Appendix C

Annihilation and creation operators

C. 1 The simple harmonic oscillator

The reader may well have met annihilation and creation operators in treating the quantum mechanics of the simple harmonic oscillator. In this context, an operator a and its Hermitian conjugate a^{\dagger} are constructed. These satisfy the commutation relations

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=a a^{\dagger}-a^{\dagger} a=1 \tag{C.1}
\end{equation*}
$$

and also of course

$$
[a, a]=0, \quad\left[a^{\dagger}, a^{\dagger}\right]=0 .
$$

The operator $N=a^{\dagger} a$ is Hermitian. We denote by $|n\rangle$ the normalised eigenstate of N with eigenvalue n. Since $n=\langle n| a^{\dagger} a|n\rangle$ is the modulus squared of the state $a|n\rangle, n$ is real and ≥ 0, and equal to 0 only if $a|n\rangle=0$.

It follows from the commutation relations that the lowest eigenstate of n is $n=0$, corresponding to the ground state $|0\rangle$. This is because

$$
N a|n\rangle=a^{\dagger} a a|n\rangle=\left(a a^{\dagger}-1\right) a|n\rangle=(n-1) a|n\rangle .
$$

Thus $a|n\rangle$ is, apart from normalisation, an eigenstate of N with eigenvalue ($n-1$), unless $a|n\rangle=0$. Similarly $a|n-1\rangle$ is an eigenstate of N with eigenvalue $(n-2)$, and so on. The process must terminate at the eigenstate $|0\rangle$ with eigenvalue 0 , and $a|0\rangle=0$, since otherwise we would be able to violate the condition $n \geq 0$.

Similarly $a^{\dagger}|n\rangle$ is, apart from normalisation, an eigenstate of N with eigenvalue ($n+1$). Thus the eigenvalues of the number operator N are the integers $0,1,2,3 \ldots$

Since $\langle n| a^{\dagger} a|n\rangle=n$, we have

$$
\begin{equation*}
a|n\rangle=n^{1 / 2}|n-1\rangle . \tag{C.2}
\end{equation*}
$$

Also, $\langle n| a a^{\dagger}|n\rangle=\langle n| a^{\dagger} a+1|n\rangle=n+1$, so that

$$
\begin{equation*}
a^{\dagger}|n\rangle=(n+1)^{1 / 2}|n+1\rangle . \tag{C.3}
\end{equation*}
$$

We call a an annihilation operator and a^{\dagger} a creation operator.
Written in terms of a and a^{\dagger}, the simple harmonic oscillator Hamiltonian becomes

$$
\begin{equation*}
H=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega=\left(N+\frac{1}{2}\right) \hbar \omega \tag{C.4}
\end{equation*}
$$

where ω is the frequency of the corresponding classical oscillator (Problem C.1). The term $\frac{1}{2} \hbar \omega$ is the zero-point energy. Since in field theory only energy differences are of physical
significance, it is usually convenient to redefine H, dropping the zero-point energy and taking $H=a^{\dagger} a \hbar \omega$. We may then reinterpret the state $|n\rangle$ as a state in which there are n identical 'particles' each of energy $\hbar \omega$, associated with the oscillator, and say that a and a^{\dagger} annihilate and create particles.

In the Heisenberg representation (Section 8.2),

$$
\begin{equation*}
a(t)=\mathrm{e}^{\mathrm{i} H t} a \mathrm{e}^{-\mathrm{i} H t}=\mathrm{e}^{\mathrm{i} N \omega t} a \mathrm{e}^{-\mathrm{i} N \omega t}=\mathrm{e}^{-\mathrm{i} \omega t} a . \tag{C.5}
\end{equation*}
$$

This may be seen by considering the effect of $a(t)$ acting on a state $|n\rangle$, and noting that, since

$$
\mathrm{e}^{ \pm \mathrm{i} N \omega t}|n\rangle=\mathrm{e}^{ \pm n \omega t}|n\rangle
$$

the two expressions for $a(t)$ give the same result. Similarly,

$$
\begin{equation*}
a^{\dagger}(t)=\mathrm{e}^{\mathrm{i} \omega t} a^{\dagger} \tag{C.6}
\end{equation*}
$$

C. 2 An assembly of bosons

A similar operator formalism may be developed for assemblies of identical particles. We set out first the formalism when the particles are bosons.

Let $u_{i}(\xi)$ be a complete set of single particle states, where ξ stands for the space and spin coordinate of a particle. We define annihilation and creation operators a_{i} and a_{i}^{\dagger} for each state, satisfying the commutation relations

$$
\begin{equation*}
\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}, \quad\left[a_{i}, a_{j}\right]=0, \quad\left[a_{i}{ }^{\dagger}, a_{j}^{\dagger}\right]=0 \tag{C.7}
\end{equation*}
$$

Any state of the system can be constructed by operating on the vacuum state $|0\rangle$, in which there are no particles present, and $a_{i}|0\rangle=0$ for all i. For example, a three-particle state having two particles in the state u_{1} and one particle in the state u_{2} is given (apart from normalisation) by $a_{1}^{\dagger} a_{1}^{\dagger} a_{2}^{\dagger}|0\rangle$. Evidently such a state is symmetric in the interchange of any two particles since the creation operators all commute, and the particles will obey Bose-Einstein statistics.

It follows from the commutation relations that the number operator $N_{i}=a_{i}^{\dagger} a_{i}$ gives the number of particles in the state u_{i}. In the case of non-interacting bosons, the $u_{i}(\xi)$ can be taken as the single particle energy eigenstates and the Hamiltonian operator is then

$$
\begin{equation*}
H_{0}=\sum_{i} a_{i}^{\dagger} a_{i} \varepsilon_{i}=\sum_{i} N_{i} \varepsilon_{i} \tag{C.7}
\end{equation*}
$$

where the ε_{i} are the single particle energy levels.
In the Heisenberg representation and with the free particle Hamiltonian H_{0}, the time dependence of the annihilation and creation operators is like that of simple harmonic oscillator operators, and follows by a similar argument:

$$
\begin{equation*}
a_{i}(t)=\mathrm{e}^{-\mathrm{i} \varepsilon_{i} t} a_{i}, \quad a_{i}^{\dagger}(t)=\mathrm{e}^{\mathrm{i} \varepsilon_{i} t} a_{i}^{\dagger} \tag{C.8}
\end{equation*}
$$

C. 3 An assembly of fermions

In the case of an assembly of identical fermions, we define annihilation and creation operators b_{i} and $b_{i}{ }^{\dagger}$ for each single particle state $u_{i}(\xi)$, which are anticommuting:

$$
\begin{equation*}
\left\{b_{i}, b_{j}^{\dagger}\right\}=b_{i} b_{j}^{\dagger}+b_{j}^{\dagger} b_{i}=\delta_{i j}, \quad\left\{b_{i}, b_{j}\right\}=0, \quad\left\{b_{i}^{\dagger}, b_{j}^{\dagger}\right\}=0 \tag{C.9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left(b_{i}\right)^{2}=0,\left(b_{j}^{\dagger}\right)^{2}=0 \tag{C.10}
\end{equation*}
$$

Thus two fermions cannot be annihilated from the same state, or created in the same state, in accord with the Pauli principle.

The number operator $N_{i}=b_{i}^{\dagger} b_{i}$ satisfies

$$
N_{i}^{2}=b_{i}^{\dagger} b_{i} b_{i}^{\dagger} b_{i}=b_{i}^{\dagger}\left(1-b_{i}^{\dagger} b_{i}\right) b_{i}=b_{i}^{\dagger} b_{i}=N_{i}
$$

or

$$
N_{i}\left(N_{i}-1\right)=0,
$$

so that the eigenvalues of N_{i} are 0 and 1. This, again, is in accord with the Pauli principle. A many-particle fermion state can be constructed by operating on the vacuum state $|0\rangle$ with creation operators. For example $b_{1}{ }^{\dagger} b_{2}{ }^{\dagger} b_{5}{ }^{\dagger}|0\rangle$ is a state with a fermion in each of the states u_{1}, u_{2}, u_{5}. Such a state is antisymmetric under particle exchange, and the particles obey Fermi-Dirac statistics.

In the case of an assembly of non-interacting fermions, the Hamiltonian operator is

$$
\begin{equation*}
H_{0}=\sum_{i} b_{i}^{\dagger} b_{i} \varepsilon_{i} \tag{C.11}
\end{equation*}
$$

and in the Heisenberg representation

$$
\begin{equation*}
b_{i}(t)=\mathrm{e}^{-\mathrm{i} \varepsilon_{i} t} b_{i}, \quad b_{i}^{\dagger}(t)=\mathrm{e}^{\mathrm{i} \varepsilon_{i} t} b_{i}^{\dagger} \tag{C.12}
\end{equation*}
$$

Problems

C. 1 With rescaling of coordinates,

$$
P=p /(m \hbar \omega)^{1 / 2}, \quad X=x(m \omega / \hbar)^{1 / 2}
$$

the simple harmonic oscillator Hamiltonian

$$
H=\left(p^{2} / 2 m\right)+\left(m \omega^{2} x^{2} / 2\right)
$$

becomes

$$
H=(\hbar \omega / 2)\left(P^{2}+X^{2}\right)
$$

and

$$
[X, P]=\mathrm{i}
$$

Show that if $a=(1 / \sqrt{2})(X+\mathrm{i} P), a^{\dagger}=(1 / \sqrt{2})(X-\mathrm{i} P)$, then

$$
\left[a, a^{\dagger}\right]=1 \quad \text { and } \quad H=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega .
$$

C. 2 Show that the normalised ground state wave function of the simple harmonic oscillator is $(m \omega / \pi \hbar)^{1 / 4} \exp \left(-m \omega x^{2} / 2 \hbar\right)$.
C. 3 Using the commutation relations for fermions show that the state $b_{i}{ }^{\dagger}|0\rangle$ is an eigenstate of $N_{i}=b_{i}^{\dagger} b_{i}$ with eigenvalue 1 .
C. 4 Show that the matrices

$$
\mathbf{b}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{b}^{\dagger}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

satisfy the commutation relations for fermion annihilation and creation operators.

