∇xVs)) = 0,

where Vs is the effective potential defined by (1.6) and D is a diffusion matrix (symmetric
positive definite) depending on the choice of the transition rates αk,k′ . In this paper, we
consider for simplicity the case D = I, where I is the identity matrix in R

2.

2. Existence and uniqueness (proof of Theorem 1.2)

2.1. Notations and strategy of the proof

As in [6], we view the system as a two-dimensional drift–diffusion equation (1.5) for
the surface density coupled to the quasi-static Schrödinger–Poisson system (1.2), (1.3).
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The drift–diffusion equation determines the value of the surface density in terms of the
electrostatic potential, while the Schrödinger–Poisson systems allows us to compute the
potential as a function of the surface density.

The overall problem is then solved by a fixed-point procedure for the unknown Ns, as
for the standard drift–diffusion–Poisson problem [18,25,26]. The global-in-time existence
relies heavily on an entropy estimate.

The first step now in the proof is to consider the quasi-static Schrodinger–Poisson
system which consists, for any given non-negative function Ns(x) defined on ω, in finding
a potential V (x, z) defined on Ω and satisfying

−∆x,zV = N(x, z), (x, z) ∈ Ω;

N(x, z) = Ns(x)
+∞∑
k=1

e−εk(x)

Z(x)
|χk(x, z)|2;

Z(x) =
+∞∑
�=1

e−ε�(x)

− 1
2∂2

zχk + V χk = εkχk, k � 1,

χk(t, x, ·) ∈ H1
0 (0, 1),

∫ 1

0
χkχ� dz = δk�,

⎫⎪⎬⎪⎭
V = Vb on ∂ω × (0, 1), ∂zV (x, 0) = ∂zV (x, 1) = 0 for x ∈ ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

For this problem, we have the following result, whose proof is postponed.

Proposition 2.1. Let Ns ∈ L2(ω) such that Ns � 0. Then the system (2.1) admits
a unique solution (V, (εk, χk)k�1), which satisfies the estimates ‖V ‖H2(Ω) � C(Ns), the
constant C(Ns) depending only on the L2(ω) norm of Ns. Moreover, for two arbitrary
data Ns and Ñs, the corresponding solutions satisfy

‖V − Ṽ ‖H2(Ω) � C(Ns, Ñs)‖Ns − Ñs‖L2(ω).

In order to prove existence of solutions of the overall problem, we need to show some a
priori estimates for the solution. We shall begin with a relative entropy inequality (see,
for example, [2,3,16] for classical counterparts), then show a uniform Lp estimate for the
surface density. In order to do so, we proceed as in the standard drift–diffusion case [18]
and define the slotboom variable

u = eεF =
Ns

Z . (2.2)

We also define the surface current density

Js = −∇xNs − Ns∇xVs = −
∑

k

e−εk∇xu (2.3)

in such a way that the drift–diffusion equation may be written

∂tNs + divx Js = 0.
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We denote by ρk the occupation factor of the kth subband:

ρk = ue−εk , (2.4)

so that
N =

∑
k

ρk|χk|2, Ns =
∑

k

ρk.

Now we introduce two extensions Ns and V of the boundary data. These extensions
are respectively defined on ω and Ω and chosen in such a way that:

(i) Ns ∈ C2(ω̄), 0 < N1 � Ns � N2 with two non-negative constants N1 and N2, and
Ns|∂ω = Nb;

(ii) V ∈ C2(Ω̄) and satisfies the boundary conditions V |∂ω×(0,1) = Vb and ∂zV (x, 0) =
∂zV (x, 1) = 0, for all x ∈ ω.

It is clear that for sufficiently regular domains such functions exist. Solving (1.2) with
V instead of V , we find two sequences εk[V ](x) and χk[V ](x, z), which we shall shortly
denote by εk and χk. We then define u, εF , Z and ρk by

u =
Ns

Z , Z =
∑

k

e−εk , εF = log u; ρk = ue−εk = eεF −εk ,

as well as the density
N(x, z) =

∑
k

ρk(x)|χk(x, z)|2.

It may readily be seen that ∥∥∥∥∇xu

u

∥∥∥∥
L∞(ω)

< ∞. (2.5)

The relative entropy of (ρk, V ) with respect to (ρk, V ) is defined by

W =
∑

k

∫
ω

(ρk log(ρk/ρk) − ρk + ρk) dx + 1
2

∫∫
Ω

|∇x,z(V − V )|2 dxdz

+
∫

ω

∑
k

ue−εk(εk[V ] − εk[V ] − 〈|χk|2(V − V )〉) dx, (2.6)

where we use the notation 〈f〉 =
∫ 1
0 f dz. As will be shown later on, the three terms on

the right-hand side of the above identity are non-negative. Besides, W has the following
compact form:

W =
∫∫

Ω

(N(εF − V − (εF − V )) − N + N) dxdz + 1
2

∫∫
Ω

|∇x,z(V − V )|2 dxdz.

Let us comment on this formula. One can note that the familiar form of the relative
entropy for classical drift–diffusion systems is recovered here. The main difference is that,
in the classical case, the relation between the Fermi level, the electrostatic potential and
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the density is local: εF − V = log N (see, for example, [2,9,18]), while here this relation
is non-local in space. This form is also similar to the one recently obtained in [20] for a
fully quantum drift–diffusion (QDD) model. This model was derived in [14] by following
the strategy of quantum moments developed in [13] (see also the review paper [15]).
It consists of a three-dimensional drift–diffusion equation involving a quantum chemical
potential that depends on the density in a non-local way, via the resolution of a quasi-
static auxiliary quantum problem. In the QDD model, the quantum chemical potential
is the generalization of the term εF − V of the present model.

The following two propositions provide some a priori estimates needed for the resolu-
tion of the coupled system.

Proposition 2.2. Let T > 0. Let (Ns, V ) be a weak solution of (1.2), (1.3), (1.5)
and (1.11) such that Ns ∈ C([0, T ], L2(ω))∩L2([0, T ], H1(ω)) and V ∈ C([0, T ], H2(Ω)).
Then we have

∀t ∈ [0, T ], 0 � W (t) < CT ,

where CT is a constant only depending on T , W (0) and u.

Proposition 2.3. Let T > 0 and assume that N0
s ∈ Lp(ω) for some p ∈ [2, +∞] and

let (Ns, V ) be weak solution of (1.5), (1.2), (1.3), (1.11) such that Ns ∈ C([0, T ], L2(ω))∩
L2([0, T ], H1(ω)) and V ∈ C([0, T ], H2(Ω)). Then

Ns ∈ C([0, T ], Lp(ω)),

for any T > 0, with a bound depending only on T , Nb, Vb and ‖N0
s ‖Lp(ω).

2.2. Proof of the entropy inequality

The aim of this subsection is the proof of Proposition 2.2. Let (Ns, V ) be a weak
solution of (1.2), (1.3) and (1.5). Since V ∈ C([0, T ], H2(Ω)), by Lemma A 6, we deduce
that Vs ∈ C([0, T ], H2(Ω)). This is sufficient to ensure that Ns � 0, due to the maximum
principle for parabolic equations (see, for example, [24]).

2.2.1. The relative entropy is the sum of three positive terms

Let us now show that the relative entropy W defined by (2.6) is non-negative. This is
obviously the case for the first two terms. In order to deal with the third term, let us
define εs

k := εk[sV + (1 − s)V ], and χs
k = χk[sV + (1 − s)V ]. Straightforward computa-

tions using Lemma A 3 in the appendix lead to∑
k

ue−εk(εk[V ] − εk[V ] − 〈|χk|2(V − V )〉)

=
∫ 1

0

∫ s

1

∑
k,� �=k

u
e−εk − e−ε�

εσ
k − εσ

�

〈χσ
k(V − V )χσ

� 〉2 dσ ds

� 0,

since the sequence (εk = εk[V ])k�1 is increasing. This is sufficient to conclude that W � 0,
as the sum of three non-negative terms.
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2.2.2. The initial relative entropy is finite

Since N0
s ∈ L2(ω), by Proposition 2.1 we have V ∈ H2(Ω) ⊂ L∞(Ω). From Lemma A 1

we deduce that
‖εk − 1

2π2k2‖L∞(ω) � ‖V ‖L∞(Ω).

This is sufficient to deduce that W (0) < +∞.

2.2.3. Relative entropy dissipation

Let us now compute dW/dt. We first remark that

d
dt

∑
k

∫
ω

(
ρk log

(
ρk

ρk

)
− ρk + ρk

)
dx =

∑
k

∫
ω

∂tρk log
(

ρk

ρk

)
dx.

Taking advantage of the identity Ns =
∑

ρk and from log ρk = log u− εk, the right-hand
side is equal to ∫

ω

∂tNs log
(

u

u

)
dx −

∑
k

∫
ω

∂tρk(εk − εk) dx.

With the identity ∂tεk = 〈|χk|2∂tV 〉 (see Lemma A 3) and (1.5) we obtain

d
dt

∑
k

∫
ω

(ρk log(ρk/ρk) − ρk + ρk) dx

=
∫

ω

divx

(∑
k

e−εk∇xu

)
log

u

u
dx

− d
dt

∫
ω

∑
k

ρk(εk − εk) dx +
∫∫

Ω

∑
k

ρk|χk|2∂tV dxdz.

The Poisson equation and the fact that V = V on ∂ω × (0, 1) give

d
dt

1
2

∫∫
Ω

|∇x,z(V − V )|2 dxdz =
∫∫

Ω

∂tN(V − V ) dxdz

=
d
dt

∫∫
Ω

N(V − V ) dxdz −
∫∫

Ω

N∂tV dxdz.

By using (1.6) and the expression of ρk, we obtain

d
dt

W =
∫

ω

divx

(∑
k

e−εk∇xu

)
log

(
u

u

)
dx.

After an integration by parts, owing to u = u on ∂ω we may deduce that

d
dt

W = −
∫

ω

∑
k

e−εk
|∇xu|2

u
dx +

∫
ω

∑
k

e−εk
∇xu · ∇xu

u
dx. (2.7)

In the following, we shall use the notation

D(t) =
∫

ω

∑
k

e−εk
|∇xu|2

u
dx (2.8)
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and shall refer to this term as the entropy dissipation rate. Let us now define β =
‖∇xu/u‖L∞(ω) < +∞ (from (2.5)). A straightforward Cauchy–Schwarz inequality leads
to

d
dt

W + D � β
√

D
√

‖Ns‖L1(ω).

Using the inequality 2ab � ε2a2 + 1/ε2b2 for ε > 0 sufficiently small, we get

d
dt

W � C‖Ns‖L1(ω).

Since the function F (t) = t log(t) − t + 1, satisfies F (t) � t + (1 − e), we obtain

W �
∑

k

∫
ω

ρkF (ρk/ρk) dx

�
∑

k

∫
ω

ρk(ρk/ρk + 1 − e) dx

�
∫

ω

Ns dx − (e − 1)
∫

ω

Ns dx,

which leads to the differential inequality

d
dt

W � C

∫
ω

Ns dx � C(W + C0),

where C0 depends only on the data of the problem (and not on the considered solution).
The Gronwall lemma implies that W (t) � CT for all t ∈ [0, T ], where CT depends only
on T , W (0) and data (W (0) < +∞ if N0

s ∈ L2(ω)).

Remark 2.4. The above manipulations are formal for weak solutions (defined such
that Ns ∈ C([0, T ], L2(ω))). To make the argument rigorous, it is sufficient to regularize
the data, obtain a regular solution for which the result holds, then pass to the limit in the
regularization parameter and use the uniqueness of the weak solution (proved in § 2.5).

2.3. Proof of the Lp estimate

The aim of this subsection is the proof of Proposition 2.3. We have seen in § 2.2 that
W (0) < C(‖N0

s ‖L2(ω)). Hence, Proposition 2.2 implies that

∀t � T, ‖V (t)‖H1(Ω) + ‖Ns(t)‖L1(ω) � CT . (2.9)

Due to the Trudinger inequality (A 8) and to (A 6), as well as Lemma A 5 the functions

S1(t, x) = sup
k�1

‖χk(t, x, ·)‖2
L∞

z
, S2(t, x) =

∑
k�1

e−εk(t,x)

Z(t, x)
(εk(t, x))2 (2.10)

are in L∞((0, T ), Lp(ω)) for any finite p and satisfy the bound

∀p < +∞, ‖S1(t, ·)‖Lp(ω) + ‖S2(t, ·)‖Lp(ω) � Cp, (2.11)

where Cp is a constant depending only on ‖V (t)‖H1(Ω). From now on, we define

ns = Ns − Ns, n = N − N, vs = Vs − Vs, v = V − V . (2.12)
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2.3.1. Proof of Proposition 2.3 for p ∈ [2, +∞)

Multiply (1.5) by ns|ns|p−2 and integrate on ω. After an integration by parts, we get

1
p

d
dt

∫
ω

|ns|p dx + (p − 1)
∫

ω

|∇xns|2|ns|p−2 dx +
p − 1

p

∫
ω

∇x|ns|p · ∇xVs dx

=
∫

ω

∆xNsns|ns|p−2 dx +
∫

ω

divx(Ns∇xVs)ns|ns|p−2 dx.

After an integration by parts, the last term on the left-hand side can be written as

−p − 1
p

∫
ω

|ns|p∆xVs dx.

The above computations follow closely the standard drift–diffusion Poisson system for
which the above term is non-negative. In our case, however, −∆xVs = Ns, which induces
additional difficulties. Indeed, with the Poisson equation (1.3), we have −∆xV = ∂2

zV +N .
And, after some integrations by parts,

〈∂2
zV |χk|2〉 = 2〈V χk∂2

zχk〉 + 2〈V |∂zχk|2〉.
From the Schrödinger equation (1.2), we have

∂2
zχk = 2(V − εk)χk and 2〈V |χk|2〉 + |∂zχk|2 = 2εk.

Thus,
〈∂2

zV |χk|2〉 = 4〈V 2|χk|2〉 + 2〈(V + εk)|∂zχk|2〉 − 4ε2k.

These remarks lead to the following identity:

−∆xVs = −4S2(t, x) +
〈N2 + 4V 2N〉

Ns
+ 2

∑
k

e−εk

Z 〈(V + εk)|∂zχk|2〉

− 1
Z

∑
k

∑
� �=k

(
e−εk − e−ε�

εk − ε�

)
〈χkχ�∇xV 〉2

+
∑

k

e−εk

Z 〈|χk|2∇xV 〉2 −
(∑

k

e−εk

Z 〈|χk|2∇xV 〉
)2

, (2.13)

where S2 is defined in (2.10). By the Cauchy–Schwarz inequality, the sum of the last two
terms on the right-hand side is non-negative. Moreover, except for the first one, the other
terms are obviously non-negative. By an integration by parts, we deduce that

1
p

d
dt

∫
ω

|ns|p dx + (p − 1)
∫

ω

|∇xns|2|ns|p−2 dx � I + II + III, (2.14)

where

I = 4
p − 1

p

∫
ω

|ns|pS2 dx,

II =
∫

ω

∆xNsns|ns|p−2 dx,

III =
∫

ω

divx(Ns∇xVs)ns|ns|p−2 dx.
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Let us now analyse each term separately.

First we estimate I. Thanks to the Hölder inequality, for all r > 1 and r′ = r/(r − 1)
we have

I = 4
p − 1

p

∫
ω

|ns|pS2 dx � C‖|ns|p/2‖2
L2r‖S2‖Lr′ .

By applying Gagliardo–Nirenberg and Young inequalities, for r > 1 we have

‖|ns|p/2‖2
L2r(ω) � C‖|ns|p/2‖2/r

L2(ω)‖|ns|p/2‖2(1−1/r)
H1(ω)

� C

(
1
εr

‖ns‖p
Lp + εr/(r−1)‖|ns|p/2‖2

H1(ω)

)
.

By using the estimate (2.11) and the Poincaré inequality we obtain

I � Cε‖ns‖p
Lp + Cε

∫
ω

|∇x|ns|p/2|2 dx. (2.15)

We now estimate II. This is an easy task. By a straightforward Hölder inequality, we
have

|II| =
∣∣∣∣ ∫

ω

∆xNsns|ns|p−2 dx

∣∣∣∣ � ‖ns‖p−1
Lp(ω)‖∆xNs‖Lp(ω). (2.16)

Estimating III requires more work. We first begin by an integration by parts and obtain

III = −(p − 1)
∫∫

Ω

Ns

∑
k

e−εk

Z |χk|2∇xV · ∇xns|ns|p−2 dxdz.

This leads to the inequality

|III| � (p − 1)‖Ns‖L∞

∫∫
Ω

|S1(t, x)| |∇xV | |∇xns| |ns|p−2 dxdz,

where S1 is defined in (2.10). Taking advantage of (2.11), we find after a Hölder inequality
that

|III| � Cq,r‖Ns‖L∞‖∇xV ‖Lq‖∇xns|ns|p−2‖Lr (2.17)

for any (q, r) such that q < +∞ and r > q′, where q′ = q/(q − 1). By choosing r = p/p−1,
by a Hölder inequality we have

‖∇xns|ns|p−2‖Lr � ‖∇xns|ns|(p−2)/2‖L2‖ns‖(p−2)/2
Lp .

Now one can apply (2.17) with any q > p. By choosing q close enough to p, the Sobolev
inequality

‖∇xV ‖Lq � C1‖V ‖W 2,s � C2‖N‖Ls + C3

holds for some s < p. Again by using the inequality

N � NsS1, (2.18)

https://doi.org/10.1017/S0013091504000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000987


526 N. Ben Abdallah, F. Méhats and N. Vauchelet

where S1 is defined by (2.10) and satisfies the uniform bound (2.11), we immediately
obtain ‖N‖Ls � C‖Ns‖Lp � C(‖Ns‖Lp + ‖ns‖Lp). Besides, we have∫

ω

|∇xns|2|ns|p−2 dx =
4
p2

∫
ω

|∇x(|ns|p/2)|2 dx. (2.19)

All in all, (2.17) becomes

|III| � C‖∇x(|ns|p/2)‖L2(ω)‖ns‖(p−2)/2
Lp(ω) (‖ns‖Lp(ω) + ‖Ns‖Lp(ω) + 1),

which leads, after a Young inequality, to

|III| � C1ε
2
∫

ω

|∇x(|ns|p/2)|2 dx +
C2

ε2 ‖ns‖p
Lp(ω) +

C3

ε2 ‖ns‖p−2
Lp(ω), (2.20)

where ε is an arbitrarily small constant and C1, C2 and C3 are independent of ε.
Now consider the inequality (2.14). Inserting the inequalities (2.15), (2.16), (2.19)

and (2.20) in (2.14) and fixing ε sufficiently small, there exist A > 0 and non-negative
constants still denoted by C1, C2 and C3 such that

1
p

d
dt

∫
ω

|ns|p dx + A

∫
ω

|∇x(|ns|p/2)|2 dx � C1

∫
ω

|ns|p dx + C2‖ns‖p−1
Lp(ω) + C3‖ns‖p−2

Lp(ω).

A Gronwall argument leads to the boundedness on [0, T ] of ‖ns(t)‖Lp(ω).

2.3.2. Proof of Proposition 2.3 for p = +∞
Since Ns ∈ Lp(ω) for all 1 � p < +∞, by (2.18) and (2.11), n ∈ Lr(Ω) for all

1 � r < +∞. Therefore, the Poisson equation (1.3) leads to V ∈ W 2,r(Ω). By Sobolev
embeddings, the potential V lies in L∞([0, T ] × Ω). Hence, from (2.13) and (A 2) we
deduce that there exists a non-negative constant a such that ∆xVs � a. We use the
standard notation f+ for the positive part of f :

f+ =

{
f if f � 0,

0 otherwise.

Let us define

A(t) = λeat, where λ � max(‖N0
s ‖L∞(ω), ‖Nb‖L∞(∂ω)). (2.21)

Then, from (1.5) and the choice of a,

∂t(Ns − A(t)) − divx(∇x(Ns − A(t)) + (Ns − A(t))∇xVs) � 0.

Multiplying this equation by (Ns −A(t))+ and integrating over ω gives, after an integra-
tion by parts,

1
2

d
dt

∫
ω

(Ns − A(t))2+ dx +
∫

ω

|∇x(Ns − A(t))+|2 dx + 1
2

∫
ω

∇x(Ns − A(t))2+∇xVs dx � 0.
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After another integration by parts, and since ∆xVs � a,

d
dt

∫
ω

(Ns − A(t))2+ dx − a

∫
ω

(Ns − A(t))2+ dx � 0.

We deduce from this inequality and the choice of λ in (2.21) that for all t ∈ [0, T ],
Ns � A(t) and thus Ns � λeaT .

2.4. Analysis of the Schrödinger–Poisson system

In this subsection, we prove Proposition 2.1. We use the functional spaces

H1
ω = {V ∈ H1(Ω) : ∀x ∈ ∂ω, z ∈ [0, 1], V (x, z) = 0}

and

Lp
xLq

z(Ω) =
{

u ∈ L1
loc(Ω) such that ‖u‖Lp

xLq
z(Ω) =

(∫
ω

‖u(x, ·)‖p
Lq(0,1) dx

)1/p

< +∞
}

.

Due to Gagliardo–Nirenberg inequalities and interpolation estimates, one can prove the
following lemma.

Lemma 2.5. We have the Sobolev embedding of H1(Ω) into L2
xL∞

z (Ω).

Let V0 ∈ H2(Ω) be such that V0 = Vb on ∂ω × (0, 1) and ∂zV0(x, 0) = ∂zV0(x, 1) = 0
for all x ∈ ω (for instance, we can take V0 = V ). Proceeding as in [6] and in the spirit
of [27], we can show that a weak solution of (2.1) in the affine space V0 +H1

ω is a critical
point with respect to V of the functional

J(V, Ns) = J0(V ) + J1(V, Ns)

= 1
2

∫∫
Ω

|∇x,zV |2 +
∫

ω

Ns log
∑

k

e−εk[V ] dx,

where we recall that the (εk[V ])k�1 denote the eigenvalues of the Hamiltonian

−1
2

d2

dz2 + V,

i.e. they satisfy (1.2).
The functional J0 is clearly continuous and strongly convex on H1(Ω). The analysis

of the functional V �→ J1(V, Ns) relies on the properties of εk[V ]. From the inequalities
(see Lemma A 1)

|εk[V ] − εk[Ṽ ]|(x) � ‖V (x, ·) − Ṽ (x, ·)‖L∞
z (0,1)

and

log
∑

k e−εk[V ]∑
k e−εk[Ṽ ]

� log
∑

k e−εk[Ṽ ]+sup�(|ε�[V ]−ε�[Ṽ ]|)∑
k e−εk[Ṽ ]

,
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we deduce that

|J1(V, Ns) − J1(Ṽ , Ns)| �
∫

ω

|Ns(x)| sup
k

(|εk[V ] − εk[Ṽ ]|(x)) dx

� ‖Ns‖L2(ω)‖V − Ṽ ‖L2
xL∞

z (Ω). (2.22)

The functional J1(· , Ns) is globally Lipschitz continuous on L2
xL∞

z (Ω), and thus on
H1(Ω), due to Lemma 2.5.

Next, J1(· , Ns) is twice Gâteaux differentiable on L∞(Ω) and

d2
V J1(V, Ns)W · W = −

∫
ω

Ns

Z
∑

k

∑
� �=k

e−εk − e−ε�

εk − ε�
〈χkχ�W 〉2 dx

+
∫

ω

Ns

{∑
k

e−εk

Z 〈|χk|2W 〉2 −
(∑

k e−εk〈|χk|2W 〉
Z

)2}
dx.

When Ns is non-negative, this quantity is non-negative thanks to the Cauchy–Schwarz
inequality. Thus, J1(· , Ns) is convex. As a consequence, the functional J(· , Ns) = J0 +
J1(· , Ns) is continuous and strongly convex on V0 + H1

ω. Moreover, using the Poincaré
inequality on H1

ω and (2.22) with Ṽ = 0, we have

J(V, Ns) � C‖V ‖2
H1(Ω) − C‖Ns‖L2(Ω)‖V ‖H1(Ω) + J(0, Ns),

and thus J(· , Ns) is coercive and bounded from below on H1
ω: it admits a unique min-

imizer, denoted by V , which is then the solution of our problem with the boundary
conditions (1.11).

We now prove the H2 estimate of V . Since V is a minimizer of J(· , Ns) we have
J(V, Ns) � J(0, Ns). Thus,

1
2

∫∫
Ω

|∇x,zV |2 dxdz � J1(0, Ns) − J1(V, Ns).

Applying (2.22), we deduce that V is bounded in H1(Ω), with a bound only depending on
the L2 norm of Ns. Therefore, the function S1 defined in (2.10) satisfies the bound (2.11).
Since N � NsS1, we deduce that the density N lies in Lr(Ω) for any r < 2, which implies
by elliptic regularity that V ∈ W 2,r(Ω). This implies that V actually lies in L∞ which
leads, in view of (A 6), to S1 ∈ L∞. Therefore, N is bounded in L2(Ω), which gives
V ∈ H2(Ω) by the elliptic regularity.

Let us now prove the Lipschitz dependence of V with respect to Ns in H2(Ω). Let V

and Ṽ denote the minimizers of J(· , Ns) and J(· , Ñs), respectively. Using the linearity
of J1 with respect to Ns, its Lipschitz dependence with respect to V from (2.22), the
strong convexity of J and the fact that Ṽ minimizes J(· , Ñs), we get

1
C

‖V − Ṽ ‖2
H1(Ω) � J(Ṽ , Ns) − J(V, Ns)

= J1(Ṽ , Ns − Ñs) − J1(V, Ns − Ñs) + J(Ṽ , Ñs) − J(V, Ñs)

� C ′‖V − Ṽ ‖H1(Ω)‖Ns − Ñs‖L2(ω).
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Thus, we have first the Lipschitz dependence of V in H1(Ω). The Poisson equation gives
−∆(V − Ṽ ) = N − Ñ , and

N − Ñ = (Ns − Ñs)
∑

k

e−εk |χk|2
Z

+ Ñs

∑
k

(
e−εk

Z − e−ε̃k

Z̃

)
|χk|2 + Ñs

∑
k

e−ε̃k

Z̃
(|χk|2 − |χ̃2

k|)

(we use ε̃k as shorthand for εk[Ṽ ] and χ̃k for χk[Ṽ ]). With Lemma A 4,

‖χk − χ̃k‖L∞
z

� C1e
C2(‖V ‖L2

z
+‖Ṽ ‖L2

z
)‖V − Ṽ ‖L1

z
. (2.23)

Denoting χs
k = χk[Ṽ + s(V − Ṽ )] and εs

k = εk[Ṽ + s(V − Ṽ )], we have with Lemma A 3,

∑
k

(
e−εk

Z − e−ε̃k

Z̃

)
|χk|2 =

∫ 1

0

∑
k〈|χs

k|2(V − Ṽ )〉e−εs
k∑

� e−εs
�

∑
k |χk|2e−εs

k∑
� e−εs

�
ds

−
∫ 1

0

∑
k

〈|χs
k|2(V − Ṽ )〉e−εs

k∑
� e−εs

�
|χk|2 ds.

Thus, since we have proved that χs
k ∈ L∞(Ω), for all s ∈ [0, 1], we deduce that∣∣∣∣ ∑

k

(
e−εk

Z − e−ε̃k

Z̃

)
|χk|2

∣∣∣∣ � C‖V − Ṽ ‖L1
z
. (2.24)

Hence, from (2.23) and (2.24), we deduce

‖N − Ñ‖L2(Ω) � C‖Ns − Ñs‖L2(ω) + C‖V − Ṽ ‖L2(Ω).

Finally, from the Lipschitz dependence of V with respect to Ns in H1(Ω), we have locally

‖V − Ṽ ‖L2(Ω) � C‖Ns − Ñs‖L2(ω).

Thus, ‖N − Ñ‖L2(Ω) � C‖Ns − Ñs‖L2(ω) with a constant C depending on ‖Ns‖L2(ω)

and ‖Ñs‖L2(ω). Applying the elliptic regularity, we conclude that ‖V − Ṽ ‖H2(Ω) �
C(‖Ns‖L2(ω), ‖Ñs‖L2(ω))‖Ns − Ñs‖L2(Ω) and the proof of Proposition 2.1 is complete.

Remark 2.6. We can also solve this problem by assuming that u ∈ L2(ω) is given
such that u � 0. More precisely, the system (1.2), (1.3) is now written

1
2∂2

zχk + V χk = εk,

−∆x,zV = u
∑

k

|χk|2e−εk .

Following the same idea as that above, a weak solution of this system in the affine space
V0 + H1(Ω) is the unique minimizer with respect to V of the convex functional:

J(V ) = 1
2

∫∫
Ω

|∇xV |2 dxdz +
∫

ω

u
∑

k

e−εk[V ] dx
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(in fact, for H1 potentials, it is not guaranteed that this functional takes finite values;
to circumvent this difficulty, one can instead solve an auxiliary problem where the expo-
nential is truncated for negative arguments, then estimate its solution and show that it
is non-negative). As before, we have V ∈ H2(Ω) for u ∈ L2(ω).

Proof of Proposition 1.4. We consider the stationary problem (1.12), (1.13). First,
we remark that the stationary drift–diffusion equation and the boundary conditions gives

− div
(∑

k

e−ε∞
k ∇xu

)
= 0 for x ∈ ω,

u = u∞ for x ∈ ∂ω,

Thus, u = u∞. Then (1.12) can be written

− 1
2∂2

zχ∞
k + V ∞χ∞

k = ε∞
k χ∞

k ,

−∆x,zV
∞ = u∞

∑
k

|χ∞
k |2e−ε∞

k .

And the solution of this Schrödinger–Poisson system is the minimum of the convex func-
tional (see Remark 2.6):

J(V ) = 1
2

∫∫
Ω

|∇x,zV |2 dxdz +
∫

ω

u∞
∑

k

e−εk[V ] dx,

where (εk[V ])p�1 are the eigenvalues of the Hamiltonian, i.e. satisfy (1.2). �

2.5. Proof of Theorem 1.2

The proof of existence and uniqueness relies on a contraction argument in the spirit
of [25]. First, we define the map F : Ns �→ N̂s as follows.

Step 1. For a given Ns � 0, solve the Schrödinger–Poisson system (2.1) as in § 2.4.
From the V ∈ C([0, T ], H2(Ω)) obtained (see Proposition 2.1), define Vs by (1.6). By
Lemma A 6, Vs belongs to C([0, T ], H2(ω)).

Step 2. The surface potential Vs being known, solve the following parabolic equation
for the unknown N̂s:

∂tN̂s − divx(∇xN̂s + N̂s∇xVs) = 0, (2.25)

with the boundary condition

N̂s(t, x) = Nb(x) for x ∈ ∂ω, (2.26)

and the initial value
N̂s(0, x) = N0

s (x) for x ∈ ∂ω.

Standard results on parabolic equations [24] lead to the existence and uniqueness of the
solution N̂s of (2.25), (2.26). Of course, N̂s � 0. The map F is then defined after these
two steps by F (Ns) := N̂s.
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Let us now show that F is a contraction on the space Ma,T defined by Ma,T = {n :
‖n‖T � a}, where the norm is

‖n‖T =
[

max
0�t�T

‖n(t)‖2
L2(ω) +

∫ T

0
‖n(t)‖2

H1(ω) dt

]1/2

. (2.27)

The two parameters T and a will be specified later. Let Ns and Ñs be two elements of
Ma,T . The difference δF = F (Ñs) − F (Ns) verifies

∂tδF − divx(∇xδF + δF∇xVs + F (Ñs)∇xδVs) = 0, (2.28)

with the notation δVs = Vs − Ṽs. The boundary conditions become

δF (0, x) = 0, ∀x ∈ ω; δF (t, x) = 0, ∀x ∈ ∂ω, t ∈ [0, T ].

Multiplying (2.28) by δF and integrating on ω, after an integration by parts we obtain

1
2

d
dt

∫
ω

|δF |2 dx +
∫

ω

|∇x(δF )|2 dx +
∫

ω

∇x(δF )(δF∇xVs + F (Ñs)∇x(δVs)) dx = 0.

The Cauchy–Schwarz inequality applied to the third term leads to

1
2

d
dt

‖δF‖2
L2 + ‖∇x(δF )‖2

L2 � ‖∇x(δF )‖L2(‖δF∇xVs‖L2 + ‖F (Ñs)∇x(δVs)‖L2).

Thus,

d
dt

‖δF‖2
L2 + ‖∇x(δF )‖2

L2 � 2‖δF∇xVs‖2
L2 + 2‖F (Ñs)∇x(δVs)‖2

L2

� 2‖δF‖2
L4‖∇xVs‖2

L4 + 2‖F (Ñs)‖2
L4‖∇x(δVs)‖2

L4 . (2.29)

Besides, we have

|∇xVs| =
|
∑

k

∫ 1
0 |χk|2∇xV e−εk dz|∑

k e−εk
� |S2(t, x)|

∫ 1

0
|∇xV | dz,

where S2 is defined by (2.10). From Proposition 2.1 and the fact that Ns ∈ Ma,T , we
deduce that

max
0�t�T

‖V (t)‖H2(Ω) � C1(a),

where C1(a) is a constant only depending on a. From Lemma A 6 and the embedding
H2(Ω) ↪→ L∞(Ω), we deduce the pointwise-in-time inequalities

max
0�t�T

(‖S2(t)‖L∞ + ‖Vs(t)‖H2(ω)) � C2(a).

From Lemma A 6 and Proposition 2.1, we know that there exists a constant C2(a) such
that

‖∇x(δVs)‖L4 � C‖δVs‖H2(ω) � C2(a)‖δNs‖L2(ω).

https://doi.org/10.1017/S0013091504000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000987


532 N. Ben Abdallah, F. Méhats and N. Vauchelet

Inserting the above inequalities into (2.29), we obtain the inequality

d
dt

‖δF‖2
L2 + ‖∇x(δF )‖2

L2 � C3(a)(‖δF‖2
L4 + ‖F (Ñs)‖2

L4‖δNs‖2
L2).

The Gagliardo–Nirenberg inequality leads to

d
dt

‖δF‖2
L2 + 1

2‖∇x(δF )‖2
L2 � C4(a)(‖δF‖2

L2 + ‖F (Ñs)‖2
L4‖δNs‖2

L2). (2.30)

Taking Ñs = 0 in the above inequality leads to

d
dt

‖F (Ns) − F (0)‖2
L2 + 1

2‖∇x(F (Ns) − F (0))‖2
L2

� C4(a)(‖F (Ns) − F (0)‖2
L2 + ‖F (0)‖2

L4‖Ns‖2
L2),

which implies that

‖F (Ns)(t) − F (0)(t)‖2
L2 � ‖F (Ns)(0) − F (0)(0)‖2

L2eC4(a)t

+ C4(a)‖F (0)‖2
L4

∫ t

0
‖Ns(τ)‖2

L2eC4(a)(t−τ)dτ.

We then obtain
‖F (Ns)‖T � C5(a)eC5(a)T ,

where ‖ · ‖T is defined in (2.27) and C5 depends only on a. Of course, since Ns and Ñs

play the same role, we obviously have

‖F (Ñs)‖T � C5(a)eC5(a)T . (2.31)

Let us now go back to (2.30), which, after a Gronwall inequality, yields

‖δF (t)‖2
L2 � C4(a)‖δNs‖2

T

∫ t

0
eC4(a)(t−τ)‖F (Ñs)(τ)‖2

L4 dτ

� C4(a)eC4(a)t‖δNs‖2
T

∫ t

0
‖F (Ñs)(τ)‖L2‖∇xF (Ñs)(τ)‖L2dτ

� C4(a)eC4(a)t‖δNs‖2
T

√
T‖F (Ñs)‖2

T .

We then deduce from (2.31) that

‖δF (t)‖T � C6(a)T 1/4eC6(a)T ‖δNs‖T .

Let us now take a = 2‖F (0)‖1 and choose the parameter T � 1 small enough that
C6(a)T 1/4eC6(a)T � 1

2 . Since ‖ · ‖T is increasing with respect to T , it is readily seen
that F leaves Ma,T invariant and is a contraction on this set. We have then constructed
a unique solution on a time-interval T0 which depends only on the L2 norm of the initial
datum and on the H1/2(∂ω) norm of the boundary values for Ns and Vs. In order to
construct a global solution, we take T0 as the origin and prove as above the existence and
uniqueness of the solution on [T0, 2T0]. This is made possible due to the locally uniform-
in-time L2 a priori estimate on the self-consistent solution, given in Proposition 2.3.
Then we construct the solution [2T0, 3T0] until covering completely the interval [0, T ].
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3. Long-time behaviour

The study of the exponential convergence to the equilibrium is established in two steps.
First we prove the convergence towards 0 as t → +∞ and the decrease in the relative
entropy defined by

W (t) =
∑

k

∫
ω

(ρk log(ρk/ρ∞
k ) − ρk + ρ∞

k ) dx + 1
2

∫∫
Ω

|∇x,z(V − V ∞)|2 dxdz

+
∫

ω

∑
k

ue−εk

(
εk[V ] − εk[V ∞] −

∫ 1

0
|χk|2(V − V ∞) dz

)
dx, (3.1)

where we define ρ∞
k = u∞e−ε∞

k . We define

n = N − N∞, v = V − V ∞, vs = Vs − V ∞
s , ns = Ns − N∞

s . (3.2)

We deduce that

∂tns − divx(∇xns + N∞
s ∇xvs + ns∇xV ∞

s + ns∇xvs) = 0,

−∆x,zv = n.

}
(3.3)

Next we consider a quadratic approximation of the relative entropy and prove its expo-
nential convergence to 0 as t → +∞.

In the following, C denotes a positive constant depending only on the data, and
ε denotes an arbitrarily small positive constant.

3.1. Convergence of the relative entropy

This section is devoted to the following preliminary result.

Proposition 3.1. Under Assumptions 1.1 and 1.3, the solution of the drift–diffusion–
Schrödinger–Poisson system (1.1)–(1.11) is such that

(i) the relative entropy W defined by (3.1) is decreasing and

lim
t→+∞

W (t) = 0;

(ii) we have ns → 0 in L1(ω) and v → 0 in H1(ω) as t → +∞.

Proof. This proof is based on an idea developed in [18]. Let (N∞
s , V ∞) solve the

stationary problem (1.12). We deduce from (2.7) that the relative entropy satisfies

d
dt

W (t) = −D(t),

where D is given by (2.8). Then, for all t � 0, we have

W (t) +
∫ t

0
D(τ) dτ = W (0), (3.4)
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which implies that there exists a sequence tj → +∞ such that

D(tj) → 0 as j → +∞. (3.5)

Now, straightforward calculations using Ns = ue−Vs give

D =
∫

ω

(4|∇x

√
Ns|2 + 2∇xNs · ∇xVs + Ns|∇xVs|2) dx. (3.6)

After an integration by parts, we get∫
ω

∇xNs · ∇xVs dx = −
∫

ω

Ns∆xVs dx +
∫

∂ω

Ns∂νVsdσ,

where ν(x) denotes the outward unitary normal vector at x ∈ ∂ω and dσ the surface
measure on ∂ω induced by the Lebesgue measure. Therefore, we deduce from (3.6) that

4‖∇x

√
Ns‖2

L2 � D + 2
∫

Ns∆xVs dx − 2
∫

∂ω

Ns∂νVsdσ

� D + 8
∫

ω

NsS2 dx − 2
∫

∂ω×(0,1)
N∂νV dσ dz

� D + 8‖Ns‖L4‖S2‖L4/3 + 2‖Nb‖L∞‖V ‖H2

� D + C‖Ns‖L4 + C‖N‖L2 + C,

where we recall that S2 is given by (2.10) and satisfies (2.11). Besides, it is readily seen
that N � NsS1, where S1 is given in (2.10) and satisfies (2.11). Therefore, ‖N‖L2 �
C‖Ns‖L4 . We conclude from the above inequality that

4‖∇x

√
Ns‖2

L2 � D + C‖Ns‖L4 + C.

Applying a Gagliardo–Nirenberg inequality to the function
√

Ns on the right-hand side,
we obtain (for any ε > 0)

4‖∇x

√
Ns‖2

L2 � D + C‖Ns‖1/2
L1 ‖

√
Ns‖H1 + C � D + Cε‖Ns‖L1 + ε‖∇x

√
Ns‖2

L2 + C,

which leads, in view of (2.9), to the inequality

‖∇x

√
Ns‖2

L2(t) � C(D(t) + 1). (3.7)

By evaluating (3.5) and (3.7) at t = tj , we deduce the boundedness in H1(ω) of the
sequence (

√
Ns(tj))j . Because of the compactness embedding of H1(ω) into L4(ω), we

can assume without loss of generality that there exists N̄s belonging to L2(ω) such that√
N̄s ∈ H1(ω) and

Ns(tj) → N̄s in L2(ω). (3.8)
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Thanks to the properties of the trace of H1(ω) functions and the compact embedding
H1/2(∂ω) ↪→ L4(∂ω), we have N̄s|∂ω = Nb. From Proposition 2.1, we know that the map-
ping Ns �→ V defined by

− 1
2∂2

zχk + V χk = εkχk, k � 1,

−∆x,zV = N = Ns

∑
k

|χk|2e−εk

Z

(with the boundary conditions of V in (1.11)) is well posed for Ns ∈ L2(ω) such that
Ns � 0 a.e. and is continuous from L2(ω) into H2(Ω). Moreover, by Lemma A 6 we also
know that the mapping V �→ Vs defined by

Vs = − log
(∑

k

e−εk

)
,

− 1
2∂2

zχk + V χk = εkχk

is continuous from H2(Ω) to H2(ω). It follows that

∃V̄s ∈ H2(ω) such that Vs(tj) → V̄s in H2(ω) ⊂ C(ω̄).

Hence,
u(tj) = Ns(tj)eVs(tj) → N̄seV̄s in L2(ω). (3.9)

Now (3.5) and (3.8) imply that, for any h ∈ (L4(ω))2, we have∣∣∣∣ ∫
ω

∇x(Ns(tj)eVs(tj))h dx

∣∣∣∣ =
∣∣∣∣ ∫

ω

∇xu(tj)h dx

∣∣∣∣
�

(∫
ω

e−Vs(tj) |∇xu(tj)|2
u(tj)

dx

)
× ‖Ns(tj)e2Vs(tj)‖1/2

L2(ω)‖h‖L4(ω) → 0 as j → +∞.

Taking into account (3.9), we deduce that N̄seV̄s is constant in ω. Since N̄s|∂ω = Nb and
V̄s|∂ω = V ∞

s , Assumption 1.3 implies N̄seV̄s = u∞. Thus, (N̄s, V̄s) can be identified as the
unique solution of the stationary Schrödinger–Poisson system (see Remark 2.6):

N̄s = N∞
s , V̄s = V ∞

s and analogously V (tj) → V ∞ as j → +∞.

Since the function W is decreasing, we have

lim
t→+∞

W (t) = lim
j→+∞

W (tj) = 0.

Consequently, ‖v(t)‖H1(Ω) → 0 and ‖ns‖L1(ω) → 0 as t → +∞ by a Poincaré inequality
and the following Csiszár–Kullback inequality [3, 11, 23]: for all n1, n2 ∈ L1(ω), n1 �
0 a.e., n2 � 0 a.e. with ∫

ω

n1 dx =
∫

ω

n2 dx = N0,

we have
‖n1 − n2‖2

L1(ω) � 2N0

∫
ω

n1 log
n1

n2
dx.

�
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3.2. Exponential convergence

This section is devoted to the proof of the main result of this paper, i.e. the exponential
convergence of the surface density Ns and the electrostatic potential V to the equilibrium
functions. We will consider the differences n, ns, v and vs defined in (3.2) and introduce
the quadratic approximation of the relative entropy:

L(t) = 1
2

∫
ω

(ns)2

N∞
s

dx +
∫

ω

nsvs dx − 1
2

∫∫
Ω

|∇v|2 dxdz +
∫

ω

N∞
s vs dx −

∫∫
Ω

N∞v dxdz.

(3.10)
Since the Poisson equation gives∫∫

Ω

nv dxdz =
∫∫

Ω

|∇v|2 dxdz,

we can rewrite the above equation as

L(t) = 1
2

∫
ω

(ns)2

N∞
s

dx + 1
2

∫∫
Ω

|∇v|2 dxdz +
∫

ω

Nsvs dx −
∫∫

Ω

Nv dxdz. (3.11)

In order to prove Theorem 1.5, we need the following three technical lemmas, which we
go on to prove in § 3.2.2.

Lemma 3.2. Consider a weak solution of (1.2)–(1.11). Then, for all t � 0, we have

1
2

∫
ω

(ns)2

N∞
s

dx + 1
2

∫∫
Ω

|∇v|2 dxdz � L(t) � 1
2

∫
ω

(ns)2

N∞
s

dx +
∫

ω

nsvs dx.

Lemma 3.3. Let V and V belong to L2(0, 1) and Vs, Vs be defined by

Vs = − log
∑

k

exp(−εk[V ]) and Vs = − log
∑

k

exp(−εk[V ]).

Then, by setting v = V − V and vs = Vs − Vs, we have

|∇xvs|2 � C1 exp{C2(‖V ‖L2
z(0,1) + ‖v‖L2

z(0,1))}(〈|∇xv|〉2 + 〈|v|〉2〈|∇xV |〉2), (3.12)

where C1 and C2 are two positive constants.

Lemma 3.4. Consider a weak solution of (1.2)–(1.11). There then exist two non-
negative constants C1 and C2 such that, for all t � 0,∫

ω

(ns)2

N∞
s

|∇xvs|2 dx � 1
2

∫
ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣2 dx + C1L(t)4 + C2L(t)‖v‖H1(Ω),

where L is defined in (3.11). Moreover, we have

‖vs‖L6(Ω) � C‖v‖H1(Ω), (3.13)

for a non-negative constant C.
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3.2.1. Proof of Theorem 1.5

From (3.10) and the Poisson equation, we deduce that

d
dt

L(t) =
∫

ω

∂tns

(
ns

N∞
s

+ vs

)
dx +

∫
ω

Ns∂tvs dx −
∫∫

Ω

N∂tv dxdz.

Furthermore, e−Vs =
∑

k e−εk = Z and ∂tεk = 〈|χk|2∂tv〉 imply that

∂tvs =
1
Z

∑
k

〈|χk|2∂tv〉e−εk .

Hence, ∫
ω

Ns∂tvs dx =
∫∫

Ω

N∂tv dxdz.

With (3.3) and after an integration by parts, we get

d
dt

L(t) = −
∫

ω

(∇xns + N∞
s ∇xvs + ns∇xV ∞

s + ns∇xvs) · ∇x

(
ns

N∞
s

+ vs

)
dx.

Since ∇xN∞
s + N∞

s ∇xV ∞
s = 0, we deduce that

d
dt

L(t) = −
∫

ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣2 dx −
∫

ω

ns∇xvs · ∇x

(
ns

N∞
s

+ vs

)
dx. (3.14)

Now we will show that the second term on the right-hand side of (3.14) can be con-
trolled by the first one for long time. From Lemma 3.4, we deduce that

−
∫

ω

ns∇xvs · ∇x

(
ns

N∞
s

+ vs

)
dx

� 1
2

∫
ω

(ns)2

N∞
s

|∇xvs|2 dx + 1
2

∫
ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣2 dx

� 3
4

∫
ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣2 dx + C1L(t)4 + C2‖v‖H1(Ω)L(t).

Thanks to the Poincaré inequality and Lemma 3.2, we have

−1
4

∫
ω

N∞
s

∣∣∣∣∇x

(
ns

N∞
s

+ vs

)∣∣∣∣2 dx � − 1
4C

∫
ω

N∞
s

(
ns

N∞
s

+ vs

)2

dx

� − 1
2C

∫
ω

(
1
2

(ns)2

N∞
s

+ nsvs

)
dx � − 1

2CL(t).

Hence, from (3.14) we have obtained

d
dt

L(t) � −C0L(t) + C1L(t)4 + C2‖v‖H1(Ω)L(t). (3.15)
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By Proposition 3.1 (ii), there exists T > 0 such that, for all t � T , C2‖v‖H1(ω)(t) � 1
2C0.

Thus, for all t � T ,
d
dt

L(t) � −C0

2
L(t) + C1L(t)4. (3.16)

From (3.5) and (3.7), we see that there exists a sequence tj → +∞ as j → +∞ such that
the sequence (

√
Ns(tj))j∈N is bounded in H1(ω). Up to a renumbering, we can suppose

that, for all j ∈ N, tj � T . Moreover, by interpolation, we have∥∥∥∥ ns√
N∞

s

∥∥∥∥
L2(ω)

� C‖ns‖1/4
L1(ω)‖ns‖3/4

L3(ω).

By the Sobolev embedding of H1(ω) into L6(ω), we deduce that ‖ns‖L3(ω)(tj) is bounded.
Since we have proved in Proposition 3.1 (ii) that ns → 0 in L1(ω) as t → +∞, this ensures
the convergence towards 0 of ‖ns/

√
N∞

s ‖L2(ω)(tj) as j → +∞. Moreover, with the bound
of L in Lemma 3.2 we deduce that

L(t) � 1
2

∥∥∥∥ ns√
N∞

s

∥∥∥∥2

L2(ω)
+ C‖ns‖L2(ω)‖vs‖L6(ω).

And (3.13) provides a bound of ‖vs‖L6(ω) by ‖v‖H1(Ω), which converges towards 0 as
t → +∞ due to Proposition 3.1. We can now conclude that limj→+∞ L(tj) = 0. Hence,

∃t∗ > 0 such that C1L(t∗)3 � 1
4C0. (3.17)

Now we define the set

A := {t ∈ [t∗, +∞) such that ∀s ∈ [t∗, t], C1L(s)3 � 1
4C0}.

By the continuity of L, A is a closed set that contains t∗ from (3.17). Moreover, if t0 ∈ A,
from (3.16) we deduce that L is decreasing near t0. By continuity of L, it yields that A
is open. Thus, A = [t∗, +∞), i.e.

∀t ∈ [t∗, +∞),
d
dt

L(t) � −C0

4
L(t).

We obtain the announced result by integrating this last inequality.

3.2.2. Proofs of the technical lemmas

Proof of Lemma 3.2. The concavity of the function x �→ log x leads to the inequality

vs = log
(∑

k e−ε∞
k∑

k e−εk

)
= log

(∑
k

e−εk∑
� e−ε�

eεk−ε∞
k

)
�

∑
k

e−εk∑
� e−ε�

(εk − ε∞
k ). (3.18)

Therefore,

Nsvs − 〈Nv〉 = Ns

(
vs −

∑
k

e−εk∑
� e−ε�

〈|χk|2v〉
)

� Ns∑
� e−ε�

∑
k

e−εk(εk − ε∞
k − 〈|χk[V ]|2v〉).

https://doi.org/10.1017/S0013091504000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000987


Diffusive transport of partially quantized particles 539

The right-hand side of this inequality is exactly the third term of (2.6), which is positive.
Therefore, ∫

ω

Nsvs dx −
∫∫

Ω

Nv dxdz � 0. (3.19)

By exchanging the roles of (N, N∞) and (V, V ∞), we obtain∫∫
Ω

N∞v dxdz −
∫

ω

N∞
s vs dx � 0, (3.20)

which leads, by (3.11) and for all t � 0, to

0 � 1
2

∫
ω

(ns)2

N∞
s

dx + 1
2

∫∫
Ω

|∇v|2 dxdz � L(t).

This ends the proof of Lemma 3.2. Note that the sum of (3.19) and (3.20) leads to the
inequality ∫

ω

nsvs dx �
∫∫

Ω

nv dxdz =
∫∫

Ω

|∇v|2 � 0.

�

Proof of Lemma 3.3. We have

∇xvs =
∑

k

e−εk

Z (∂xεk − ∂xεk) +
∑

k

(
e−εk

Z − e−εk

Z

)
∂xεk, (3.21)

with the notation Z =
∑

� e−ε� . Thus, by a Jensen inequality,

|∇xvs|2 � 2
∑

k

e−εk

Z |∂xεk − ∂xεk|2 + 2
∣∣∣∣ ∑

k

(
e−εk

Z − e−εk

Z

)
∂xεk

∣∣∣∣2. (3.22)

For the first term on the right-hand side, we use the results stated in Lemmas A 2 and A 4:

∑
k

e−εk

Z |∂xεk − ∂xεk|2 � 2
∑

k

e−εk

Z 〈|χk|2∇xv〉2 + 2
∑

k

e−εk

Z 〈(|χk|2 − |χk|2)∇xV 〉2

� C1 exp{C2‖V (x, ·)‖L2(0,1)}〈|∇xv|〉2

+
∫ 1

0
C1 exp{C2‖V (x, ·) + sv(x, ·)‖L2(0,1)}〈|v|〉2〈|∇xV |〉2 ds.

Consequently, we have

∑
k

e−εk

Z |∂xεk −∂xεk|2 � C1 exp{C2(‖V ‖L2(0,1) +‖v‖L2(0,1))}(〈|∇xv|〉2 + 〈|v|〉2〈|∇xV |〉2).

(3.23)
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We can write the second term on the right-hand side of (3.22) as

∑
k

(
e−εk

Z − eεk

Z

)
∂xεk =

∫ 1

0

∑
k〈|χs

k|2v〉e−εs
k∑

� e−εs
�

∑
k〈|χk|2∇xV 〉e−εs

k∑
� e−εs

�
ds

−
∫ 1

0

∑
k

〈|χs
k|2v〉e−εs

k∑
� e−εs

�
〈|χk|2∇xV 〉 ds,

where we use the notation εs
k = εk[V + sv] and χs

k = χk[V + sv]. Thus, by applying the
L∞ bound in the z direction for χs

k and χk stated in Lemma A 2, we obtain∣∣∣∣ ∑
k

(
e−εk

Z − e−εk

Z

)
∂xεk

∣∣∣∣2 � C1 exp{C2(‖V ‖L2(0,1) + ‖v‖L2(0,1))}〈|v|〉2〈|∇xV |〉2. (3.24)

By combining (3.23) and (3.24) in (3.22), we obtain (3.12). �

Proof of Lemma 3.4. From (3.12), we deduce∫
ω

(ns)2

N∞
s

|∇xvs|2 dx

� C1

∫
ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}(〈|∇xv|〉2 + 〈|v|〉2〈|∇xV ∞|〉2) dx.

(3.25)

Throughout the proof, C, C1 and C2 stand for universal constants. Since V is bounded
in H1(Ω) uniformly in time, the Trudinger inequality implies that

exp(C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))) ∈ Lp(ω), ∀p ∈ [1,∞). (3.26)

Thus, a Hölder inequality gives∫
ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}〈|∇xv|〉2 dx

� C

∥∥∥∥ ns√
N∞

s

∥∥∥∥2

L3(ω)
‖〈|∇xv|〉‖2

L8(ω). (3.27)

Using the expression given in (1.7) for n = N − N∞, we deduce that

n = ns

∑
k

|χk|2e−εk

Z + N∞
s

∑
k

[
(|χk|2 − |χ∞

k |2)e−εk

Z + |χ∞
k |2

(
e−εk

Z − e−ε∞
k

Z∞

)]
.

As we saw earlier, by defining εs
k = εk[V + sv], and χs

k = χk[V + sv], using Lemma A 3
we can rewrite the third term as∑

k

|χ∞
k |2

(
e−εk

Z − e−ε∞
k

Z∞

)

=
∫ 1

0

∑
k〈|χs

k|2v〉e−εs
k∑

� e−εs
�

∑
k |χ∞

k |2e−εs
k∑

� e−εs
�

ds −
∫ 1

0

∑
k

〈|χs
k|2v〉e−εs

k∑
� e−εs

�
|χ∞

k |2 ds.
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Since Lemma A 2 provides a bound of the eigenvectors of the Hamiltonian χk uniformly
in k, we deduce, by Lemmas A 2 and A 4, that

|n|(x, z) � C1 exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}(|ns|(x) + N∞
s ‖v‖L1

z(0,1)(x)).

Therefore, using interpolation inequalities, (3.26) and N∞
s ∈ L∞(ω), one may deduce

from elliptic regularity for the Poisson equation (1.3) that

‖v‖H2(Ω) � C‖n‖L2(Ω) � C(‖ns‖L18/7(ω) + ‖v‖H1(Ω)). (3.28)

With a Gagliardo–Nirenberg inequality and (3.28), we obtain

‖〈|∇xv|〉‖L8(ω) � C‖〈|∇xv|〉‖1/4
L2(ω)‖〈|∇xv|〉‖3/4

H1(ω)

� C‖v‖1/4
H1(Ω)(‖ns‖3/4

L18/7(ω) + ‖v‖3/4
H1(Ω)). (3.29)

By interpolation inequalities, we get∥∥∥∥ ns√
N∞

s

∥∥∥∥2

L3(ω)
�

∥∥∥∥ ns√
N∞

s

∥∥∥∥
L2(ω)

∥∥∥∥ ns√
N∞

s

∥∥∥∥
L6(ω)

(3.30)

and

‖ns‖L18/7(ω) � ‖ns‖2/3
L2(ω)‖ns‖1/3

L6(ω). (3.31)

Thus, by (3.27) and (3.29)–(3.31), we obtain∫
ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}〈|∇xv|〉2 dx

� C

∥∥∥∥ ns√
N∞

s

∥∥∥∥
L2(ω)

∥∥∥∥ ns√
N∞

s

∥∥∥∥
L6(ω)

‖v‖1/2
H1(Ω)(‖ns‖L2(ω)‖ns‖1/2

L6(ω) + ‖v‖3/2
H1(Ω)).

Finally, using N∞
s � C > 0 and Lemma 3.2, we have∫

ω

(ns)2

N∞
s

eC2(‖V ∞‖L2
z(0,1)+‖v‖L2

z(0,1))〈|∇xv|〉2 dx

� C1L(t)‖ns‖3/2
L6(ω)‖v‖1/2

H1(Ω) + C2L(t)1/2‖ns‖L6(ω)‖v‖2
H1(Ω). (3.32)

Now, to handle the term ‖ns‖L6(ω), we decompose ‖ns‖L6(ω) � C(‖ns/N
∞
s + vs‖L6(ω) +

‖vs‖L6(ω)). By (3.18) we have

|vs| � max
{∑

k

e−εk∑
� e−ε�

|εk − ε∞
k |,

∑
k

e−ε∞
k∑

� e−ε∞
�

|ε∞
k − εk|

}
.

Hence, with Lemma A 4 and (3.26), we deduce that

‖vs‖L6(ω) � C‖v‖L8
xL1

z(Ω) � C‖v‖H1(Ω)
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due to the Sobolev embedding of H1(Ω) into L8
xL1

z(Ω), which proves the inequality (3.13)
in Lemma 3.4. Moreover, Proposition 3.1 provides a uniform bound on ‖v‖H1(Ω) which,
with the inequality (3.32) and Lemma 3.2, leads to∫

ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}〈|∇xv|〉2 dx

� C1L(t)
∥∥∥∥ ns

N∞
s

+ vs

∥∥∥∥3/2

L6(ω)
+ C2L(t)1/2

∥∥∥∥ ns

N∞
s

+ vs

∥∥∥∥
L6(ω)

‖v‖H1(Ω) + C3L(t)‖v‖H1(Ω).

(3.33)

Finally, using

x1/4y3/4 � 1
4ε3 x + 3

4εy,

we have

L(t)
∥∥∥∥ ns

N∞
s

+ vs

∥∥∥∥3/2

L6(ω)
� 1

4ε3 L(t)4 + 3
4ε

∥∥∥∥ ns

N∞
s

+ vs

∥∥∥∥2

L6(ω)

� 1
4ε3 L(t)4 + Cε

∥∥∥∥∇x

(
ns

N∞
s

+ vs

)∥∥∥∥2

L2(ω)
,

where the Sobolev embedding H1 ↪→ L6(ω) and the Poincaré inequality are used. Pro-
ceeding analogously for the second term in (3.33), we obtain the desired inequality for ε

fixed small enough.
In order to estimate the second term in (3.25), we first use the Sobolev embedding

H1(Ω) ↪→ L8
xL1

z(Ω) and (3.26), we have∫
ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}〈|v|〉2〈|∇xV ∞|〉2 dx

� C‖v‖2
H1(Ω)

∥∥∥∥ ns√
N∞

s

∥∥∥∥2

L3(ω)
.

With (3.30) and Lemma 3.2, it yields∫
ω

(ns)2

N∞
s

exp{C2(‖V ∞‖L2
z(0,1) + ‖v‖L2

z(0,1))}〈|v|〉2〈|∇xV ∞|〉2 dx

� CL(t)1/2‖v‖2
H1(Ω)

(∥∥∥∥ ns

N∞
s

+ vs

∥∥∥∥
L6(ω)

+ ‖vs‖L6(ω)

)
. (3.34)

By proceeding as above, we obtain the desired inequality for the second term, which
concludes the proof. �
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Jeunes Chercheurs grant (no. JC1035) ‘Modèles dispersifs vectoriels pour le transport à
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Appendix A. Spectral properties of the Hamiltonian

In this appendix, we first list some basic properties of eigenfunctions and eigenvalues
of the Schrödinger operator in the z variable. Most of these properties, which are used
throughout the paper, are either proven or can be proved by straightforwardly adapting
the techniques in [30]. Therefore, very few proofs are provided in this appendix.

For a given real-valued function U in L2(0, 1), let H[U ] be the Schrödinger operator

H[U ] := −1
2

d2

dz2 + U(z)

defined on the domain D(H[U ]) = H2(0, 1) ∩ H1
0 (0, 1).

This operator admits a strictly increasing sequence of real eigenvalues (εk[U ])k�1 going
to +∞. The corresponding eigenvectors, denoted by (χk[U ](z))k�1 (chosen such that
χ′

k(0) > 0), form an orthonormal basis of L2(0, 1). They, of course, satisfy

−1
2

d2

dz2 χk + Uχk = εkχk,

χk ∈ H1
0 (0, 1),

∫ 1

0
χkχ� dz = δkl.

⎫⎪⎪⎬⎪⎪⎭ (A 1)

Obviously, for U = 0, we have εk[0] = 1
2π2k2 and χk[0](z) =

√
2 sin(πkz).

Lemma A 1. Let U and V be two real-valued functions in L2(0, 1) such that U −V ∈
L∞(0, 1). Then the corresponding eigenvalues verify

|εk[U ] − εk[V ]| � ‖U − V ‖L∞(0,1). (A 2)

In particular, the case V = 0 gives |εk[U ] − 1
2π2k2| � ‖U‖L∞(0,1).

Moreover, following the study of the spectral properties of H[U ] in [30, Chapter 2],
we have the following lemma.

Lemma A 2. There exists a positive constant CU depending only on ‖U‖L2(0,1) such
that

|εk[U ] − 1
2π2k2| � CU and ‖χk[U ] −

√
2 sin(πkz)‖L∞(0,1) � CU .

Moreover, the constant CU can be chosen such that CU � C1 exp(C2‖U‖L2(0,1)), where
the constants C1 and C2 are independent of U and k.

Lemma A 3. Let V = V (λ, z) ∈ L∞
loc(λ, L2

z(0, 1)), where λ is a real parameter (typi-
cally λ = t or λ = xi). Let us define εk as shorthand for εk[V (λ, ·)] and χk for χk[V (λ, ·)].
Assume that ∂λV ∈ L1

loc(λ, L2
z(0, 1)). Then

(i) ∂λεk ∈ L1
loc and

∂λεk = 〈|χk|2∂λV 〉,

(ii) ∂λχk ∈ L1
loc(λ, L∞

z (0, 1)) and we have

∂λχk =
∑
� �=k

〈χkχ�∂λV 〉
εk − ε�

χ�.
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Lemma A 4. Let V and Ṽ be two real-valued functions in L2(0, 1). There then exist
two positive constants C1 and C2 independent of p, V and Ṽ such that

|εk[V ] − εk[Ṽ ]| � C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1) (A 3)

and

‖χk[V ] − χk[Ṽ ]‖L∞(0,1) � C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1). (A 4)

Proof. The estimate (A 3) is an easy consequence of Lemmas A 2 and A 3.
Let us prove (A 4). Without loss of generality, we assume that εk[V ] > 0 (by shifting V

and Ṽ by the same constant). Let us define

uk =
χk[Ṽ ]′(0)
χk[V ]′(0)

χk[V ] and ũk = χk[Ṽ ], (A 5)

so that u′
k(0) = ũ′

k(0). Writing the equation satisfied by uk − ũk and proceeding as in
the proof of [30, Lemma 1, Chapter 1], we have

uk(z) − ũk(z) = 2
∫ z

0
s(z − t)V (t)(uk − ũk)(t) dt

+ 2
∫ z

0
s(z − t)ũk(t)((V − Ṽ )(t) − (εk[V ] − εk[Ṽ ])) dt,

where

s(t) =
sin(

√
2εk[V ]t)√

2εk[V ]
.

By a Gronwall argument, we prove (A 4) for the difference uk − ũk. We finally deduce
the result for χk[V ] − χk[Ṽ ] by using the property∫ 1

0
|χk|2dz = 1.

�

We now give two technical lemmas, where the potential is defined on Ω. We recall that
(x, z) ∈ Ω = ω × (0, 1), where ω is a bounded regular domain of R

2.

Lemma A 5. Assume that V ∈ H1(Ω) and let εk be the eigenvalues defined by (1.2).
Then, for all α � 0 and q ∈ [1, +∞), we have

Iα :=
1
Z

∑
k

|εk|αe−εk ∈ Lq(ω),

where Z =
∑

k e−εk . The Lq norm of Iα is bounded by a constant depending only on α,
q and ‖V ‖H1 .
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Proof. Lemma A 2 states that the eigenvalues and eigenvectors of (1.2) satisfy the
(uniform-in-p) estimate

|εk(x) − 1
2π2k2| + ‖χk(x, ·)‖L∞

z
� C1 exp{C2‖V (x, ·)‖L2

z
}. (A 6)

It is sufficient to show that

Iα(x) � C3 exp{αC2‖V (x, ·)‖L2
z
}. (A 7)

Indeed, since ‖V (x, ·)‖L2
z

is bounded in H1(ω), the Trudinger inequality∫
O

exp(|u|N/(N−1)) < +∞, ∀u ∈ W 1,N (O), O ⊂ R
N , (A 8)

implies that exp{‖V (x, ·)‖2
L2

z
} ∈ L1(ω), which ensures that exp{αC2‖V (x, ·)‖L2

z
} ∈ Lq(ω)

for all q < +∞, which thus leads to the result.
Let us now prove (A 7). To this aim, we treat low and high energies differently. More

precisely, we have

Iα =
1
Z

∑
|εk|�KA

|εk|αe−εk +
1
Z

∑
|εk|�KA

|εk|αe−εk

� (KA)α +
1
Z

∑
|εk|�KA

|εk|αe−εk (A 9)

where we choose K > 2, and A is such that |εk − 1
2π2k2| < A. This choice implies that

1
2k2π2 − A < εk < 1

2k2π2 + A

and, for high energies (|εk| � KA), that we have

A <
1

2(K − 1)
k2π2.

Hence, the high-energy contribution can be estimated as follows:∑
|εk|�KA

|εk|αe−εk �
∑

k>
√

2(K−1)A/π

( 1
2k2π2 + A)αe−k2π2/2eA

�
(

1 +
1

K − 1

)α

eA
∑

k>
√

2(K−1)A/π

( 1
2k2π2)αe−k2π2/2

� Cα

(
1 +

1
K − 1

)α

eA

∫ ∞

√
2(K−1)A/π

( 1
2π2x2)αe−π2x2/2 dx,

where we used the elementary property

lim
n→+∞

∑
k�n f(k)∫ +∞

n
f(x) dx

= 1,
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for any non-negative function decaying at infinity and such that the following integral∫ +∞
0 f(x) dx converges. Assuming that α = 0 (the case α = 0 is trivial), an integration

by parts leads to the estimate∫ ∞

√
2(K−1)A/π

( 1
2π2x2)αe−π2x2/2eA dx � C((K − 1)A)α−(1/2)e−(K−1)AeA,

which leads to ∑
|εk|�KA

|εk|αe−εk � CαAα−(1/2)e−(K−1)AeA.

Besides, due to the choice of A, we obviously have∑
k

e−εk � Ce−A.

Therefore, returning to (A 9), we have

Iα � (KA)α + CαAα−(1/2)e(3−K)A.

Setting K = 4, we obtain a bound on A−1/2e(3−K)A for large A. Thus, we have proved
that I � CαAα and (A 7) follows due to (A 6) by taking A = C1 exp(C2‖V (x, ·)‖L2

z
). �

Lemma A 6. The map

V �→ Vs = − log
(∑

k

e−εk[V ]
)

is locally Lipschitz continuous from H2(Ω) to H2(ω), where (εk[V ])k denotes the whole
set of eigenvalues of the Hamiltonian

−1
2

d2

dz2 + V.

Proof. Since the summation over k can be done easily, it is enough to show the
result for the map V �→ εk[V ]. Let U and V be two bounded potentials of H2(Ω). From
Lemma A 1, we easily deduce that ‖εk[U ] − εk[V ]‖L2(ω) � C‖U − V ‖H2(Ω). For the first
derivative, with Lemma A 3, we write∫

ω

|∇xεk[U ] − ∇xεk[V ]|2 dx � 2
∫

Ω

|∇x(U − V )|2|χk[U ]|4 dxdz

+ 2
∫

Ω

|∇xV |2(|χk[U ]|2 − |χk[V ]|2)2 dxdz.

The Sobolev embedding of H2(Ω) into L∞(Ω) implies that, for all non-negative con-
stants C2,

exp(C2(‖U‖L2
z(0,1) + ‖V ‖L2

z(0,1))) ∈ L∞(ω).
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Thus, with Lemma A 2 we have a bound of χk[U ] in L∞(Ω) and with Lemma A 4 we
have

‖χk[U ] − χk[V ]‖L∞(Ω) � C‖U − V ‖H2(Ω). (A 10)

We deduce then that∫
ω

|∇xεk[U ] − ∇xεk[V ]|2 dx � C‖U − V ‖2
H1(Ω) + C‖U − V ‖2

H2(Ω).

It now remains to estimate the second derivative of εk[U ] − εk[V ]. We recall that, from
Lemma A 1, we may easily deduce that

‖εk[U ] − εk[V ]‖L∞(ω) � C‖U − V ‖H2(Ω). (A 11)

If i = 1 or 2, j = 1 or 2, by the expression of the derivatives stated in Lemma A 3 we
have

∂xixj εk[V ] =
∫ 1

0
∂xixj V |χk[V ]|2 dz + 2

∫ 1

0
χk[V ]∂xiχk[V ]∂xj V dz.

As before, we can show the Lipschitz dependency in V ∈ H2(Ω) of the first term on the
right-hand side. For the second term, we need the following result, which is proved below:
there exists a positive constant δV depending only on ‖V ‖H2(Ω) such that

∀(k, l) ∈ (N∗)2, |εk[V ] − ε�[V ]| � δV |k − l|2. (A 12)

Since χk[V ] is bounded in L∞(Ω), using the expression of ∂xi
χk[V ] in Lemma A 3

and (A 12), we obtain |∂xiχk[V ]| � C〈|∂xi
V |〉. Therefore,

|χk[U ]∂xiχk[U ]∂xj
U − χk[V ]∂xiχk[V ]∂xj

V |
� C|χk[U ] − χk[V ]|〈|∂xiU |〉|∂xiU |

+ C|∂xiU | |∂xiχk[U ] − ∂xiχk[V ]| + C〈|∂xiV |〉|∂xi(U − V )|.

Thus, it remains to see the Lipschitz dependency in V of ∂xi
χk[V ]. We have

∂xi(χk[U ] − χk[V ]) =
∑
� �=k

(
〈χk[U ]χ�[U ]∂xiU〉

εk[U ] − ε�[U ]
χ�[U ] − 〈χk[V ]χ�[V ]∂xiV 〉

εk[V ] − ε�[V ]
χ�[V ]

)

=
∑
� �=k

〈χk[U ]χ�[U ]∂xiU − χk[V ]χ�[V ]∂xiV 〉
εk[U ] − ε�[U ]

χ�[U ]

+
∑
� �=k

〈χk[V ]χ�[V ]∂xiV 〉
εk[V ] − ε�[V ]

(χ�[U ] − χ�[V ])

+
∑
� �=k

〈χk[V ]χ�[V ]∂xiV 〉χ�[V ]
εk[V ] − εk[U ] + ε�[U ] − ε�[V ]
(εk[U ] − ε�[U ])(εk[V ] − ε�[V ])

.

From (A 10)–(A 12), we deduce that

‖∂xi
χk[U ] − ∂xi

χk[V ]‖L2(Ω) � C(1 + ‖∂xi
U‖L2(Ω) + ‖∂xi

V ‖L2(Ω))‖U − V ‖H2(Ω).

With the Sobolev embedding of H1(Ω) into L2(Ω), ‖∂xiV ‖L2(Ω) � C‖V ‖H2(Ω). This
concludes the proof of the Lipschitz dependency of the second derivative with respect
to V . �

https://doi.org/10.1017/S0013091504000987 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000987


548 N. Ben Abdallah, F. Méhats and N. Vauchelet

Proof of (A 12). If k = �, this inequality is obvious. Let us first prove that there
exists a constant, δV , depending only on ‖V ‖H2(Ω), such that

min
k �=l

|εk[V ] − ε�[V ]| � δV . (A 13)

If not, by the compact embedding of H2(Ω) into L∞(Ω) it would be possible to find a
sequence (V n) converging to V in the L∞ strong topology and a sequence kn of integers
such that εkn+1[V n] − εkn [V n] converges to zero as n → +∞. The asymptotic behaviour
of the εk deduced from Lemma A 1 implies that the sequence (kn) is bounded; thus, up
to an extraction, it is stationary: kn = k. Besides, (A 2) implies that εk[V n] converges to
εk[V ] and εk+1[V n] to εk+1[V ]. Hence, εk[V ] = εk+1[V ], which is a contradiction of the
fact that the eigenvalues are strictly increasing. Moreover, by (A 2), we have

1
2π2k2 − ‖V ‖L∞(Ω) � εk[V ] � 1

2π2k2 + ‖V ‖L∞(Ω).

Therefore, for any (k, l),

|εk[V ] − ε�[V ]| � 1
2π2|k − �|2 + π2|k − �| − 2‖V ‖L∞(Ω).

Hence, if π2|k − �| � 2‖V ‖L∞(Ω),, then |εk[V ] − ε�[V ]| � 1
2π2|k − �|2. From this inequal-

ity and (A 13) we easily deduce (A 12) (up to a change of δV ). �
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14. P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift–
diffusion models, J. Statist. Phys. 118 (2005), 625–665.
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