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Abstract

A recursive construction for orthogonal diagonal latin squares, using group divisible designs, is
presented. In consequence the numbers of orders for which the existence of such squares is in question
is reduced to 72.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15.

1. Introduction

A latin square of order v is a v X v array such that every row and every column
contains each of the symbols 1,2,... ,v exactly once. A transversal in a latin
square is a set of v positions, one in each row and column, which contain the
symbols 1,2,..., v in some order. A transversal square is a latin square whose
leading diagonal is a transversal, and a diagonal latin square is one whose leading
diagonal and back diagonal are both transversals.

Two latin squares (a,y) and (6/y-) or order v are said to be orthogonal if the v2

ordered pairs (a^, b^) include the v2 ordered pairs on the symbols 1,2,...,t>
exactly once each. One can then speak of orthogonal transversal squares and
orthogonal diagonal latin squares.

For background on latin squares and orthogonality, and for a description of
the relation between orthogonal diagonal latin squares and magic squares, the
reader should consult [1]. In that book the following problem is posed: for what
orders do orthogonal pairs of diagonal latin squares exist? Clearly, 2, 3 and 6 are
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impossible. In [3] we reduced the set of unsolved orders to 129 members, namely,

10, 12, 14, 15, 18, 22, 24, 26, 30, 34, 38, 39,
42. 46, 54, 58, 60, 62, 66, 70, 74, 82, 86, 87,
90, 94, 98, 102, 110, 114, 118, 122, 126, 130, 138, 142,

146, 150, 154, 158, 170, 174, 178, 182, 186, 194, 198, 202,
206, 214. 222, 226, 230, 234, 238. 242, 254, 258, 262, 266,
270, 278, 282, 290, 294, 306, 310, 314, 318. 322, 326. 327,
334, 338, 354, 366, 370, 374, 378, 382, 394, 398, 402, 410,
418, 422. 426, 434, 446, 458, 482, 490, 494, 506, 522, 530,
538, 542, 566, 570, 578, 586, 594, 602, 614, 618, 626, 634,
642, 658, 662. 674, 682, 686, 690, 698, 710, 734, 758, 762,
786, 878, 882, 902, 926, 930, 978, 1026, 1074,

(For details and a bibliography of earlier studies, see [3].)
In the present paper we deduce we reduce the above list somewhat by a

construction involving group divisible designs.

2. Group divisible designs

By a group divisible design (T; §; %) is meant a partition § (whose parts are
called groups) of a finite set T together with a collection % of subsets (called
blocks) of T, such that two members of different groups occur together in
precisely one block and two members of the same group do not occur together in
any block. If G and K are sets of positive integers such that all group-sizes are in
G and all block-sizes are in K, and if v =\CV\ , then (T; §\ %) is called a
GD(v; G; K); if G has only one member g, then one writes GD(v, g, K), and
similarly if K is singleton.

THEOREM 1. / / there exists a set of k — 2 pairwise orthogonal latin squares of side
g then there exists a GD{gk; g\ k).

PROOF. Suppose the r-th latin square has (/, j) entry lijr. Then the blocks

fil 12 ik-2 :k-\ jk)

for 1 < i' =£ g, 1 =£y < g, form a GD(gk\ g\ k) whose r-th group is [V, 2r,... ,gr).

Various generalizations of this easy result can be obtained; for example, one
could delete one block completely, delete all but one element from one block,
delete some elements from one group, and so on.

The reader will be familiar with balanced incomplete block designs, or BIBDs.
The following construction is useful because BIBDs have been very widely
studied.
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THEOREM 2. / / there exists a balanced incomplete block design with parameters
(v, b, r, k, 1) then there exists a GD(v - 1; k - 1; k).

PROOF. One treatment is deleted from the balanced incomplete block design.
The blocks which previously contained it become the groups of the new group
divisible design, and the other blocks become the blocks of the new design.

3. A construction of orthogonal diagonal latin squares
from group divisible designs

THEOREM 3. Suppose there exists a GD(v, G, K) in which at most one group has
odd order. Suppose further that there exist orthogonal diagonal latin squares of order
g for all g G G, and there exist orthogonal transversal squares of order k for all
k G K. Then there exist orthogonal diagonal latin squares of order v.

PROOF. First we order the groups in some way, so that no group except
(possibly) the last has an odd number of elements. Say they have g,, g2, . . . ,g, ,
elements respectively. Now relabel the elements of the group divisible design so
that the first group becomes {l,v,2,v— 1 , . . . , j g,, v — \ g, 4- 1}, the second
group becomes {\ g, + 1, v - { g,, { g, + 2, . . .,v - \ g, - { g2 + 1}, and so
on.

Next we construct two latin squares L, and L2 of size v. Given any block
B = {bu b2,...,bk} of size k, select two orthogonal transversal squares //, and
H2 of order k which have common diagonal (1 ,2 , . . . ,k) . Define H* from Hx by
replacing entry / by bt at every occurrence, for i = 1,2,...,k. Then the (bt, bf)
entry of L, is set to be the (i, j) entry of Hf. H% is defined similarly and used to
define elements of L2. This process is carried out for every block. Next, given any
group of size g, choose two orthogonal diagonal latin squares // , and H2 of side g
which have common diagonal (1,2, . . . ,g), and proceed similarly.

Since every pair in {1,2, . . . , v} occurs either in exactly one block or in exactly
one group, but not both, this process unambiguously defines v X v arrays L, and
L2, which are easily seen to be orthogonal diagonal latin squares, as required.

4. Applications of the preceding construction

LEMMA 4.1. There exist orthogonal diagonal latin squares of orders 39, 87 and
327.
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PROOF. Since there exist three pairwise orthogonal latin squares of all orders
except 2, 3, 6, 10 and 14 [4], there exist GD(5g; g; 5) for g = 8, 20 and 80. So,
by deleting some elements from one group, we can construct a
GD(4gi + g2; g,, g2; 4,5) with one group of size g2 in the following cases:

g , = 8 , g2 = 7, 4 g , + g 2 = 39;
g ,=20 , g2 = 7, 4 g , + g 2 = 87;
g, = 80, g2 = 7, 4g, + g2 = 327.

Now Theorem 3 applies.

REMARK. This method can be used to produce easy solutions of many other
odd orders. For example, orders 219, 267, 303, 447 and 543 were solved in [3] by a
method involving the construction of several vectors, either by hand computation
or computer. They now follow easily, using

g, = 48,
g, = 56,
g, = 68,
g, = 100,

g, = 120,

g2 = 27,
g2 = 43,
g2 = 31,
g2 = 57,
g2 = 63,

4g,
4g,
4g,
4gi

4g,

+
+
+
+
+

g2
g2

g2
g2
g2

= 219;
= 267;
= 303;
= 447;

= 543.

LEMMA 4.2. There exist orthogonal diagonal latin squares of orders 24 and 60.

PROOF. It is shown in [2] that a balanced incomplete block design with k = 5
and A = 1 exists whenever v = 1 or v = 5 (mod 20). So by Theorem 2 there exists
a GD(v\ 4; 5) when v = 0 or 4 (mod 20). The result then follows from Theorem 3.

Note that the existence of orthogonal diagonal latin squares of order 24 implies
the existence of such squares of order 254 = 11(24 — 1) + 1, by Preliminary
Theorem 4 or 5 of [3].

LEMMA 4.3. There exist orthogonal diagonal latin squares of order \6n + d
whenever An 3* d, when d = 50, 78, 106 or 134.

PROOF. There exist three pairwise orthogonal latin squares of order An in all the
cases concerned, so by Theorem 1 there is a GD(20n\ An; 5). So for each value of d
we can obtain a GD(\6n + d; {An, d); {5,4}) by deleting An — d elements from
each block, whenever An > d. Since orthogonal diagonal latin squares of orders
An and d exist in every case, orthogonal latin squares of order \6n + d exist.
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From Lemma 4.3 we see that there exist orthogonal diagonal latin squares of
order v where v = 2 (mod 4) and v > 666, and there also exist such squares of
orders

258,
418,
578,

290,
434,
586,

306,
446,
594,

322,
482,
602,

338,
494,
618,

354,
530,
626,

370,
538,
634,

398,.
542,
642,

402,
570,
658.

To improve this list we need the following specialised construction of group
divisible designs.

LEMMA 4.4. If p is a prime power, then there exists a GD(v; G; K) with

v = (k~2)(p- 1) + d+ e,

G= {p- l,d,e},

K= {k, k~ 1, k ~ 2, k - 3}

where k < p — 1, d < p and e *£ p — 1.

PROOF. Since p is a prime power and k<p~ 1, there exist k pairwise
orthogonal latin squares of order p. So a GD(p;k; p\ k) can be constructed using
Theorem 1.

Delete all the elements of one block except for the element in group 1. Then
delete p — d elements from group 1 and p — I — e elements from another group.
The resulting design has the required parameters.

COROLLARY. There exist orthogonal diagonal latin squares of orders 490, 506,
522, 566, 614 and 662.

PROOF. This follows from Lemma 4.4 and Theorem 3, using the identities

490 = 8 X 52 + 50 + 24
506 = 8 X 52 + 50 + 40
522 = 9 X 52 + 50 + 4
566 = 9 X 52 + 50 + 48
614 = 9 X 60 + 50 + 24
662 = 8 X 72 + 50 + 36.
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Summarizing the results of this section we have

THEOREM 4. There exist orthogonal diagonal latin squares of every order v where
v > 458. Orders 2, 3 and 6 are impossible; the only orders for which the existence is
undecided are:

10, 12, 14, 15, 18, 22, 26, 30, 34, 38, 42, 46,
54, 58, 62, 66, 70, 74, 82, 86, 90, 94, 98, 102,

110, 114, 118, 122, 126, 130, 138, 142, 146, 150, 154, 158,
170, 174, 178, 182, 186, 194, 198, 202, 206, 214, 222, 226,
230, 234, 238, 242, 262, 266, 270, 278, 282, 294, 310, 314,
318, 326, 334, 366, 374, 378, 382, 394, 410, 422, 426, 458.
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