ON RELATIONSHIPS AMONGST CERTAIN SPACES OF SEQUENCES IN AN ARBITRARY BANACH SPAGE

C. W. McARTHUR

1. Introduction. Let X be a Banach space (B-space). A sequence $\{s(i)\}$ in X is unconditionally summable if and only if every rearrangement of the series $\sum_{i} s(i)$ is convergent. The set of unconditionally summable sequences in X will be written as $U(X)$. In this paper several classes of summable sequences in X will be compared with one another. Each class to be considered is identical with $U(X)$ when X has finite dimension.

The following notation will be used. The set of natural numbers will be denoted by N and the collection of non-null finite subsets of N by \mathscr{F}. A sequence in X will usually be denoted by the single letter s and its value at $i \in N$ by $s(i)$. If s is a sequence in X and $F \in \mathscr{F}$ the sum of the terms $s(i)$ such that $i \in F$ will be written $\sum_{F} s(i)$.
A sequence s in X will be called weakly unconditionally summable if and only if $\sum_{i}|f(s(i))|<\infty$ for every $f \in X^{*}$, the adjoint space of X. Let $B(X)$ stand for the set of weakly unconditionally summable sequences in X. Gelfand (4) has shown that $s \in B(X)$ if and only if $\sup \left[\left\|\sum_{F} s(i)\right\|: F \in \mathscr{F}\right]<\infty$. With the usual definitions for addition of sequences and multiplication of a sequence by a scalar $B(X)$ is a vector space. It is known that $B(X)$ is a B-space with the norm of each $s \in B(X)$ defined by $\|s\|=\sup \left[\left\|\sum_{F} s(i)\right\|: F \in \mathscr{F}\right]$. This will be the norm intended when $B(X)$ is referred to as a B-space in the sequel. As a consequence of a result of Birkhoff (2), $U(X)$ is a closed linear subspace of $B(X)$.

Following Hadwiger (5), a sequence s in a B-space X has an invariant sum if and only if there is an $x \in X$ such that $x=\sum_{i} s(i)$ and such that x is the sum of each of the convergent rearrangements of $\sum_{i} s(i)$. Let $I S(X)$ stand for the class of sequences in X with an invariant sum. It is known that if X has finite dimension then $U(X)=I S(X)$. Hadwiger (5) has shown that if X is a Hilbert space with infinite dimension then $U(X)$ is a proper subset of $I S(X)$. In this paper Hadwiger's result is sharpened and extended to any B-space with infinite dimension.

If s is a sequence in X and there is $x \in X$ such that $x=\sum_{i} s(i)$ then x will be called the sum of s. In case there is $x \sum X$ such that $f(x)=\sum_{i} f(s(i))$ for all $f \in X^{*}$ then x will be called the weak sum of s. It follows easily that a sequence s in a B-space X can have at most one weak sum. It can be shown that in any B-space X there are sequences which have a sum but are not elements of $B(X)$. Conversely, in some B-spaces, for example, in $X=c_{0}$, the B-space of real sequences which converge to 0 with $\|s\|=\sup [|s(i)|: i \in N]$ for each
$s \in c_{0}$, there exist sequences which are elements of $B(X)$ but which do not have sums.

Two new closed linear subspaces of $B(X)$ are introduced in this paper. They are
$B_{w}(X)=[s \in B(X): s$ has a weak sum $], B_{s}(X)=[s \in B(X): s$ has a sum $]$.
For any B-space it is true that

$$
U(X) \subset B_{s}(X)=I S(X) \cap B(X) \subset B_{w}(X) \subset B(X)
$$

We show that if $X=c_{0}$ then all of these containments are proper.
2. Closed linear subspaces of $B(X)$. Dunford (3) and Gelfand (4) have shown that a sequence s in a B-space X is weakly unconditionally summable if and only if there is a real number M such that $\sum_{i}|f(s(i))| \leqslant M| | f| |$ for all $f \in X^{*}$. A norm for the vector space of weakly unconditionally summable sequences in X is defined by setting

$$
\|s\|_{1}=\sup \left[\sum_{i}|f(s(i))|: f \in X^{*} \text { and }\|f\| \leqslant 1\right]
$$

for each sequence s of this class. Let $B^{\prime}(X)$ denote the normed vector space of weakly unconditionally summable sequences in X with the norm of the preceding sentence. As a special case of a result of Dunford (3, Theorem 30) we have that $B^{\prime}(X)$ is a B-space.

The following lemma is essentially given by Pettis (6, Theorem 3.2.2.).
Lemma 2.1. If s is weakly unconditionally summable then

$$
\begin{aligned}
\sup \left[\left\|\sum_{F} s(i)\right\|: F \in \mathscr{F}\right] & \leqslant \sup \left[\sum_{i}|f(s(i))|: f \in X^{*} \text { and }\|f\| \leqslant 1\right] \\
& \leqslant 2 \sup \left[\left\|\sum_{F} s(i)\right\|: F \in \mathscr{F}\right]
\end{aligned}
$$

Lemma 2.2. The normed vector space $B(X)$ is complete.
Proof. Since $B(X)$ and $B^{\prime}(X)$ differ only in their norms and $B^{\prime}(X)$ is complete it is evident from the relationships between their norms given in Lemma 2.1 that $B(X)$ is complete.

Theorem 2.3. For any B-space X the spaces $B_{w}(X)$ and $B_{s}(X)$ are closed linear subspaces of $B(X)$, and the operation L defined on $B_{w}(X)$ to X by setting $L(s)$ equal to the weak sum of s for each $s \in B_{w}(X)$ is linear and has norm 1 .

Proof. To show that $B_{w}(X)$ is closed in $B(X)$ suppose s_{n} is a sequence in $B_{w}(X)$ which converges to $s \in B(X)$. For each $n \in N$ let x_{n} denote the weak sum of s_{n}. Since $\left\{s_{n}\right\}$ is a Cauchy sequence in $B(X)$ there is for each $\epsilon>0$ a natural number n_{ϵ} such that $\left\|s_{n}-s_{m}\right\|<\epsilon / 2$ if $n, m \geqslant n_{\epsilon}$. For $n, m \geqslant n_{\epsilon}$ and $f \in X^{*}$ with $\|f\| \leqslant 1$ one has

$$
\left|f\left(x_{m}-x_{n}\right)\right| \leqslant \sum_{i}\left|f\left(s_{n}(i)-s_{m}(i)\right)\right| \leqslant 2\left\|s_{n}-s_{m}\right\|<\epsilon
$$

the second inequality given by Lemma 2.1. It follows that $\left\{x_{n}\right\}$ is a Cauchy
sequence and therefore has a limit x. Again, suppose $\epsilon>0$ is given and $f \in X^{*}$ with f non-zero. There is an n_{ϵ} such that

$$
\left\|s_{n}-s\right\|<\epsilon /(4\|f\|) \quad n \geqslant n_{\epsilon}
$$

and since x_{n} converges to x, n_{ϵ} may be chosen large enough so

$$
\left\|x-x_{n}\right\|<\epsilon /(2\|f\|)
$$

Hence, if $n \geqslant n_{\text {e }}$ then

$$
\begin{aligned}
\left|f(x)-\sum_{i} f(s(i))\right| & \leqslant\left|f(x)-f\left(x_{n}\right)\right|+\sum_{i}\left|f\left(s_{n}(i)-s(i)\right)\right| \\
& \leqslant\|f| |(\epsilon /(2 \| f| |))+2\| f \mid\| \| s_{n}-s \|<\epsilon
\end{aligned}
$$

using Lemma 2.1 to get the second inequality. This proves that x is the weak sum of s.

To show that $B_{s}(X)$ is closed in $B(X)$ suppose $\left\{s_{n}\right\}$ is a sequence in $B_{s}(X)$ which converges to $s \in B(X)$. For each $n \in N$ let x_{n} denote the sum of s_{n}. Since $B_{s}(X) \subset B_{w}(X)$ and $B_{w}(X)$ is closed, s has a weak sum x. Also $\left\{x_{n}\right\}$ converges to x. Since $\left\{x_{n}\right\}$ converges to x and $\left\{s_{n}\right\}$ converges to s, if $\epsilon>0$ is given there is $p \in N$, dependent on ϵ, such that $\left\|x-x_{p}\right\|<\epsilon / 3$ and $\left\|s_{p}-s\right\|<$ $\epsilon / 3$. Also since $x_{p}=\sum_{i} s_{p}(i)$, there is a $q \in N$ such that if $r \geqslant q$ then

$$
\left|\left|x_{p}-\sum_{i=1}^{r} s_{p}(i)\right|\right|<\epsilon / 3
$$

Hence if $r \geqslant q$, then

$$
\begin{aligned}
\left|\left|x-\sum_{i=1}^{\tau} s(i)\right|\right| \leqslant\left\|x-x_{p}\right\|+ & \left|\mid x_{p}-\sum_{i=1}^{r} s_{p}(i) \|\right. \\
& +\|\left|\sum_{i=1}^{r} s_{p}(i)-\sum_{i=1}^{r} s(i)\right| \mid<\epsilon
\end{aligned}
$$

This shows that x is the sum of s.
It remains to show that L is a linear operation with norm 1 . Let

$$
E=\left[f: f \in X^{*} \text { and }\|f\|=1\right]
$$

Fix $s \in B_{w}(X)$ and let $x=L(s)$. Then

$$
\begin{aligned}
\|x\| & =\sup [|f(x)|: f \in E]=\sup \left[\lim _{n \rightarrow \infty}\left|\sum_{i=1}^{n} f(s(i))\right|: f \in E\right] \\
& \leqslant \sup \left[\sup \left\{\left|f\left(\sum_{i=1}^{n} s(i)\right)\right|: n \in N\right\}: f \in E\right] \\
& =\sup \left[\sup \left\{\left|f\left(\sum_{i=1}^{n} s(i)\right)\right|\right\}: f \in E: n \in N\right] \\
& =\sup \left[| | \sum_{i=1}^{n} s(i)| |: n \in N\right] \leqslant\|s\| .
\end{aligned}
$$

Hence L, which is obviously additive, is continuous and $\|L\| \leqslant 1$. Since for any $x_{0} \in X$ the sequence $\left\{x_{0}, \theta, \theta, \ldots, \theta, \ldots\right\}$ is in $B_{w}(X)$ and has x_{0} for its norm, clearly $\|L\|=1$.
3. Extension of a theorem of Hadwiger to B-spaces. The following theorem is obtained by applying a modification of Hadwiger's argument (5) to the general case.

Theorem 3.1. If X is a B-space the following are equivalent:
(i) X has infinite dimension.
(ii) the difference $I S(X) \sim B(X)$ is non-void.
(iii) $U(X)$ is a proper subset of $I S(X)$.

Proof. Because of the well-known fact that $U(X) \subset I S(X) \cap B(X)$ for all X, it is evident that (ii) implies (iii). Since $U(X)=I S(X)$ if X has finite dimension, (iii) implies (i). It will now be shown that (i) implies (ii). By a remark of Banach's (1, p. 238), X contains a closed infinite dimensional linear subspace X_{0} which has a basis $\{x(i)\}$ with $\|x(i)\|=1, i \in N$. Using a result of Banach (1, pp. 110-111), there is a sequence $\left\{f_{i}\right\}$ in X^{*} such that $f_{i}(x(j))=\delta_{i j}$ and for each $x \in X_{0}, x=\sum_{i} f_{i}(x) x(i)$.

Consider the sequence of finite blocks

$$
B_{k}=\{x(k) / k,-x(k) / k, \ldots, x(k) / k,-x(k) / k\}, \quad k=1,2,3, \ldots
$$

where B_{k} consists of $2 k^{2}$ terms each of which is either $x(k) / k$ or $-x(k) / k$ according as it is in an odd or an even place in B_{k}. Note that $x(k) / k$ occurs k^{2} times in each B_{k} so the sum of the odd place terms in B_{k} has norm k. Construct a sequence s in X by adjoining the second block of terms to the first, the third block to this, etc. Since the norm of the sum of the odd place terms in each block is $k, s \notin B(X)$. Clearly $\sum_{i} s(i)=\theta$. It remains to show that s has an invariant sum. Suppose that s^{\prime} is a rearrangement of s and that $y=\sum_{i} s^{\prime}(i)$. Since X_{0} is closed, $y \in X_{0}$. Express y by its biorthogonal development $y=\sum_{i} f_{i}(y) x(i)$. For arbitrary $i \in N$, we have $f_{i}(y)=\sum_{i} f_{i}\left(s^{\prime}(j)\right)$. Take n_{0} large enough so that all terms in the block B_{i} occur in the sum

$$
s^{\prime}(1)+s^{\prime}(2)+\ldots+s^{\prime}\left(n_{0}\right)
$$

If $n \geqslant n_{0}$ then

$$
\sum_{j=1}^{n} f_{i}\left(s^{\prime}(j)\right)=f_{i}\left(\sum_{j \in F} s^{\prime}(j)\right)+\underset{j \in F^{\prime}}{\langle } f_{i}\left(s^{\prime}(j)\right)
$$

where $F=\left[j: j \leqslant n\right.$ and $s^{\prime}(j)$ is a term of $\left.B_{i}\right]$ and

$$
F^{\prime}=[j: j \leqslant n \text { and } j \notin F] .
$$

Now $\sum_{F} s^{\prime}(j)=\theta$, and by biorthogonality $f_{i}\left(s^{\prime}(j)\right)=0$ if $j \in F^{\prime}$, so $f_{i}(y)=0$. Since $f_{i}(y)=0$ for all i it follows that $y=\theta$.
4. Comparison of subspaces of $B(X)$. For any B-space $X, U(X) \subset B(X)$ so clearly $U(X) \subset B_{s}(X)$. Also $B_{s}(X) \subset I S(X)$ for any B-space X, because if $s \in B_{s}(x)$ and s has the sum x and if s^{\prime} is a rearrangement of s with sum x^{\prime} it follows that $f(x)=f\left(x^{\prime}\right)$ for all $f \in X^{*}$ so $x=x^{\prime}$. With these observations the following lemma is obvious.

Lemma 4.1. For any B-space $X, U(X) \subset B_{s}(X)=I S(X) \cap B(X) \subset$ $B_{w}(X) \subset B(x)$.

A B-space X is weakly complete if and only if every weakly convergent sequence in X is weakly convergent to an element of X.

Theorem 4.2. If X is weakly complete then

$$
U(X)=B_{s}(X)=I S(X) \cap B(X)=B_{w}(X)=B(X) \subset I S(X)
$$

The containment is proper if and only if X has infinite dimension.
Proof. For any B-space, $U(X) \subset I S(X)$ and it is well known that when X is weakly complete that $U(X)=B(X)$. Hence $B(X) \subset I S(X)$ when X is weakly complete. The theorem then follows by Lemma 4.1 and Theorem 3.1.

Lemma 4.3. If for a B-space $X, U(X)$ is a proper subspace of $B(X)$, then $U(X)$ is a proper subspace ${ }^{1}$ of $B_{s}(X)$.

Proof. Suppose $s \in B(X) \sim U(X)$. For each $k \in N$ let B_{k} denote a block of $2 k$ terms as follows:

$$
B_{k}=\{s(k) / k,-s(k) k /, \ldots, s(k) / k,-s(k) / k\}
$$

that is, the even place terms in B_{k} are $s(k) / k$ and the odd place terms are $-s(k) / k$. We construct $s^{\prime} \in B_{s}(X) \sim U(X)$ by adjoining the terms of the block B_{2} to those of B_{1} and then adjoining the terms of B_{3} to these, etc. Clearly $\theta=\sum_{i} s^{\prime}(i)$ and for each $f \in X^{*}$,

$$
\sum_{i}\left|f\left(s^{\prime}(i)\right)\right|=2 \sum_{i}|f(s(i))|<\infty,
$$

so $s^{\prime} \in B_{s}(X)$. Finally, since $s \notin U(X)$ it follows that the series $\sum_{i} s^{\prime}(i)$ has a subseries, namely, $\sum_{i} s^{\prime}(2 i-1)$ which does not converge unconditionally. Hence $s^{\prime} \notin U(X)$.

Corollary 4.4. The B-space $U\left(c_{0}\right)$ is a proper subspace of $B_{s}\left(c_{0}\right)$.
Proof. Consider the sequence $\left\{s_{n}\right\}$ in c_{0} where for each $n, s_{n}(i)=1$ if $i=n$ and $s_{n}(i)=0$ if $i \neq n$. The sequence $\left\{s_{n}\right\}$ is an element of $B\left(c_{0}\right)$ but it does not have a sum so is not an element of $U\left(c_{0}\right)$. The corollary follows by Lemma 4.3.

Lemma 4.5. If for a B-space $X, U(X)$ is a proper subspace of $B_{s}(X)$ then $B_{s}(X)$ is a proper subspace of $B_{w}(X)$.

Proof. If $s \in B_{s}(X) \backsim U(X)$ then there is a permutation t of N such that the sequence $\{s(t(i))\}$ does not have a sum. Let x denote the sum of s. Then x is the weak sum of s and since $s \in B(X)$ it follows that x is the weak sum of $\{s(t(i))\}$.

By Corollary 4.4 and Lemma 4.5 we have the next corollary.
Corollary 4.6. The space $B_{s}\left(c_{0}\right)$ is a proper subspace of $B_{w}\left(c_{0}\right)$.

Lemma 4.7. If for a B-space $X, U(X)$ is a proper subset of $B(X)$ then $B_{w}(X)$ is a proper subset of $B(X)$.

Proof. By hypothesis there exists an $s \in B(X) \backsim U(X)$. Using a result of Orlicz (1, (3) on p. 270), there is a strictly increasing sequence t of natural numbers such that the sequence $\{s(t(i))\}$ does not have a weak sum. However it obviously inherits the property of belonging to $B(X)$ from s.

Corollary 4.8. The space $B_{w}\left(c_{0}\right)$ is a proper subspace of $B\left(c_{0}\right)$.
Proof. Since $B\left(c_{0}\right) \backsim U\left(c_{0}\right)$ is non-void the conclusion follows by Lemma 4.7.

Putting together the preceding corollaries we have the following
Theorem 4.9. For the B-space $c_{0}, U\left(c_{0}\right) \subset B_{s}\left(c_{0}\right) \subset B_{w}\left(c_{0}\right) \subset B\left(c_{0}\right)$, and each containment is proper.

References

1. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).
2. G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc., 38 (1935), 357-378.
3. N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc., 44 (1938), 305-356.
4. I. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sbornik, N.S., 46 (1938), 235-284.
5. H. Hadwiger, Über die konvergenzarten unendlicher reihen in Hilbertschen raum, Math. Zeit., 47 (1941), 325-329.
6. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc., 44 (1938), 277-304.
${ }^{1}$ The author is indebted to the referee for the present form of Lemma 4.3 which is simpler and more general than the original.

Received March 25, 1955; in revised form October 28, 1955. This paper is from Chapter V of the author's dissertation, On unconditional summability of sequences in semi-groups with a topology, Tulane University, August, 1954. It was done under Contract N7-onr-434, Task Order III, Navy Department, Office of Naval Research. The author thanks Professor B. J. Pettis for helpful suggestions regarding this paper.

Alabama Polytechnic Institute

