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BIPARTITE GRAPH BUNDLES WITH CONNECTED FIBRES

SUNGPYO HONG, J IN H O KWAK AND JAEUN L E E

Let G be a finite connected simple graph. The isomorphism classes of graph bun-
dles and graph coverings over G have been enumerated by Kwak and Lee. Recently,
Archdeacon and others characterised bipartite coverings of G and enumerated the
isomorphism classes of regular 2p-fold bipartite coverings of G, when G is nonbi-
partite. In this paper, we characterise bipartite graph bundles over G and derive
some enumeration formulas of the isomorphism classes of them when the fibre is a
connected bipartite graph. As an application, we compute the exact numbers of the
isomorphism classes of bipartite graph bundles over G when the fibre is the path Pn

or the cycle Cn.

1. INTRODUCTION

Let G be a finite connected simple graph with vertex set V(G) and edge set E(G).
Let \X\ denote the cardinality of a set X. The Betti number of G is by definition the
number fi(G) = \E(G)\ - \V(G)\ + 1, which turns out to be the number of independent
cycles in G. For graph theoretic terminology not defined here, see [3].

Two graphs G and H are isomorphic if there exists a one-to-one correspondence
between their vertex sets which preserves adjacency. Such a correspondence is called
an isomorphism between G and H. An automorphism of a graph G is an isomorphism
of G onto itself. Thus, an automorphism of G is a permutation of the vertex set V(G)
which preserves adjacency. Obviously, the automorphisms of G form a permutation group
Aut (G), which acts on the vertex set V(G).

Now, we introduce the notion of a graph bundle [7]. Every edge of a graph G gives
rise to a pair of oppositely directed edges. We denote the set of directed edges of G by
D(G). A directed edge e in D(G) is denoted by uv if its initial and terminal vertices are
u and v respectively, and its reverse edge is denoted by e~l or vu. For a finite group F,
a T-voltage assignment of G is a function <f> : D(G) —>• F such that <t>(e~l) = 0(e)~' for
all e € D(G). We denote the set of F-voltage assignment of G by Cl(G; F). Note that
the set Cl(G-,r) needs not be a group under pointwise multiplication.
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For a finite simple graph F, let <j> be an Aut (F)-voltage assignment of G. We
construct a new graph G x * F a s follows: V(G x* F) = V(G) x V(F). Two vertices
(u, s) and (v,t) in Gx^F are adjacent if either uv e D(G) and t = cj)(uv)(s) in For u = v
in G and the vertices s and t in F are adjacent. The graph G x* F is called the bundle
graph associated with <f>. Together with the first coordinate projection p* : G x^ F —¥ G,
the pair ( G x * F, p*) is called the F-bundle over G associated with <j>, and G and F are
called the base and the /i&re of the F-bundle (Gx* F,p^), respectively. When there is no
confusion, we often call the bundle graph G x ' F a n F-bundle.

Note that for each v G V(G), the fibre (j^)~l(v) — Fv of v is a subgraph of the
graph G x* F which is isomorphic to F. The map p* maps vertices to vertices, but an
image of an edge can be either an edge or a vertex. Moreover, V(G x^F) = M V(FV).

If F = Kn, the complement of the complete graph Kn on n vertices, then an F-bundle
over G is just an ra-fold covering graph of G [2]. If <j>(e) is the identity of Aut (F) for all
e G D(G), then G x* F is just the cartesian product G x F of G and F .

Two F-bundles G x* F and G x* F are said to be isomorphic if there exists an
isomorphism $ :G x* F -> G x^ F such that the diagram

G
commutes. Such a $ is called a bundle isomorphism. Notice that two isomorphic bundle
graphs need not be isomorphic as graph bundles.

After the enumeration of double covers of a graph in [4] and [8], there has been
much progress during the last decade in the enumeration of several graph coverings or
graph bundles over a graph ([l, 4, 5, 6] and references there).

Kwak and Lee [6] obtained the following algebraic characterisation of isomorphism
classes of F-bundles over G.

THEOREM 1 . 1 . Let <j> and ip be two voltage assignments in C1(G; Aut (F)). Two
F-bundles G x* F and G x* F are isomorphic if and only if there exists f : V(G) ->
Aut (F) such that I/J{UV) = j'{v)<j>{uv)}(u)'1 for all uv e D{G).

COROLLARY 1 . 2 . Let <j> be a voltage assignment in C1 (G; Aut (F)) and T a
fixed spanning tree of G. Then there exists a voltage assignment rp in G1(G;Aut(F))
such that tp(e) - the identity for all e € D[T) and G x* F is isomorphic to G x* F as
bundles.

In particular, if G is a tree, then every F-bundle graph over G is isomorphic to the
cartesian product G x F. For a fixed spanning tree T of G, let

C^(G; Aut (F)) = | (j> G C1 (G; Aut (F)) | <f>(e) = the identity for each e e D(T) }.
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It follows from Corollary 1.2 that Cj-(G; Au t (F) ) contains all representatives of the
isomorphism classes of F-bundles over G.

COROLLARY 1 . 3 . Let <j> and rp be two voltage assignments in C^(G; Aut (F)).
Then two F-bundles G x* F and G x^ F are isomorphic if and only if there exists an
automorphism a in Aut (F) such that rp(uv) — o<fr{uv)o~l for all uv 6 D(G) - D(T).

2. A CHARACTERISATION OF BIPARTITE F-BUNDLES

In this section, we consider graph bundles over G whose bundle graphs are bipartite,
called bipartite graph bundles over G. If an F-bundle G x^ F is bipartite, then clearly
the fibre F as a subgraph of G x* F is bipartite, while the base graph G needs not be
bipartite in general. In the following we discuss some characterisations of a bipartite
F-bundle G x* F in terms of the base graph G.

Let 23 = {Vi(F), V2(.F)} be a bipartition of the vertices of a bipartite graph F. An
automorphism a € Aut (F) is said to preserve the bipartition 93 of F if a(Vi(F)) = Vi(F)
for each i = 1,2, and said to reverse the bipartition 23 of F if a(Vi(F)) — Vj(F) where
i ± j . We put

V<B(F) = {a € Aut (F) \ a preserves the bipartition 03 of F}

and
11<B(F) - {a € Aut {F) \ a reverses the bipartition *B of F}.

Note that, for a bipartition S3 of F, I{TZ<B(F) ± 0, then |Vi(F)| = |V2(-F)| and l^
If F is a connected bipartite graph, then the bipartition of F is unique and

Aut (F) is the disjoint union of V^(F) and Tl^{F). In this case, V<s{F) and 11<B(F) are
denoted by V(F) and 1Z{F) respectively. If F is not connected, then, for a bipartition
23 of F, Aut (F) needs not be the disjoint union of V<s(F) and Tl<s{F) even though
T^<s{F) 7̂  0. From now on, we assume that the fibre F is a connected bipartite graph,
and T is a fixed spanning tree of the base graph G of a graph bundle G x^ F.

For each a € Aut (F), we define the signature of a as

/ +1 lia

An edge e in E(G) - E(T) is said to be odd (respectively even) if T + e has an odd
(respectively even) cycle. For a directed edge e in D(G) - D(T), the signature of e is
defined as

. . . _ J +1 if the underlying edge of e is even,
1—1 if the underlying edge of e is odd.

Let /?0(G, T) and /3e{G, T) be the number of odd and even edges in E(G) - E(T), respec-
tively. Then 0{G) = /3e(G,T) + po{G,T).
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Let 4> be an Aut (F)-voltage assignment of G and let W — t\e2 •.. en be a walk in
G with length t{W) = n. The product of voltages 4>{W) = (p{en) • • • 4>(e2)<t>(ei) is called
the net <j)-voltage of W.

THEOREM 2 . 1 . Let F be a connected bipartite graph and <j> 6 Cl (G; Aut (F)).
Then the following are equivalent.

(a) G x* F is bipartite.

(b) For each cycie C in G, sig(<£(C)) = (-1)<(C>.

Moreover, if</> € Cj-(G\ Aut (F)) , then the above statements are equivalent to

(c) For each uv G D{G) - D(T), sig((j>(uv)) = sig(uw).

PROOF: (a) => (b) Suppose G x* F is bipartite, and let C be a cycle of length n in
G having vertices vi,v2,... ,wn consecutively. Then (vi,s) ( ^ ^ ( " I ^ X * ) ) («3, ^(u2«3)
0(viU2)(«)) • • • (ui, 0(C)(s)) is a path or a cycle P in G x* F of length n. Let Q be a
walk in (p*)" 1 ^ ) = F ^ connecting the vertices (v!,(/>(G)(s)) and (v\,s). Then PQ is a
closed walk in G x* F so that the length £(PQ) is even, since G x* F is bipartite. Note
that

t{PQ) = t{C)+l(Q)=-n + i(Q).

Thus the parities of £{C) and £(Q) are the same, that is, ( - l ) ' ( c ) = ( - 1 ) ^ ) . Moreover,
since FVI is bipartite, the length £(Q) is odd if and only if 0(C) G 7£(F), and is even if
and only it 4>{C) € V(F). Therefore, sig(0(C)) = (-l)«W> = (-1)'<C>.

(b) => (a) Let u0 be a fixed vertex in G and let the fibre FUo have a vertex bipartition
Vi(FU0) and V(FU0) - Vi(FU0). For each v in V(G), let Po be the unique path in a spanning
tree T which connects UQ and v, and let

V(F) = { {v) ^v)^^ {Pv) is ° d d >

I <A(P«)(Vi(FU0)) if £(PV) is even.

Then for each u in l^(G), Vi(Fv) and V(FU) - Vi(Fu) form a bipartition of the bipartite
graph Fv. This implies that VX(G x* F) = \J Vi{Fv) and its complement V2(G x* F)

in V(G x1* F) form a bipartition of the connected graph (p*)~1(T) which is a spanning
subgraph of G x^ F . Now, if condition (b) holds, then G x^ F cannot have an odd
cycle, and V\(G x* F) and V2{G x^ F) actually form a bipartition of the connected graph
G x* F . Hence G x* F is bipartite.

(b) «=> (c) This is clear that the length £{C) of a cycle C in G is odd if and only if
C contains an odd number of odd edges. Since <j> € Cy(G; Aut (F)), the conditions (b)
and (c) are equivalent. D

COROLLARY 2 . 2 . Let F be a connected bipartite graph with 1l(F) — 0. Then

the following are equivalent.
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(a) G is bipartite.

(b) All bundle graphs G x* F over G are bipartite.

(c) G x F is bipartite.

PROOF: (a) => (b) Let 4> be an Aut (F)-voltage assignment of G. Then for each
cycle C in G, sig(<£(G)) = 1, because Tl(F) = 0. Since G is bipartite, (-1)'<C> = 1 for
each cycle C in G. Now, by Theorem 2.1, G x* F is bipartite.

(b) => (c) Let ^ be the trivial voltage assignment in Cl{G\ Aut (F)), that is, <0(uv)
is the identity for each uv € D(G). Then G x* F is just the cartesian product G x F,
which is bipartite by (b).

(c) =>• (a) This is clear, because G is a subgraph of G x F. D

Corollary 2.2 implies that if 1Z(F) = 0 and G is nonbipartite, then there is a voltage
4> G C'(G; Aut (F)) such that G x* F is nonbipartite. Actually, the following corollary
shows that G x^F cannot be bipartite for any voltage <j> € G1 (G; Aut (F)). In particular,
if the number of vertices of F is odd, then clearly TZ(F) — 0, and any F-bundle over a
nonbipartite graph G cannot be bipartite.

Recall that every F-bundle graph over a tree T is isomorphic to the cartesian product
T x F. Since the cartesian product of two bipartite graphs is also bipartite, every F-
bundle graph over a tree is bipartite. Note that if 72.(F) ^ 0, then one can always find a
nonbipartite graph bundle G x* F for any bipartite graph G which is not a tree.

COROLLARY 2 . 3 . Let F be a connected bipartite graph and G a nonbipartite
graph. Then there exists a bipartite F-bundle over G if and only iflZ(F) ^ 0.

PROOF: Suppose that there exists a bipartite F-bundle G x* F over a nonbipartite
graph G. Since G is not bipartite, it contains at least one odd cycle C. By Theorem 2.1,
4>{C) e Tl{F) and hence U{F) ^ 0.

Conversely, let a e Tl(F). We define <j> : D+(G) -* Aut (F) by <j)(uv) = a for each
uv € D+(G), where D+(G) is a subset of D(G) consisting of all positively directed edges.
Then <j> can be extended to a voltage assignment in C1(G; Aut (F)) with the property
that for each cycle C sig(<£(G)) = (-1)*(C). Theorem 2.1 implies that G x* F is a
bipartite F-bundle over G. D

3. ENUMERATION FORMULAS

Let IsoB (G; F) denote the number of isomorphism classes of bipartite F-bundles
over G. The following theorem is a direct consequence of Corollaries 2.2 and 2.3.

THEOREM 3 . 1 . Let F be a connected bipartite graph with 1l(F) = 0. Then we

have
[ 0 ifG is nonbipartite,

lsoB(G;F) = \
{ Iso (G; F) ifG is bipartite,
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where Iso (G; F) denotes the number of isomorphism classes of F-bundles over G.

Recall that the number Iso (G;F) has been computed by Kwak and Lee [6]. In
the following, we derive an enumeration formula for the number IsoB (G; F) when F is
a connected bipartite graph. For a connected bipartite graph F, we first consider the
following set of Aut(F)-voltage assignments:

BC±(G; Aut(F)) = {(£ € C±(G; Aut (F)) | sig(tf(e)) = sig(e) for all e <E D(G) - D{T)}.

This set is characterised by Theorem 2.1 and Corollary 1.2 as follows.

LEMMA 3 . 2 . Let F be a connected bipartite graph. Then BC^(G; Aut(F))
contains all representatives of the isomorphism classes of bipartite F-bundles over G.

We define an action of Aut (F) on BC\.{G; Aut (F)) by (a»<f>){uv) - a<f>{uv)a~1 for
all uv e D(G). This action is well-defined, since

aV{F)<j-1 = V{F) and aK(F)a-1 = H{F)

for each automorphism a 6 Aut (F). The following is a direct consequence of Corol-
lary 1.3.

LEMMA 3 . 3 . Let F be a connected bipartite graph, and let <f> and ip be two
voltage assignments in jBCf(G; Aut (F)). Then two bipartite F-bundles G x* F and
G x^1 F are isomorphic if and only if there exists an automorphism a in Aut (F) such that
(j%(j) = ipt that is, <j> andtp lie in the same orbit of the Aut (F)-action on BC\-{G\ Aut (F)).

By the Burnside lemma and Lemmas 3.2 and 3.3, we have the following.

THEOREM 3 . 4 . Let F be a connected bipartite graph. Then the number
IsoB(G; F) of isomorphism classes of bipartite F-bundles over G is

where F i x „ = U> € BC±(G; A u t ( F ) ) | a « 0 =

The following lemma shows how to compute the number |FixCT|. For a € Aut(F),
let Z(a) = {n € Aut (F) | CT/J = ^ a } , ZP(a) = {fj, £ P(F) | CT/X = /wr}, and ZTC(cr) =
{M € tt(F) | CTM = /iff}. Clearly, if Z^a) ± 0, then |Zp(ff)| = \ZK{a)\.

LEMMA 3 . 5 . Let F be a connected bipartite graph. Then for each a € Aut (F),

if \Z-n(a)| = 0 and G is nonbipartite,

"(G) if |Zfc(ff)| = 0 and G is bipartite,

otherwise.
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By applying Theorems 4 and 5 in [6] and Lemma 3.5 to Theorem 3.4, we have the
following.

THEOREM 3 . 6 . Let F be a connected bipartite graph such that Aut (F) is

Abelian. Then

{ 0 HG is nonbipartite and H{F) = 0,

Iso (G; F) if G is bipartite and Tl(F) = 0,
where Iso (G; F) = |Aut {F)\0(G) as shown in [6].

4. APPLICATIONS

As an application of our results, one can compute the number IsoB(G; F) of the
isomorphism classes of bipartite F-bundles over G when F = Pn or Cn, where Pn is the
path with n vertices and Cn is the cycle of length n.

1. Let F = Pn. Note that the automorphism group Aut (Pn) of Pn is isomorphic
to the cyclic group {I, a} of order 2 and hence is Abelian. Moreover, V(Pn) = Aut(Pn)
and U{Pn) = 0 if n is odd, and V{Pn) = {1} and TZ(Pn) = {a} if n is even.

By Theorem 3.6, we have the following.

THEOREM 4 . 1 . The number IsoB (G; Pn) of the isomorphism classes of bipartite
Pn-bundles over G is

{ 0 if G is nonbipartite and n is odd,
2/?(G) ifG is bipartite and n is odd,

1 ifn is even.

The following table shows the number IsoB(G; Pn) for small n and P(G):

n
n

P(G)
= odd

= even

0
1
1

1

2
1

bipartite
2
4
1

3

8
1

4

16
1

G

5 •••
3 2 •••

1 • • •

1

0
1

nonbipartite
2

0
1

3
0
1

4

0
1

5
0
1

G

2. Let F = Cn. Note that Cn is bipartite if and only if n is even. Hence,
Isos(G;Cn) = 0 if n is odd. Let n be an even number. Then Aut(Gn) can be
identified with the dihedral group Dn, which is generated by r and p, where r —
(1 n)(2 n - 1) • • • ((n/2) (n/2) + l) and p = (1 2 . . . n) in the symmetric group
Sn on n elements 1,2,... , n. Moreover,

V(Cn) = {p2i, rp2i+l | 1 ̂  i^ ^ } and U{Cn) = {p2i+1, rp2i | 1 ̂  i ^

By a simple computation, we have the following.
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LEMMA 4 . 2 . Let n be an even number and h = 0 , . . . , n — 1. Then

(a) \Zv{ph)\ = \Zn(ph)\ =

(b) \ZV(T(fi)\ =

(c) \Zn(TP
h)\ =

n if h = 0 or h = —,

n/2 otherwise.

4 if n/2 is even and h is odd,

2 otherwise.

0 if n/2 is even and h is odd,

2 otherwise.

Lemma 3.5 and Theorem 3.4 imply the following theorem.

THEOREM 4 . 3 . Let n > 3 be a nafcurai number.
(a) Ifn is odd, IsoB(G; Cn) = 0.

(b) Ifn is even and not a multiple of A, then

I so B (G;G n )=n^ G ) - 1 + ^

(c) Ifn is a multiple of 4, tien

IsoB (G;Cn) =

n « O - i + +

ifG is bipartite,

ifG is nonbipartite.

The following table shows the number IsoB(G; Pn) for small n and P(G):

t
n =
n
n
n
n -

KG)
odd
= 4
= 6
= 8
= 10

0
0
1
1
1
1

1

0
3
3
4
4

2
0
10
11
19
22

bipartite G
3
0
36
49
106
154

4
0

136
251
676
1258

5 •••
0 •••

528
1393 • • •
4744 • • •

11266 •• •

1
0
2
3
3
4

2
0
6
11
15
22

nonbipartite
3
0
20
49
90
154

4
0
72
251
612
1258

G
5 •••

0 •••

272
1393 • • •
4488 •• •

1 1 2 6 6 •••
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