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Introduction. Let R be a commutative ring with unity and let G be a 
group. The group ring RG is a free i^-module having the elements of G as a 
basis, with multiplication induced by 

G- ( Z <xgg)[ Z P0g) = Z «ft/3ft-î . 

The first theorem in this paper deals with idempotents in RG and improves 
a result of Connell. In the second section we consider the Jacobson radical 
of RG, and we prove a theorem about a class of algebras that includes RG 
when G is locally finite and R is an algebraically closed field of characteristic 
zero. The last theorem shows that if R is a field and G is a finite nilpotent 
group, then RG determines RP for every Sylow subgroup P of G, regardless 
of the characteristic of R. 

1. For a subgroup H of G, let wH denote the augmented left ideal of H; 
that is, wH is the left ideal in RG generated by elements h — 1 for h £ H. 
It is easy to see that if {gi}iei is a complete set of left coset representatives 
for G modulo H, then the elements gtih — 1), with i £ I and & ^ 1, form 
an i^-basis for wH. 

In [3] it was shown that wG is a direct summand of i?G if and only if G has 
finite order n and n is a unit in i?, i.e., w • 1 has an inverse in R. It was also 
noted there that if if is a subgroup of G and wH is a direct summand, then 
H has finite order. We see now that in this case this order must also be a 
unit in R. 

THEOREM 1. Let H be a subgroup of G. Then wH is a direct summand of RG 
(as a left ideal) if and only if H has finite order m, and m is a unit in R. Moreover, 
in this case the right unity element of wH is unique if and only if H is normal. 

Proof. Suppose that H has finite order m, and let H* = ^H h- Then clearly 
1 — m~xH* is a right unity element for wH. 

Conversely, suppose that wH has a right unity element e. Let {gx)i^i and 
lei) iei be complete sets of left and right coset representatives for G modulo H, 
respectively. Take 1 G I and gi = fi = 1, the identity in G. As noted above, 
H has finite order m. Then the elements H*gu i 6 J, form an i?-basis for the 
right annihilator (wH)T of wH. 
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Let H = {hi = 1, h2, . . . , hm}, and write 

Then 1 — e Ç (wH)T, and thus 

(1) 1 - e = £ |S«ff*g,. 

Equating coefficients in these expressions, we see that £1 = 1 + l]7=2«i^ 
Fix & > 1 and consider hk — 1. Letting A*-1 = fe^, we have 

hk - 1 = (hk - l)e = E «*,(&* - l)gtO,- - 1). 

Now equating coefficients of the identity and using (1) we have 

m 

— 1 = £ aij + aU ' = (/3i — 1) + aw, 

so that jSi = - a i f . Now 
m m 

Pi = 1 + E au = 1 + £ a u , = 1 - (m - l)/3i; 
j ' = 2 A:=2 

thus w/3i = 1. Hence m is a unit. 
In case m is a unit and e = 1 — m~lH*, it is easy to see that for each 

i 6 / a n d j = 2, . . . , m, gihjgf-1 £ H if and only if eg*(&^ — 1) = gt(hj — 1). 
Since the uniqueness of a right unity is equivalent to its being a two-sided 
unity, the result follows. Note that the commutativity of R was not needed. 

An open question is the following. If R is an integral domain, and if RG 
has an idempotent different from 0 or 1, is it true that G has a finite non-trivial 
subgroup whose order is a unit in R? 

It is of interest here that if G has finite order n and if n is a unit in R, then 
Maschke's theorem holds for ^-representations of G. That is, if 

gives a representation of C7 by unimodular matrices over R, then there is a 
matrix D over ,R such that 

This can be seen by an almost exact duplication of the material immediately 
surrounding [4, Theorem (73.22)]. Conversely, if n is not a unit in R, then 
Maschke's theorem fails for G. For in this case wG does not have a G-invariant 
complement in RG. These remarks give a matrix analogue to [3, corollary 
to Theorem 3]. 
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2. Let J (A) denote the Jacobson radical of a ring A. 
H. K. Farahat has asked: Under what conditions does J(RG) = J(R)G? 

We give some partial answers. 
Again, let R be a commutative ring with unity. Let R = R/J(R). 
A locally finite group is a group in which every finitely generated subgroup 

is finite. 

LEMMA. If G is locally finite, then J(RG) = J(R)G if and only if J{RG) = 0. 

Proof. By [3, Proposition 9], J(R) = J(RG) H R i_f G is locally finite. 
Hence J(R)G C J(RG). Thus it suffices to notice that RG = RG/J{R)G. 

LEMMA. If G is finite of order n, then J(RG) = J(R)G if and only if n is 
not a zero divisor in R. 

Proof. By [3, Theorem 7], J(RG) = 0 if and only if n is not a zero divisor 
in R. This suffices, using the previous lemma. 

Note that the above condition on n and R means that every element of 
finite order in (R, + ) has order prime to n. This is equivalent to the condition: 
For every x (? J(R), there is a maximal ideal se in R such that x g s/ and 

If every finitely generated subgroup of G has a semisimple group ring, then 
so does G ; see [1]. Thus the above lemmas yield the following. 

THEOREM 2. Suppose that G is a locally finite group such that no element in 
G has order that is a zero divisor in R. Then J(R)G = J(RG). 

The converse of Theorem 2 is false. For example, take R to be an 
algebraically closed field of characteristic 2 and let G = (A, a), where A is 
an infinite abelian group without elements of order 2, a_1xa = x~l for x Ç A, 
and a2 = 1. Then according to [7, Theorem 1], J(RG) = J(R)G = 0. But 
the condition on R fails at 2, of course. 

However, we do have the following result. 

PROPOSITION 3. Let R be a commutative ring with unity. Then the following 
conditions are equivalent. 

(1) (R, + ) is a torsion-free abelian group. 
(2) J(RG) = J(R)G for every finite group G. 
(3) J(RG) — J(R)G for every locally finite group G. 

The proof is clear from the above. 

Let K be a field, and let A be an algebra over K. Then J {A) is the 
intersection of the kernels of all the irreducible representations of A as linear 
transformations on vector spaces over K. If /x: A —» HomK(F, V) is such a 
representation, let C(n) = HomA(F, V), the commuting algebra of /x. Let 
us define J*(A) = D Ker JU, where fx is taken over those irreducible 
representations such that C(M) consists of scalar multiples of the identity. 
Then clearly J*(4) D J(A). 
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If K is algebraically closed, and if G is either an abelian or a locally finite 
group, then J* (KG) = J (KG). The first part follows from [6, Lemma 2] 
and the second since locally finite groups have algebraic group algebras. 
Complex Banach algebras also have J* (A) = J (A). 

THEOREM 4. Suppose that K is a field and A and B are algebras over K such 
that J* (A) = 0 and J(B) = 0. Then J (A ®K B) = 0. 

Proof. Let {a*} and {bj\ be i£-bases for A and B, respectively. Suppose 
that c = ^ijccijCLi ® bj, ai] Ç K, is a non-zero member of A ® B. For 
convenience, label b\ so that some aa ^ 0. Since J*(A) = 0, there is an 
irreducible A -module V whose commuting algebra is K and such that 
(Z"tiat)V9*0. 

By a theorem of Azumaya and Nakayama [5, p. 113], if W is an irreducible 
5-module with commuting algebra C, then V ® Wis an irreducible (A ® B)-
module with commuting algebra C. Thus it suffices to show that for some 
irreducible I3-module W, we have that c • V ® W ^ 0. 

Let {x\} be a i^-basis for V. Put atx\ = J2k Pl\Xk for each i, X. There is Xi 
such that 

( 2 otaatjxxi = 2 ( ]Ç «uftfcXi ) a* ^ 0. 

Fix ki so that ]L* aa/3*iXi ^ 0- Let p7- = E i « i ^ U ; n ° t e that pi ^ 0. 
Choose an irreducible ^-module W so that (J2j Pjbj)W ^ 0. Let [y»\ be a 

i£-basis for W and fix in such that 

(EPA) y« * o. 

Put 6̂ yMi = YLv ylyv for each j . We claim that c • Xxx ® ;yM ^ 0. For suppose 
not; then 

0 = c • xXl ® 3VX = X) oLtjiaiXx^ ® (bjj^) 
ij 

= X <XiA Z) Atxi** / ® v Z TÎyJ = X) ( S <xtjPl\iyi) %k ® 3v 

Since {xk ® yv}jc,v is a basis for F 0 IF, it follows that for each pair k, v we have 

X <*ijPk\i7l = 0. 

In particular, for each v, 

X 9fil = X auPkiXijl = 0. 

But for each 7, 

PA3VI = Z) P/y^FÎ 
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hence summing over j , we have 

\L pjbjj yn = Ç ^ £ PM) y* = o. 

This is a contradiction. 
Hence c - V 0 W 9e 0, and the proof is complete. 

COROLLARY. If J*(A) = 0 and J*(5) = 0, then J* (A ®KB) = 0. 

Proof. In the proof of the theorem, take W to have trivial commuting 
albegra. 

3. If G is a finite nilpotent group, and K is a field whose characteristic 
does not divide \G\, then KG determines KP for every Sylow subgroup P of 
67; see [8; 2]. We are able to drop the condition on the characteristic of K. 

An denotes the ring of n X n matrices over a ring A. 

THEOREM 5. Let G = P X H, where P is a finite p-group and H is a finite 
group whose order is prime to p, and let K be a field of characteristic p. Then 
KG determines KP and KH. 

Proof. KH is semisimple; thus suppose that KH = 0 J^iDni
(i), with D{i) 

a division algebra over K. Then 

KG^KP ® KH9*® ZiKP ® Dni™Ç*KP 0 ... 0 K P 0 (^KP ® £>„,<*)), 

this last summation is taken over those summands with nt > 1 or Dt 9^ K. 
Now KP ® 2V*> ^ (D^P)ni as algebras over i£; thus 

i£G ^ fCP 0 . . . 0 KP © E (D^P)ni. 

Each of these D ( i )P is indecomposable as a direct sum of two-sided ideals. 
Hence {D{i)P)ni is indecomposable and its dimension over K exceeds \P\. 
Thus KP appears as a two-sided ideal component of KG of minimal dimension 
over K. By the Krull-Schmidt theorem, KP is uniquely determined. Since 
KG/wP = KG IJ(KG) ^ KH, we have that KH is uniquely determined. 

COROLLARY. If GI and G2 are finite nilpotent groups and K is a field, then 
KG\ = KG 2 if and only if for each prime p, KP\ = KP2, where Pt is the Sylow 
p-subgroup of Gi, i = 1, 2. 
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