AN APPLICATION OF RITT'S LOW POWER THEOREM

MICHIHIKO MATSUDA

Abstract

Consider an algebraic differential equation F=0 of the first order. A rigorous definition will be given to the classical concept of "particular solutions" of F=0. By Ritt's low power theorem we shall prove that a singular solution of F=0 belongs to the general solution of F if and only if it is a particular solution of F=0.

§ 0. Introduction

Let $k\{y\}$ be the differential polynomial algebra in a single indeterminate y over an algebraically closed differential field k of characteristic zero, and F be an algebraically irreducible element of $k\{y\}$ of the first order. The totality Π of those elements A of $k\{y\}$ such that the remainder of A with respect to F is zero is an essential prime divisor of the perfect ideal $\{F\}$ in $k\{y\}$ generated by F. Let $\Pi, \Sigma_1, \dots, \Sigma_s$ be the essential prime divisors of $\{F\}$. Then, each of the Σ_i contains the separant S of F (Cf. [5, pp. 30–32]). Take and fix a universal extension Ω of k, the existence of which was proved by Kolchin [3, p. 771]. The manifold of Π in Ω is called the general solution of F. A zero of F in Ω is called a singular solution of F = 0 if it is a zero of S. The manifold of Σ_i in Ω consists of a single point for each i (Cf. [5, p. 63]). A singular solution of F = 0 is an element of k, because it is either a zero of the discriminant of F with respect to y' or a zero of the initial of F.

Take a generic point w of the general solution of F. Then, w is transcendental over k. Hence, k(w, w') is a one-dimensional algebraic function field over k, which will be denoted by K. We shall give a rigorous definition to the classical concept of "particular solutions" of F = 0 as follows (Cf. [1, p. 257]):

DEFINITION. A singular solution η of F = 0 will be called a partic-Received September 6, 1976. ular solution of F = 0 if there exists a prime divisor P of K such that

(1)
$$\nu_{P}(w'-\eta') \ge \nu_{P}(w-\eta) > 0 ,$$

where ν_P is the normalized valuation belonging to P.

This definition is independent of the choice of a generic point w of the general solution of F.

By Ritt's low power theorem we shall prove the following:

THEOREM. A singular solution η of F=0 belongs to the general solution of F if and only if η is a particular solution of F=0.

§1. Proof of Theorem

Suppose that η is a singular solution of F=0. Then, η is an element of k. Let G denote the polynomial in u,v obtained from F by the replacement of $y=u+\eta,\ y'=v+\eta'$. Suppose that

$$G = a_0(u)v^n + a_1(u)v^{n-1} + \cdots + a_n(u)$$
,

where the a_i are elements of k[u]. Unless $a_i = 0$, we define s_i as the least exponent of u in a_i . If $a_i = 0$, we do not define s_i . For i = n, s_n can be defined, and $s_n > 0$. The following lemma is a corollary of Ritt's low power theorem (Cf. [5, p. 65]):

LEMMA. The singular solution η belongs to the general solution of F if and only if we have the inequality

$$(2) s_n \geqq s_i + n - i$$

for some i different from $n (0 \le i < n)$.

Let us make Puiseux diagram in G. Then, we have rational numbers μ_1, \dots, μ_m and subscripts i_0, i_1, \dots, i_m of the a such that they satisfy the following four conditions:

- (i) $0 \le i_0 < i_1 < \cdots < i_m = n$;
- (ii) $0 < \mu_1 < \cdots < \mu_m$;
- (iii) for each $j (1 \le j \le m)$,

(3)
$$s_p + \mu_j(n-p) = s_q + \mu_j(n-q), \quad p = i_{j-1}, \quad q = i_j;$$

(iv)
$$s_i + \mu_i(n-i) \ge \tau_i$$

for all $i, j (0 \le i \le n, 1 \le j \le m)$, where τ_j is the number given by the equality (3).

Let P be a prime divisor of K such that

(4)
$$\nu_P(w-\eta) > 0$$
, $\nu_P(w'-\eta') > 0$.

Then, we have

$$(5) \qquad \qquad \nu_P(w'-\eta') = \mu_h \nu_P(w-\eta)$$

for some h. Conversely, for each h $(1 \le h \le m)$, there exists some prime divisor P of K which satisfies (4) and (5) (Cf. [2, Chap. 2], [4, Chap. 13]).

Because of (ii), there exists a prime divisor P of K satisfying (1) if and only if $\mu_m \ge 1$. The inequality (2) holds for some i different from $n \ (0 \le i < n)$ if and only if $\mu_m \ge 1$. Hence, we have our Theorem by Definition and Lemma.

§ 2. An example

Let k_0 be an algebraically closed field of characteristic zero, and $k_0(x)$ be the one-dimensional rational function field over k_0 . We set x'=1, and a'=0 for all elements a of k_0 . Suppose that k is the algebraic closure of $k_0(x)$, and that

$$F = x^2(y')^2 + (2x + y)yy' + y^2$$
.

Then, the singular solutions of F = 0 are 0 and -4x. The former is a particular solution of F = 0, and the latter is not.

Let t denote x+w/w'. Then, t is a constant. We have $w=t^2(x-t)^{-1}$ and $w'=-t^2(x-t)^{-2}$. Hence, k(w,w')=k(t) with t'=0.

BIBLIOGRAPHY

- [1] A. R. Forsyth, Theory of differential equations, Part II, Ordinary equations, not linear, Vol. II, Cambridge Univ. Press, London, 1906.
- [2] K. Iwasawa, Theory of algebraic function fields (in Japanese), Iwanami Shoten, Tokyo, 1952.
- [3] E. R. Kolchin, Galois theory of differential fields, Amer. J. Math., 75 (1953), 753-824.
- [4] É. Picard, Traité d'analyse, Tome II, 2° Édition, Gauthier-Villars, Paris, 1905.
- [5] J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloq. Publ. Vol. 33, New York, 1950.

Department of Mathematics Osaka University