Bull. Austral. Math. Soc. Vol. 59 (1999) [153-161]

BIPARTITE GRAPH BUNDLES WITH CONNECTED FIBRES

SUNGPYO HONG, JIN HO KWAK AND JAEUN LEE

Let G be a finite connected simple graph. The isomorphism classes of graph bundles and graph coverings over G have been enumerated by Kwak and Lee. Recently, Archdeacon and others characterised bipartite coverings of G and enumerated the isomorphism classes of regular 2p-fold bipartite coverings of G, when G is nonbipartite. In this paper, we characterise bipartite graph bundles over G and derive some enumeration formulas of the isomorphism classes of them when the fibre is a connected bipartite graph. As an application, we compute the exact numbers of the isomorphism classes of bipartite graph bundles over G when the fibre is the path P_n or the cycle C_n .

1. INTRODUCTION

Let G be a finite connected simple graph with vertex set V(G) and edge set E(G). Let |X| denote the cardinality of a set X. The *Betti number* of G is by definition the number $\beta(G) = |E(G)| - |V(G)| + 1$, which turns out to be the number of independent cycles in G. For graph theoretic terminology not defined here, see [3].

Two graphs G and H are *isomorphic* if there exists a one-to-one correspondence between their vertex sets which preserves adjacency. Such a correspondence is called an *isomorphism* between G and H. An *automorphism* of a graph G is an isomorphism of G onto itself. Thus, an automorphism of G is a permutation of the vertex set V(G)which preserves adjacency. Obviously, the automorphisms of G form a permutation group Aut (G), which acts on the vertex set V(G).

Now, we introduce the notion of a graph bundle [7]. Every edge of a graph G gives rise to a pair of oppositely directed edges. We denote the set of directed edges of G by D(G). A directed edge e in D(G) is denoted by uv if its initial and terminal vertices are u and v respectively, and its reverse edge is denoted by e^{-1} or vu. For a finite group Γ , a Γ -voltage assignment of G is a function $\phi : D(G) \to \Gamma$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for all $e \in D(G)$. We denote the set of Γ -voltage assignment of G by $C^1(G; \Gamma)$. Note that the set $C^1(G; \Gamma)$ needs not be a group under pointwise multiplication.

Received 30th July, 1998 Supported by TGRC-KOSEF and BSRI-1430.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

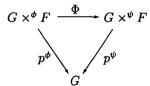
[2]

For a finite simple graph F, let ϕ be an Aut(F)-voltage assignment of G. We construct a new graph $G \times^{\phi} F$ as follows: $V(G \times^{\phi} F) = V(G) \times V(F)$. Two vertices (u, s) and (v, t) in $G \times^{\phi} F$ are adjacent if either $uv \in D(G)$ and $t = \phi(uv)(s)$ in F or u = v in G and the vertices s and t in F are adjacent. The graph $G \times^{\phi} F$ is called the *bundle graph associated with* ϕ . Together with the first coordinate projection $p^{\phi}: G \times^{\phi} F \to G$, the pair $(G \times^{\phi} F, p^{\phi})$ is called the *F*-bundle over G associated with ϕ , and G and F are called the *base* and the *fibre* of the *F*-bundle $(G \times^{\phi} F, p^{\phi})$, respectively. When there is no confusion, we often call the bundle graph $G \times^{\phi} F$ an *F*-bundle.

Note that for each $v \in V(G)$, the fibre $(p^{\phi})^{-1}(v) = F_v$ of v is a subgraph of the graph $G \times^{\phi} F$ which is isomorphic to F. The map p^{ϕ} maps vertices to vertices, but an image of an edge can be either an edge or a vertex. Moreover, $V(G \times^{\phi} F) = \bigcup_{v \in V(G)} V(F_v)$.

If $F = \overline{K_n}$, the complement of the complete graph K_n on *n* vertices, then an *F*-bundle over *G* is just an *n*-fold covering graph of *G* [2]. If $\phi(e)$ is the identity of Aut (*F*) for all $e \in D(G)$, then $G \times^{\phi} F$ is just the cartesian product $G \times F$ of *G* and *F*.

Two F-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are said to be *isomorphic* if there exists an isomorphism $\Phi: G \times^{\phi} F \to G \times^{\psi} F$ such that the diagram



commutes. Such a Φ is called a *bundle isomorphism*. Notice that two isomorphic bundle graphs need not be isomorphic as graph bundles.

After the enumeration of double covers of a graph in [4] and [8], there has been much progress during the last decade in the enumeration of several graph coverings or graph bundles over a graph ([1, 4, 5, 6] and references there).

Kwak and Lee [6] obtained the following algebraic characterisation of isomorphism classes of F-bundles over G.

THEOREM 1.1. Let ϕ and ψ be two voltage assignments in $C^1(G; \operatorname{Aut}(F))$. Two *F*-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are isomorphic if and only if there exists $f : V(G) \to \operatorname{Aut}(F)$ such that $\psi(uv) = f(v)\phi(uv)f(u)^{-1}$ for all $uv \in D(G)$.

COROLLARY 1.2. Let ϕ be a voltage assignment in $C^1(G; \operatorname{Aut}(F))$ and T a fixed spanning tree of G. Then there exists a voltage assignment ψ in $C^1(G; \operatorname{Aut}(F))$ such that $\psi(e) =$ the identity for all $e \in D(T)$ and $G \times^{\phi} F$ is isomorphic to $G \times^{\psi} F$ as bundles.

In particular, if G is a tree, then every F-bundle graph over G is isomorphic to the cartesian product $G \times F$. For a fixed spanning tree T of G, let

$$C_T^1(G; \operatorname{Aut}(F)) = \left\{ \phi \in C^1(G; \operatorname{Aut}(F)) \mid \phi(e) = \text{the identity for each } e \in D(T) \right\}.$$

Bipartite graph bundles

It follows from Corollary 1.2 that $C_T^1(G; \operatorname{Aut}(F))$ contains all representatives of the isomorphism classes of F-bundles over G.

COROLLARY 1.3. Let ϕ and ψ be two voltage assignments in $C_T^1(G; \operatorname{Aut}(F))$. Then two F-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are isomorphic if and only if there exists an automorphism σ in Aut (F) such that $\psi(uv) = \sigma \phi(uv) \sigma^{-1}$ for all $uv \in D(G) - D(T)$.

2. A CHARACTERISATION OF BIPARTITE F-BUNDLES

In this section, we consider graph bundles over G whose bundle graphs are bipartite, called *bipartite graph bundles* over G. If an F-bundle $G \times^{\phi} F$ is bipartite, then clearly the fibre F as a subgraph of $G \times^{\phi} F$ is bipartite, while the base graph G needs not be bipartite in general. In the following we discuss some characterisations of a bipartite F-bundle $G \times^{\phi} F$ in terms of the base graph G.

Let $\mathfrak{B} = \{V_1(F), V_2(F)\}$ be a bipartition of the vertices of a bipartite graph F. An automorphism $\sigma \in \operatorname{Aut}(F)$ is said to preserve the bipartition \mathfrak{B} of F if $\sigma(V_i(F)) = V_i(F)$ for each i = 1, 2, and said to reverse the bipartition \mathfrak{B} of F if $\sigma(V_i(F)) = V_j(F)$ where $i \neq j$. We put

 $\mathcal{P}_{\mathfrak{B}}(F) = \left\{ \sigma \in \operatorname{Aut}\left(F\right) \mid \sigma \text{ preserves the bipartition } \mathfrak{B} \text{ of } F \right\}$

and

$$\mathcal{R}_{\mathfrak{B}}(F) = \left\{ \sigma \in \operatorname{Aut}\left(F\right) \mid \sigma \text{ reverses the bipartition } \mathfrak{B} \text{ of } F \right\}$$

Note that, for a bipartition \mathfrak{B} of F, if $\mathcal{R}_{\mathfrak{B}}(F) \neq \emptyset$, then $|V_1(F)| = |V_2(F)|$ and $|\mathcal{P}_{\mathfrak{B}}(F)| = |\mathcal{R}_{\mathfrak{B}}(F)|$. If F is a connected bipartite graph, then the bipartition of F is unique and Aut (F) is the disjoint union of $\mathcal{P}_{\mathfrak{B}}(F)$ and $\mathcal{R}_{\mathfrak{B}}(F)$. In this case, $\mathcal{P}_{\mathfrak{B}}(F)$ and $\mathcal{R}_{\mathfrak{B}}(F)$ are denoted by $\mathcal{P}(F)$ and $\mathcal{R}(F)$ respectively. If F is not connected, then, for a bipartition \mathfrak{B} of F, Aut (F) needs not be the disjoint union of $\mathcal{P}_{\mathfrak{B}}(F)$ and $\mathcal{R}_{\mathfrak{B}}(F)$ even though $\mathcal{R}_{\mathfrak{B}}(F) \neq \emptyset$. From now on, we assume that the fibre F is a connected bipartite graph, and T is a fixed spanning tree of the base graph G of a graph bundle $G \times^{\phi} F$.

For each $\sigma \in Aut(F)$, we define the signature of σ as

$$\operatorname{sig}(\sigma) = \begin{cases} +1 & \text{if } \sigma \in \mathcal{P}(F), \\ -1 & \text{if } \sigma \in \mathcal{R}(F). \end{cases}$$

An edge e in E(G) - E(T) is said to be *odd* (respectively *even*) if T + e has an odd (respectively *even*) cycle. For a directed edge e in D(G) - D(T), the *signature of* e is defined as

 $sig(e) = \begin{cases} +1 & \text{if the underlying edge of } e \text{ is even,} \\ -1 & \text{if the underlying edge of } e \text{ is odd.} \end{cases}$

Let $\beta_o(G,T)$ and $\beta_e(G,T)$ be the number of odd and even edges in E(G) - E(T), respectively. Then $\beta(G) = \beta_e(G,T) + \beta_o(G,T)$.

-

Let ϕ be an Aut (F)-voltage assignment of G and let $W = e_1 e_2 \dots e_n$ be a walk in G with length $\ell(W) = n$. The product of voltages $\phi(W) = \phi(e_n) \cdots \phi(e_2)\phi(e_1)$ is called the *net* ϕ -voltage of W.

THEOREM 2.1. Let F be a connected bipartite graph and $\phi \in C^1(G; \operatorname{Aut}(F))$. Then the following are equivalent.

- (a) $G \times^{\phi} F$ is bipartite.
- (b) For each cycle C in G, $sig(\phi(C)) = (-1)^{\ell(C)}$.

Moreover, if $\phi \in C^1_T(G; \operatorname{Aut}(F))$, then the above statements are equivalent to

(c) For each $uv \in D(G) - D(T)$, $sig(\phi(uv)) = sig(uv)$.

PROOF: (a) \Rightarrow (b) Suppose $G \times^{\phi} F$ is bipartite, and let C be a cycle of length n in G having vertices v_1, v_2, \ldots, v_n consecutively. Then $(v_1, s) (v_2, \phi(v_1v_2)(s)) (v_3, \phi(v_2v_3) \phi(v_1v_2)(s)) \cdots (v_1, \phi(C)(s))$ is a path or a cycle P in $G \times^{\phi} F$ of length n. Let Q be a walk in $(p^{\phi})^{-1}(v_1) = F_{v_1}$ connecting the vertices $(v_1, \phi(C)(s))$ and (v_1, s) . Then PQ is a closed walk in $G \times^{\phi} F$ so that the length $\ell(PQ)$ is even, since $G \times^{\phi} F$ is bipartite. Note that

$$\ell(PQ) = \ell(C) + \ell(Q) = n + \ell(Q).$$

Thus the parities of $\ell(C)$ and $\ell(Q)$ are the same, that is, $(-1)^{\ell(C)} = (-1)^{\ell(Q)}$. Moreover, since F_{v_1} is bipartite, the length $\ell(Q)$ is odd if and only if $\phi(C) \in \mathcal{R}(F)$, and is even if and only if $\phi(C) \in \mathcal{P}(F)$. Therefore, $\operatorname{sig}(\phi(C)) = (-1)^{\ell(Q)} = (-1)^{\ell(C)}$.

(b) \Rightarrow (a) Let u_0 be a fixed vertex in G and let the fibre F_{u_0} have a vertex bipartition $V_1(F_{u_0})$ and $V(F_{u_0}) - V_1(F_{u_0})$. For each v in V(G), let P_v be the unique path in a spanning tree T which connects u_0 and v, and let

$$V_1(F_v) = \begin{cases} V(F_v) - \phi(P_v) (V_1(F_{u_0})) & \text{if } \ell(P_v) \text{ is odd,} \\ \phi(P_v) (V_1(F_{u_0})) & \text{if } \ell(P_v) \text{ is even.} \end{cases}$$

Then for each v in V(G), $V_1(F_v)$ and $V(F_v) - V_1(F_v)$ form a bipartition of the bipartite graph F_v . This implies that $V_1(G \times^{\phi} F) = \bigcup_{v \in V(G)} V_1(F_v)$ and its complement $V_2(G \times^{\phi} F)$

in $V(G \times^{\phi} F)$ form a bipartition of the connected graph $(p^{\phi})^{-1}(T)$ which is a spanning subgraph of $G \times^{\phi} F$. Now, if condition (b) holds, then $G \times^{\phi} F$ cannot have an odd cycle, and $V_1(G \times^{\phi} F)$ and $V_2(G \times^{\phi} F)$ actually form a bipartition of the connected graph $G \times^{\phi} F$. Hence $G \times^{\phi} F$ is bipartite.

(b) \Leftrightarrow (c) This is clear that the length $\ell(C)$ of a cycle C in G is odd if and only if C contains an odd number of odd edges. Since $\phi \in C_T^1(G; \operatorname{Aut}(F))$, the conditions (b) and (c) are equivalent.

COROLLARY 2.2. Let F be a connected bipartite graph with $\mathcal{R}(F) = \emptyset$. Then the following are equivalent.

[4]

- (a) G is bipartite.
- (b) All bundle graphs $G \times^{\phi} F$ over G are bipartite.
- (c) $G \times F$ is bipartite.

PROOF: (a) \Rightarrow (b) Let ϕ be an Aut (F)-voltage assignment of G. Then for each cycle C in G, $\operatorname{sig}(\phi(C)) = 1$, because $\mathcal{R}(F) = \emptyset$. Since G is bipartite, $(-1)^{\ell(C)} = 1$ for each cycle C in G. Now, by Theorem 2.1, $G \times^{\phi} F$ is bipartite.

(b) \Rightarrow (c) Let ϕ be the trivial voltage assignment in $C^1(G; \operatorname{Aut}(F))$, that is, $\phi(uv)$ is the identity for each $uv \in D(G)$. Then $G \times^{\phi} F$ is just the cartesian product $G \times F$, which is bipartite by (b).

(c) \Rightarrow (a) This is clear, because G is a subgraph of $G \times F$.

Corollary 2.2 implies that if $\mathcal{R}(F) = \emptyset$ and G is nonbipartite, then there is a voltage $\phi \in C^1(G; \operatorname{Aut}(F))$ such that $G \times^{\phi} F$ is nonbipartite. Actually, the following corollary shows that $G \times^{\phi} F$ cannot be bipartite for any voltage $\phi \in C^1(G; \operatorname{Aut}(F))$. In particular, if the number of vertices of F is odd, then clearly $\mathcal{R}(F) = \emptyset$, and any F-bundle over a nonbipartite graph G cannot be bipartite.

Recall that every F-bundle graph over a tree T is isomorphic to the cartesian product $T \times F$. Since the cartesian product of two bipartite graphs is also bipartite, every F-bundle graph over a tree is bipartite. Note that if $\mathcal{R}(F) \neq \emptyset$, then one can always find a nonbipartite graph bundle $G \times^{\phi} F$ for any bipartite graph G which is not a tree.

COROLLARY 2.3. Let F be a connected bipartite graph and G a nonbipartite graph. Then there exists a bipartite F-bundle over G if and only if $\mathcal{R}(F) \neq \emptyset$.

PROOF: Suppose that there exists a bipartite F-bundle $G \times^{\phi} F$ over a nonbipartite graph G. Since G is not bipartite, it contains at least one odd cycle C. By Theorem 2.1, $\phi(C) \in \mathcal{R}(F)$ and hence $\mathcal{R}(F) \neq \emptyset$.

Conversely, let $\sigma \in \mathcal{R}(F)$. We define $\phi : D^+(G) \to \operatorname{Aut}(F)$ by $\phi(uv) = \sigma$ for each $uv \in D^+(G)$, where $D^+(G)$ is a subset of D(G) consisting of all positively directed edges. Then ϕ can be extended to a voltage assignment in $C^1(G; \operatorname{Aut}(F))$ with the property that for each cycle $C \operatorname{sig}(\phi(C)) = (-1)^{\ell(C)}$. Theorem 2.1 implies that $G \times^{\phi} F$ is a bipartite F-bundle over G.

3. Enumeration formulas

Let $Iso^B(G; F)$ denote the number of isomorphism classes of bipartite F-bundles over G. The following theorem is a direct consequence of Corollaries 2.2 and 2.3.

THEOREM 3.1. Let F be a connected bipartite graph with $\mathcal{R}(F) = \emptyset$. Then we have

$$\operatorname{Iso}^{B}(G;F) = \begin{cases} 0 & \text{if } G \text{ is nonbipartite,} \\ \operatorname{Iso}(G;F) & \text{if } G \text{ is bipartite,} \end{cases}$$

Ο

where Iso (G; F) denotes the number of isomorphism classes of F-bundles over G.

Recall that the number Iso (G; F) has been computed by Kwak and Lee [6]. In the following, we derive an enumeration formula for the number $\text{Iso}^B(G; F)$ when F is a connected bipartite graph. For a connected bipartite graph F, we first consider the following set of Aut(F)-voltage assignments:

$$BC_T^1(G; \operatorname{Aut}(F)) = \left\{ \phi \in C_T^1(G; \operatorname{Aut}(F)) \mid \operatorname{sig}(\phi(e)) = \operatorname{sig}(e) \text{ for all } e \in D(G) - D(T) \right\}$$

This set is characterised by Theorem 2.1 and Corollary 1.2 as follows.

LEMMA 3.2. Let F be a connected bipartite graph. Then $BC_T^1(G; \operatorname{Aut}(F))$ contains all representatives of the isomorphism classes of bipartite F-bundles over G.

We define an action of Aut (F) on $BC_T^1(G; Aut(F))$ by $(\sigma \bullet \phi)(uv) = \sigma \phi(uv)\sigma^{-1}$ for all $uv \in D(G)$. This action is well-defined, since

$$\sigma \mathcal{P}(F)\sigma^{-1} = \mathcal{P}(F)$$
 and $\sigma \mathcal{R}(F)\sigma^{-1} = \mathcal{R}(F)$

for each automorphism $\sigma \in Aut(F)$. The following is a direct consequence of Corollary 1.3.

LEMMA 3.3. Let F be a connected bipartite graph, and let ϕ and ψ be two voltage assignments in $BC_T^1(G; \operatorname{Aut}(F))$. Then two bipartite F-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are isomorphic if and only if there exists an automorphism σ in $\operatorname{Aut}(F)$ such that $\sigma \bullet \phi = \psi$, that is, ϕ and ψ lie in the same orbit of the $\operatorname{Aut}(F)$ -action on $BC_T^1(G; \operatorname{Aut}(F))$.

By the Burnside lemma and Lemmas 3.2 and 3.3, we have the following.

THEOREM 3.4. Let F be a connected bipartite graph. Then the number $Iso^B(G; F)$ of isomorphism classes of bipartite F-bundles over G is

$$\operatorname{Iso}^{B}(G; F) = \frac{1}{\left|\operatorname{Aut}(F)\right|} \sum_{\sigma \in \operatorname{Aut}(F)} |\operatorname{Fix}_{\sigma}|,$$

where Fix_{σ} = { $\phi \in BC_T^1(G; \operatorname{Aut}(F)) \mid \sigma \bullet \phi = \phi$ }.

The following lemma shows how to compute the number $|\text{Fix}_{\sigma}|$. For $\sigma \in \text{Aut}(F)$, let $Z(\sigma) = \{\mu \in \text{Aut}(F) \mid \sigma\mu = \mu\sigma\}, Z_{\mathcal{P}}(\sigma) = \{\mu \in \mathcal{P}(F) \mid \sigma\mu = \mu\sigma\}, \text{ and } Z_{\mathcal{R}}(\sigma) = \{\mu \in \mathcal{R}(F) \mid \sigma\mu = \mu\sigma\}$. Clearly, if $Z_{\mathcal{R}}(\sigma) \neq \emptyset$, then $|Z_{\mathcal{P}}(\sigma)| = |Z_{\mathcal{R}}(\sigma)|$.

LEMMA 3.5. Let F be a connected bipartite graph. Then for each $\sigma \in Aut(F)$,

Fix_{$$\sigma$$}| = $|Z_{\mathcal{P}}(\sigma)|^{\rho_{\epsilon}(G,T)} |Z_{\mathcal{R}}(\sigma)|^{\rho_{\delta}(G,T)}$
= $\begin{cases} 0 & \text{if } |Z_{\mathcal{R}}(\sigma)| = 0 \text{ and } G \text{ is nonbipartite,} \\ |Z(\sigma)|^{\beta(G)} & \text{if } |Z_{\mathcal{R}}(\sigma)| = 0 \text{ and } G \text{ is bipartite,} \\ \left(\frac{|Z(\sigma)|}{2}\right)^{\beta(G)} & \text{otherwise.} \end{cases}$

I

[6]

By applying Theorems 4 and 5 in [6] and Lemma 3.5 to Theorem 3.4, we have the following.

THEOREM 3.6. Let F be a connected bipartite graph such that Aut(F) is Abelian. Then

$$\operatorname{Iso}^{\mathcal{B}}(G;F) = \begin{cases} 0 & \text{if } G \text{ is nonbipartite and } \mathcal{R}(F) = \emptyset, \\ \operatorname{Iso}(G;F) & \text{if } G \text{ is bipartite and } \mathcal{R}(F) = \emptyset, \\ \operatorname{Iso}(G;F)/2^{\beta(G)} & \text{if } \mathcal{R}(F) \neq \emptyset, \end{cases}$$

where Iso $(G; F) = |\operatorname{Aut}(F)|^{\beta(G)}$ as shown in [6].

4. Applications

As an application of our results, one can compute the number $Iso^B(G; F)$ of the isomorphism classes of bipartite F-bundles over G when $F = P_n$ or C_n , where P_n is the path with n vertices and C_n is the cycle of length n.

1. Let $F = P_n$. Note that the automorphism group $\operatorname{Aut}(P_n)$ of P_n is isomorphic to the cyclic group $\{1, \alpha\}$ of order 2 and hence is Abelian. Moreover, $\mathcal{P}(P_n) = \operatorname{Aut}(P_n)$ and $\mathcal{R}(P_n) = \emptyset$ if n is odd, and $\mathcal{P}(P_n) = \{1\}$ and $\mathcal{R}(P_n) = \{\alpha\}$ if n is even.

By Theorem 3.6, we have the following.

THEOREM 4.1. The number $\text{Iso}^{B}(G; P_n)$ of the isomorphism classes of bipartite P_n -bundles over G is

$$\operatorname{Iso}^{B}(G; P_{n}) = \begin{cases} 0 & \text{if } G \text{ is nonbipartite and } n \text{ is odd,} \\ 2^{\beta(G)} & \text{if } G \text{ is bipartite and } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

The following table shows the number $\text{Iso}^B(G; P_n)$ for small n and $\beta(G)$:

	bipartite G								nonbipartite G					
$\beta(G)$	0	1	2	3	4	5		1	2	3	4	5	• • •	
n = odd	1	2	4	8	16	32	•••	0	0	0	0	0		
n = even	1	1	1	1	1	1		1	1	1	1	1	•••	

2. Let $F = C_n$. Note that C_n is bipartite if and only if n is even. Hence, Iso^B(G; C_n) = 0 if n is odd. Let n be an even number. Then Aut (C_n) can be identified with the dihedral group \mathbb{D}_n , which is generated by τ and ρ , where $\tau = -(1 \ n)(2 \ n-1)\cdots((n/2) \ (n/2)+1)$ and $\rho = (12 \dots n)$ in the symmetric group S_n on n elements $1, 2, \dots, n$. Moreover,

$$\mathcal{P}(C_n) = \left\{ \rho^{2i}, \, \tau \rho^{2i+1} \mid 1 \leqslant i \leqslant \frac{n}{2} \right\} \quad \text{and} \quad \mathcal{R}(C_n) = \left\{ \rho^{2i+1}, \, \tau \rho^{2i} \mid 1 \leqslant i \leqslant \frac{n}{2} \right\}$$

By a simple computation, we have the following.

LEMMA 4.2. Let n be an even number and h = 0, ..., n-1. Then

(a)
$$|Z_{\mathcal{P}}(\rho^{h})| = |Z_{\mathcal{R}}(\rho^{h})| = \begin{cases} n & \text{if } h = 0 \text{ or } h = \frac{n}{2}, \\ n/2 & \text{otherwise.} \end{cases}$$

(b) $|Z_{\mathcal{P}}(\tau \rho^{h})| = \begin{cases} 4 & \text{if } n/2 \text{ is even and } h \text{ is odd,} \\ 2 & \text{otherwise.} \end{cases}$
(c) $|Z_{\mathcal{R}}(\tau \rho^{h})| = \begin{cases} 0 & \text{if } n/2 \text{ is even and } h \text{ is odd,} \\ 2 & \text{otherwise.} \end{cases}$

Lemma 3.5 and Theorem 3.4 imply the following theorem.

THEOREM 4.3. Let $n \ge 3$ be a natural number.

- (a) If n is odd, $\operatorname{Iso}^B(G; C_n) = 0$.
- (b) If n is even and not a multiple of 4, then

$$\operatorname{Iso}^{B}(G; C_{n}) = n^{\beta(G)-1} + \frac{n-2}{4} \left(\frac{n}{2}\right)^{\beta(G)-1} + 2^{\beta(G)-1}.$$

(c) If n is a multiple of 4, then

$$\operatorname{Iso}^{B}(G; C_{n}) = \begin{cases} n^{\beta(G)-1} + \frac{n-2}{4} \left(\frac{n}{2}\right)^{\beta(G)-1} + 2^{\beta(G)-2} \left(1+2^{\beta(G)}\right) \\ \text{if } G \text{ is bipartite,} \\ n^{\beta(G)-1} + \frac{n-2}{4} \left(\frac{n}{2}\right)^{\beta(G)-1} + 2^{\beta(G)-2} & \text{if } G \text{ is nonbipartite.} \end{cases}$$

The following table shows the number $Iso^B(G; P_n)$ for small n and $\beta(G)$:

	bipartite G								nonbipartite G						
$\beta(G)$	0	1	2	3	4	5		1	2	3	4	5			
n = odd	0	0	0	0	0	0	•••	0	0	0	0	0			
n=4	1	3	10	36	136	528	•••	2	6	20	72	272	• • •		
n=6	1	3	11	49	251	1393	•••	3	11	49	251	1393	• • •		
n=8	1	4	19	106	676	4744		3	15	90	612	4488	•••		
n = 10	1	4	22	154	1258	11266	•••	4	22	154	1258	11266			

References

- [1] D. Archdeacon, J.H. Kwak, J. Lee and M.Y. Sohn, 'Bipartite covering graphs', (preprint).
- [2] J.L. Gross and T.W. Tucker, 'Generating all graph coverings by permutation voltage assignments', Discrete Math. 18 (1977), 273-283.
- [3] J.L. Gross and T.W. Tucker, Topological graph theory (Wiley, New York, 1987).
- [4] M. Hofmeister, 'Counting double covers of graphs', J. Graph Theory 12 (1988), 437-444.

Bipartite graph bundles

- [5] J.H. Kwak, J.H. Chun and J. Lee, 'Enumeration of regular graph coverings having finite abelian covering transformation groups', SIAM J. Discrete Math. 11 (1998), 273-285.
- J.H. Kwak and J. Lee, 'Isomorphism classes of graph bundles', Canad. J. Math. 42 (1990), 747-761.
- B. Mohar, T. Pisanski and M. Škoviera, 'The maximum genus of graph bundles', *European J. Combin.* 9 (1988), 215-224.
- [8] D.A. Waller, 'Double covers of graphs', Bull. Austral. Math. Soc. 14 (1976), 233-248.

Department of Mathematics Pohang University of Science and Technology Pohang 790-784 Korea e-mail: sungpyo@postech.ac.kr Department of Mathematics Pohang University of Science and Technology Pohang 790-784 Korea e-mail: jinkwak@postech.ac.kr

Department of Mathematics Yeungnam University Kyongsan 712-749 Korea e-mail: julee@ynucc.yeungnam.ac.kr

[9]