
Appendix C

Annihilation and creation operators

C.1 The simple harmonic oscillator

The reader may well have met annihilation and creation operators in treating the quantum
mechanics of the simple harmonic oscillator. In this context, an operator a and its
Hermitian conjugate a† are constructed. These satisfy the commutation relations

[a, a†] = aa† − a†a = 1 (C.1)

and also of course

[a, a] = 0, [a†, a†] = 0.

The operator N = a†a is Hermitian. We denote by |n〉 the normalised eigenstate of N
with eigenvalue n. Since n = 〈n|a†a|n〉 is the modulus squared of the state a|n〉, n is real
and ≥ 0, and equal to 0 only if a|n〉 = 0.

It follows from the commutation relations that the lowest eigenstate of n is n = 0,
corresponding to the ground state |0〉. This is because

Na|n〉 = a†aa|n〉 = (aa† − 1)a|n〉 = (n − 1)a|n〉.
Thus a|n〉 is, apart from normalisation, an eigenstate of N with eigenvalue (n − 1), unless
a|n〉 = 0. Similarly a|n − 1〉 is an eigenstate of N with eigenvalue (n − 2), and so on. The
process must terminate at the eigenstate |0〉 with eigenvalue 0, and a|0〉 = 0, since
otherwise we would be able to violate the condition n ≥ 0.

Similarly a†|n〉 is, apart from normalisation, an eigenstate of N with eigenvalue (n+1).
Thus the eigenvalues of the number operator N are the integers 0, 1, 2, 3 . . .

Since 〈n|a†a|n〉 = n, we have

a|n〉 = n1/2|n − 1〉. (C.2)

Also, 〈n|aa†|n〉 = 〈n|a†a + 1|n〉 = n + 1 , so that

a†|n〉 = (n + 1)1/2|n + 1〉. (C.3)

We call a an annihilation operator and a† a creation operator.
Written in terms of a and a†, the simple harmonic oscillator Hamiltonian becomes

H =
(

a†a + 1

2

)
hω =

(
N + 1

2

)
hω, (C.4)

where ω is the frequency of the corresponding classical oscillator (Problem C.1). The term
1
2
hω is the zero-point energy. Since in field theory only energy differences are of physical
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significance, it is usually convenient to redefine H, dropping the zero-point energy and
taking H = a†ahω. We may then reinterpret the state |n〉 as a state in which there are n
identical ‘particles’ each of energy hω, associated with the oscillator, and say that a and a†

annihilate and create particles.
In the Heisenberg representation (Section 8.2),

a(t) = eiHt ae−iHt = eiNωt ae−iNωt = e−iωt a. (C.5)

This may be seen by considering the effect of a(t) acting on a state |n〉, and noting that,
since

e±iNωt |n〉 = e±nωt |n〉,
the two expressions for a(t) give the same result. Similarly,

a†(t) = eiωt a†. (C.6)

C.2 An assembly of bosons

A similar operator formalism may be developed for assemblies of identical particles. We
set out first the formalism when the particles are bosons.

Let ui (ξ ) be a complete set of single particle states, where ξ stands for the space and

spin coordinate of a particle. We define annihilation and creation operators ai and a†
i for

each state, satisfying the commutation relations

[ai , a j
†] = δi j , [ai , a j ] = 0, [ai

†, a j
†] = 0. (C.7)

Any state of the system can be constructed by operating on the vacuum state |0〉, in
which there are no particles present, and ai |0〉 = 0 for all i. For example, a three-particle
state having two particles in the state u1 and one particle in the state u2 is given (apart

from normalisation) by a†
1a†

1a†
2|0〉. Evidently such a state is symmetric in the interchange

of any two particles since the creation operators all commute, and the particles will obey
Bose–Einstein statistics.

It follows from the commutation relations that the number operator Ni = a†
i ai gives the

number of particles in the state ui . In the case of non-interacting bosons, the ui (ξ ) can be
taken as the single particle energy eigenstates and the Hamiltonian operator is then

H0 =
∑

i

a†
i aiεi =

∑
i

Niεi , (C.7)

where the εi are the single particle energy levels.
In the Heisenberg representation and with the free particle Hamiltonian H0, the time

dependence of the annihilation and creation operators is like that of simple harmonic
oscillator operators, and follows by a similar argument:

ai (t) = e−iεi t ai , a†
i (t) = eiεi t a†

i . (C.8)

C.3 An assembly of fermions

In the case of an assembly of identical fermions, we define annihilation and creation
operators bi and bi

† for each single particle state ui (ξ ), which are anticommuting:

{bi , b j
†} = bi b j

† + b j
†bi = δi j , {bi , b j } = 0, {bi

†, b j
†} = 0. (C.9)
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In particular,

(bi )
2 = 0, (b j

†)2 = 0. (C.10)

Thus two fermions cannot be annihilated from the same state, or created in the same state,
in accord with the Pauli principle.

The number operator Ni = bi
†bi satisfies

N 2
i = bi

†bi bi
†bi = bi

†(1 − bi
†bi ) bi = bi

†bi = Ni ,

or

Ni (Ni − 1) = 0,

so that the eigenvalues of Ni are 0 and 1. This, again, is in accord with the Pauli principle.
A many-particle fermion state can be constructed by operating on the vacuum state |0〉
with creation operators. For example b1

†b2
†b5

†|0〉 is a state with a fermion in each of the
states u1, u2, u5. Such a state is antisymmetric under particle exchange, and the particles
obey Fermi–Dirac statistics.

In the case of an assembly of non-interacting fermions, the Hamiltonian operator is

H0 =
∑

i

bi
†biεi , (C.11)

and in the Heisenberg representation

bi (t) = e−iεi t bi , bi
†(t) = eiεi t bi

†. (C.12)

Problems

C.1 With rescaling of coordinates,

P = p/(mhω)1/2, X = x(mω/h)1/2,

the simple harmonic oscillator Hamiltonian

H = (p2/2m) + (mω2x2/2)

becomes

H = (hω/2)(P2 + X2),

and

[X, P] = i

Show that if a = (1/
√

2)(X + iP), a† = (1/
√

2)(X − iP), then

[a, a†] = 1 and H = (a†a + 1

2
)hω.

C.2 Show that the normalised ground state wave function of the simple harmonic oscillator
is (mω/πh)1/4 exp(−mωx2/2h).

C.3 Using the commutation relations for fermions show that the state bi
†|0〉 is an eigenstate

of Ni = bi
†bi with eigenvalue 1.

C.4 Show that the matrices

b =
(

0 1
0 0

)
and b† =

(
0 0
1 0

)

satisfy the commutation relations for fermion annihilation and creation operators.
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