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The statistics of breaking wave fields are characterised within a novel multi-layer
framework, which generalises the single-layer Saint-Venant system into a multi-layer and
non-hydrostatic formulation of the Navier–Stokes equations. We simulate an ensemble
of phase-resolved surface wave fields in physical space, where strong nonlinearities,
including directional wave breaking and the subsequent highly rotational flow motion,
are modelled, without surface overturning. We extract the kinematics of wave breaking by
identifying breaking fronts and their speed, for freely evolving wave fields initialised with
typical wind wave spectra. The Λ(c) distribution, defined as the length of breaking fronts
(per unit area) moving with speed c to c + dc following Phillips (J. Fluid Mech., vol. 156,
1985, pp. 505–531), is reported for a broad range of conditions. We recover theΛ(c) ∝ c−6

scaling without wind forcing for sufficiently steep wave fields. A scaling of Λ(c) based
solely on the root-mean-square slope and peak wave phase speed is shown to describe
the modelled breaking distributions well. The modelled breaking distributions are in good
agreement with field measurements and the proposed scaling can be applied successfully
to the observational data sets. The present work paves the way for simulations of the
turbulent upper ocean directly coupled to a realistic breaking wave dynamics, including
Langmuir turbulence, and other sub-mesoscale processes.

Key words: surface gravity waves, wave breaking, air/sea interactions

1. Introduction

Wave breaking occurs at the ocean surface at moderate to high wind speed, with significant
impacts on the transfer of momentum, energy and mass between the ocean and the
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atmosphere (Melville 1996; Deike 2022). When waves break, the water surface overturns,
which generates sea spray and largely enhances the gas exchange. Visually, it manifests as
white capping, widely observable at sea above a certain wind speed. Breaking acts as an
energy sink for the waves; it limits the wave height by transferring the excessive wave
energy into underwater turbulence and currents, therefore influencing the upper-ocean
dynamics as well (McWilliams 2016; Romero, Lenain & Melville 2017).

Describing breaking waves analytically and numerically has been challenging due to
their nonlinear nature and the fact that the interface becomes multi-valued. Considering
a single breaker, scaling analyses have been successfully proposed for energy dissipation,
validated by laboratory experiments (Drazen, Melville & Lenain 2008; Perlin, Choi &
Tian 2013); and, thanks to advances in numerical methods and increasing computational
power, high fidelity simulations of single three-dimensional (3-D) breakers have emerged
(Wang, Yang & Stern 2016; Deike, Melville & Popinet 2016; Gao, Deane & Shen 2021;
Di Giorgio, Pirozzoli & Iafrati 2022; Mostert, Popinet & Deike 2022). Other approaches
to incorporating breaking wave fields into intermediate-scale modelling include work
based on Reynolds averaged Navier Stokes equations and large eddy simulation modelling
(Larsen & Fuhrman (2018) and Derakhti et al. (2016) among others), but are restricted
to individual breaking events or prescribe the breaking statistics instead of resolving it
(Sullivan, McWilliams & Melville 2004, 2007).

Phillips (1985) introduced the Λ(cb) distribution to describe the statistics of breaking
waves, where Λ(cb) dcb is the expected length per unit sea surface area of breaking
fronts propagating with speeds in the range of (cb, cb + dcb). The independent variable
breaking front propagating speed cb is chosen in place of wavenumber k because it is
a more observable quantity. The link to the wave spectrum is made through the core
assumption that cb is proportional to the wave phase speed c, which in turn relates to k
by the linear dispersion relation c = √

g/k, where g is the gravitational acceleration. The
omni-directional Λ(c) distribution is predicted to have a c−6 shape. The moments of the
distribution have a physical interpretation, with the second moment related to the whitecap
coverage, the third to mass exchange, the fourth to momentum flux and the fifth to energy
dissipation by breaking (Phillips 1985; Kleiss & Melville 2010; Deike & Melville 2018;
Romero 2019; Deike 2022).

Several observational studies have been conducted, which provide measurements of the
Λ(c) distribution, and its moments (Phillips, Posner & Hansen 2001; Melville & Matusov
2002; Gemmrich, Banner & Garrett 2008; Kleiss & Melville 2010; Sutherland & Melville
2013; Banner, Zappa & Gemmrich 2014; Schwendeman & Thomson 2015), made possible
by technical advancement including ship-borne and air-borne visible and infrared imagery.
Scaling relations have been proposed to describe the breaking statistics for a wide range
of conditions, but are facing the usual challenges in the scatter of field data (Sutherland
& Melville 2013; Deike & Melville 2018), combined with ongoing discussions about the
interpretation of the Phillips (1985) original framework (Banner et al. 2014).

Beyond the single breaker description, numerical methods have so far been unable to
describe the breaking statistics emerging from an ensemble of propagating surface waves.
We propose a numerical framework, leveraging a novel multi-layer formulation of the
Navier–Stokes equations and its numerical implementation (Popinet 2020), which is able
to capture the multi-scale nonlinear wave field, the intermittent incidences of directional
breaking and the highly rotational underwater flow generated by breaking. The wave field
is initialised using characteristic wind wave spectra based on field observations. We report
the kinematics of the breaking statistics, Λ(c), and its scaling with the mean-square slope
and discuss how to link our results to field measurements.
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Figure 1. The layers in the multi-layer model, and the fields of each layer. All the fields are functions of
horizontal position x = (x, y) and time t. Due to the geometric progression choice, there is a fixed depth ratio
between two adjacent layers.

2. Numerical method

2.1. The multi-layer framework
We introduce the modelling framework (sketched in figure 1) proposed by Popinet (2020),
based on a vertically Lagrangian discretisation of the Navier–Stokes equations. We solve a
weak form of the mass and momentum conservation equations in a generalised vertical
coordinate. Given NL layers in total, for layer number l the mass and the momentum
conservation equations are (Popinet 2020)

∂hl

∂t
+ ∇H · (hu)l = 0, (2.1)

∂(hu)l
∂t

+ ∇H · (huu)l = −ghl∇Hη − ∇H(hpnh)l + [pnh∇Hz]l + [ν∂zu]l, (2.2)

∂(hw)l
∂t

+ ∇H · (hwu)l = −[pnh]l + [ν∂zw]l, (2.3)

∇H · (hu)l + [w − u · ∇Hz]l = 0, (2.4)

with l the index of the layer, h its thickness, u, w the horizontal and vertical components
of the velocity, and pnh the non-hydrostatic pressure (divided by the density). The surface
elevation η = zb + ∑NL

l=0 hl, and the [ ]l operator denotes the vertical difference, i.e. [ f ]l =
fl+1/2 − fl−1/2. There are five unknowns hl, ul (ulx, uly), wl and pnhl for each layer. Equation
(2.1) represents conservation of volume in each layer for layer thicknesses hl following
material surfaces (i.e. the discretisation is vertically Lagrangian). Equations (2.2) and
(2.3) are the horizontal and vertical momentum equations. We only include the vertical
diffusion of momentum (i.e. vertical viscosity), with ν the vertical viscosity coefficient,
since vertical diffusion is expected to dominate when the horizontal to vertical aspect
ratio is large. Note that horizontal diffusion terms can be added when this assumption
is not verified. Equation (2.4) is the mass conservation equation. We apply periodic
boundary conditions at the left–right, front–back boundaries. The top boundary is a
free-slip surface and the bottom is no slip. The time integration includes an ‘advection’
step and a ‘remapping’ step. In the ‘advection’ step, (2.1) to 2.4 are advanced in time. In
the ‘remapping’ step, the layers are remapped, if necessary, onto a prescribed coordinate
to prevent any severe distortion of the layer interfaces.
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Note that this set of equations does not make any assumption on the slope of the
layers, which explains the ∇Hz ‘metric’ terms appearing in the horizontal momentum
equation (2.2) and incompressibility condition (2.4). These metric terms are due to the
difference in the slopes of the top and bottom boundaries of the control volumes used
to derive the integral conservation equations (see appendix A of Popinet 2020). This is
particularly important in the context of steep breaking waves. One can further demonstrate
that this set of semi-discrete equations is a consistent discretisation of the incompressible
Navier–Stokes equations with a free surface and bottom boundary (Popinet 2020). Note
that, in the hydrostatic and small-slope limit, generalised vertical coordinates are widely
used in ocean models (Griffies, Adcroft & Hallberg 2020), due to the anisotropic nature of
geophysical flows. The choice of the target remapped discretisation is flexible and reflects
physical considerations. Here, the remapping step uses a geometric progression of the layer
thicknesses which ensures higher vertical resolution of the boundary layer under the free
surface.

The numerical schemes (spatial and temporal discretisations, field collocation, grid
remapping, etc.) are described in detail in Popinet (2020), and ensure accurate dispersion
relations and momentum conservation.

2.2. Numerical model for breaking
The dissipation due to breaking is modelled with a simple, ad hoc approximation which
can be related to the dissipation due to hydraulic jumps in the Saint-Venant system, known
to be a surprisingly good first-order model for (shallow-water) breaking waves (Brocchini
& Dodd 2008). The horizontal gradient for any layer ∂z/∂x in (2.2) and (2.4) is limited by
a maximum value smax

∂z/∂x =
{
∂z/∂x, |∂z/∂x| � smax

sign(∂z/∂x)smax, |∂z/∂x| > smax.
(2.5)

Note that the surface slope ∂η/∂x itself is not affected by this limiter, only the local
gradients ∂z/∂x used in the flux calculation in (2.2) and (2.4). Therefore, the local slope
∂η/∂x can exceed smax.

The maximum local gradient smax is set to 0.577 (30◦), and we have verified that the
breaking dissipation and kinematics are not sensitive to this choice within a reasonable
range (0.4–0.7), both for the single breaking wave cases and the broad-banded wave
field cases. In a recent study (McAllister et al. 2023), it was found that the local
surface slope at breaking onset for a variety of wave spectral bandwidths and shapes
approaches a value of 0.5774, which independently supports the use of smax value here.
This gradient limiter is sufficient to stabilise the solver, and dissipates some energy.
Note that, given enough horizontal resolution and vertical layers, and in the absence
of surface overturning, the multi-layer model converges to the Navier–Stokes equations,
with underwater turbulence, and the dissipation rate obtained from breaking is close to
that obtained with direct numerical simulations. We demonstrate this convergence by a
comparison of the multi-layer solver and the two-phase, volume-of-fluid Navier–Stokes
solver used in our previous studies (Mostert et al. 2022) for a single breaking wave, and
show that breaking occurrence and dissipation are not sensitive to the smax parameter.

2.3. Comparison of the multi-layer and the two-phase Navier–Stokes solvers
for a single breaker

Here, we compare the multi-layer model with a two-phase Navier–Stokes simulation
(assumed as ‘ground truth’) of a single (3-D) breaking wave. We consider a single wave
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Figure 2. (a,c,e,g,i,k) Snapshots of the wave profile and spanwise velocity uy on the y = 0 central plane slice at
times t = (0.8, 1.2, 1.6, 2.0, 2.8, 3.6) T of the multi-layer solver (256 × 256 × 15 grid); (b,d,f,h,j,l) two-phase
Navier–Stokes solver (256 × 256 × 256 grid) at the same times. (m) A 3-D rendering of the single breaking
wave case in the multi-layer solver at t = 3.6 T. Initial wave steepness ak = 0.35, and Reynolds numbers
Re ≡

√
gλ3/ν = 40 000, where λ is the wavelength. (n) The energy dissipation of the two solvers compared.

Dashed line: two times kinetic energy; dotted line: two times potential energy; solid line: total energy. Initial
wave steepness ak = 0.35. (o) The energy dissipation is not sensitive to the specific value of the gradient limiter
threshold smax. Initial wave steepness ak = 0.35, Re = 40 000.

initialised with a third-order Stokes wave, similar to that in Mostert et al. (2022). The
two-phase 3-D breaking waves resolved by the two-phase Navier–Stokes solver have been
extensively validated against laboratory data in terms of breaking kinematics and energy
dissipation due to breaking (Deike et al. 2016; Mostert et al. 2022).

Figure 2(a) plots the underwater spanwise velocity component uy on the central sliced
plane and the travelling wave profiles There is a clear generation of 3-D turbulence once
the wave breaks. For the two-phase Navier–Stokes solver, there is surface overturning.
The multi-layer solver does not permit surface overturning but the turbulence generation
is similar in time and magnitude. Overall, the wave profile of the multi-layer solver closely
follows that of the Navier–Stokes solver, and figure 2(b) shows that the amount of energy
dissipated is close to the Navier–Stokes solver as well. Note that, in Deike et al. (2016) and
Mostert et al. (2022), it has been demonstrated that the energy dissipation in the two-phase
Navier–Stokes numerical simulation is in good agreement with laboratory experiments
(Rapp & Melville 1990; Drazen et al. 2008) of single breaking waves.
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We have tested that the energy dissipation is largely independent of the threshold smax
in (2.5), as shown in figure 2(c) by varying the value of smax between 0.4 and 0.7, which
further demonstrates the robustness of the breaking model. Results are also grid converged
in terms of the horizontal resolution or number of layers in the multi-layer and grid size
in the two-phase solver. In terms of computational time, the multi-layer solver is able to
accelerate the calculation by a factor of 40, resulting in approximately 4 CPU hours per
wave period integration. The energy dissipation also becomes independent of the Reynolds
number at high enough values, as discussed in Mostert et al. (2022) (see their figure 3).

3. Statistics of wave breaking

We now analyse the occurrence of breaking fronts as geometric features of the surface
height η, while keeping in mind that dissipation as a consequence of breaking is modelled
by the ad hoc breaking model. We investigate the relation between wave statistics (wave
spectrum) and breaking statistics (distribution of length of breaking crest). We demonstrate
that the breaking statistics and their relation to the wave statistics can be obtained with the
current breaking model and propose a simple scaling relationship.

3.1. Numerical simulations of actively breaking wave fields
We initialise the wave field with a directional wavenumber spectrum F(k, θ). The
corresponding azimuth-integrated wavenumber spectrum has the following shape (in
agreement with field measurements, see Romero & Melville (2010) and Lenain & Melville
(2017); and the discussion in Deike 2022):

φ(k) = Pg−1/2k−2.5 exp[−1.25(kp/k)2]. (3.1)

The value of P controls how energetic the wave field is, and is of the dimension of velocity,
while kp is the peak wavenumber of the wave spectrum. As shown in § 3.2 and Appendix A,
the initial spectral shape will not affect the final analysis in steep enough cases, as the
spectra will converge to a shape controlled by the breaking dynamics. The ratio kpL0, with
L0 the domain size, is kept constant at a sufficiently large value (kpL0 = 10π) to avoid
confinement effects, and we have verified that the results are independent of this ratio. The
total water depth is chosen to be 2π/kp to ensure a deep-water condition. The directional
spectrum is F(k, θ) = (φ(k)/k) cosN(θ)/

∫ π/2
−π/2 cosN(θ) dθ , with θ ∈ [−π/2,π/2]. The

directional spreading is controlled by N, with N = 5 for most cases, and we have tested
N = 2 (more spreading) and N = 10 (less spreading).

The initial wave field is a superposition of linear waves: η = ∑
i,j aij cos(ψij), with the

amplitude aij = [2F(kxi, kyj) dkx dky]1/2, and the initial random phase =ψij = kxix + kyjy +
ψrand,ij. The corresponding orbital velocity is initialised similarly according to the linear
wave relation. We use a uniformly spaced initial grid of 32 × 33 array of (kxi, kyj). The
wavenumbers are truncated, and chosen at discrete values of kx = ikp/5 for i ∈ [1, 32],
and ky = jkp/5 for j ∈ [−16, 16], respectively.

That is, the initial wavenumber lower limit is kminL0 = 2π and the upper limit is
ktruncL0 ≈ 225. The horizontal resolution is Nx = Ny = 1024, and layer number NL =
15, with a geometric progression common ratio 1.29. We have verified that the results
presented here are numerically converged in terms of layer number, as well as horizontal
resolution. We also verified that the results are independent of the box size, i.e. further
increasing the ratio of the longest wavelength to the box kpL0 does not change the results
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discussed here. The current simulation configuration takes approximately 3 h on 64 CPUs
to integrate forward 10 peak wave periods, which is computationally very affordable.

3.2. Evolution of the wave field
We briefly discuss the transient stage of the wave: i.e. from the initialisation to the point
that a quasi-steady spectrum shape is established. The main point is that the stage when
the breaking statistics are analysed is independent of the initial spectral shape as long
as the initial wave field is steep enough. In breaking-dominated scenarios, we find that
approximately 100ωpt is enough to establish a quasi-steady spectrum independent of the
initial shape, and controlled by the steepness of the wave field at that time.

Figure 3(a) shows the time evolution of the wave field and the corresponding wave
spectrum. Initially steep but smooth superposed linear waves quickly focus and lead to
breaking. The focusing and breaking potentially occur via various mechanisms, including
both linear and nonlinear focusing. The space–time wave elevation spectrum is shown
in figure 3(b) and the energy is localised around the curve given by the gravity wave
linear dispersion relation ω = √

gk, together with an extra branch corresponding to
bound waves. Since we start with a truncated spectrum, the initial wave field is smooth
while the small-scale features develop over time. There is an energy transfer into the
higher wavenumbers which eventually leads to a stable spectrum shape. It is not a
Kolmogorov–Zakharov-type wave energy cascade as described by wave-turbulence theory
(Zakharov, L’vov & Falkovich 1992), since the weak nonlinearity assumption does not
hold and the small features are mostly generated by the breaking events (at a faster rate
than weakly nonlinear interaction would act). We verified that the spectrum development
is breaking controlled by testing wave spectra that are weakly nonlinear but do not lead
to breaking, and then observe a much slower energy transfer into smaller scales over
O(100ωpt). For the steep enough initial spectra, a quasi-steady spectrum of shape k−3 is
obtained typically for ωpt > 100 as shown in figure 3(c) with the wave energy spectra
independent of the initial spectral shape (demonstrated by comparison with an initial
Gaussian spectrum, see Appendix A), and we measure the breaking statistics between
ωpt = 124 and ωpt = 149.

There are two commonly used measurements of the ‘slope’ of a broadband wave field:
the effective slope kpHs and the root-mean-square (r.m.s.) slope σ . The effective slope
kpHs is essentially a measure of the wave field energy, where the significant wave height
Hs = 4〈η2〉1/2 is related to the zeroth moment of the spectrum. The r.m.s. slope σ is a
measure of how ‘rough’ the wave field is and is related to the second moment of the
spectrum. Here, we define the low-pass filtered steepness parameter μ(k) as

μ2(k) =
∫ k

0
k′2φ(k′) dk′, (3.2)

and σ is the asymptotic value of μ with a cutoff at the highest wavenumber we can
numerically resolve kmax

σ 2 = μ2(k → kmax). (3.3)

The value of kmaxL0 is set to 2πNh/16 based on the resolution convergence check (see
Appendix B). Here, Nh = Nx = Ny is the horizontal number of grid points and is 1024 for
all the results reported. We note that another way of inferring the same quantity is from
the variance of the slope distribution (see e.g. Cox & Munk 1954; Munk 2009).

Since there is no forcing mechanism, the total wave energy is slowly decaying (as
shown in figure 3d). The Reynolds number defined by the peak wavelength λp is Rep =

968 A12-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.522


J. Wu, S. Popinet and L. Deike

ωpt = 0

ωpt

ωpt = 0

ωpt = 25

ωpt = 124

ωpt = 149

ω/ωp

ωpt = 25 ωpt = 124 ωpt = 149

6

4

2

20 4

10–2

101 102 103 0 50 100 150

10–3

10–4

10–5

10–6

10–7

0.3

0.2

0.1

0

1.2

1.0

0.8

0.6

0.4

0.3

0.2

0.1

0

–0.15 0 0.15 0.30

–15 –10 –5 0

k/
k p

φ
(k

)k
3 p

μ
(k

)

S
lo

p
e 

(σ
 o

r 
k pH

s)

kL0

E/
E 0

E/E0

kpη

kpHs
k–2.5

k–3

σ

log(F/Fmax)

(a)

(b) (c) (d )

Figure 3. (a) Snapshots of the wave field development for the case of root-mean-square (r.m.s.) slope
σ = 0.153. Breaking statistics are collected between ωpt = 124 and ωpt = 149 (indicated by the red box).
(b) The wave energy spectrum on the frequency–wavenumber plane. The dotted white line is the linear
dispersion relation of surface gravity waves k = ω2/g. (c) Time evolution of the omni-directional wave
spectrum φ(k), corresponding to the snapshots in (a). (d) Energy and σ slope evolution of the wave field.
Black line: evolution of wave energy (as the sum of potential and kinetic energy integrated over the whole
field). Squares: the r.m.s. slope σ of the four snapshots shown in (a); circles: the effective slope kpHs of the
four snapshots shown in (a). The breaking statistics are collected during the shaded time interval.

λp
√

gλp/ν = 3.17 × 107, and the dissipation is Reynolds number independent. Instead,
the dissipation is primarily due to the numerical gradient-limiter, and is of the order of
magnitude of known dissipation due to breaking (Drazen et al. 2008; Romero 2019).
We have also verified that the spatially and temporally averaged statistics are a good
representation of the ensemble average, mainly because the domain size is large enough.

3.3. Procedure of breaking front detection and velocity measurement
The wave field evolves and breaking occurs intermittently in space and time. We detect the
breaking fronts and their velocity, and construct the length of breaking crest distribution.
The breaking fronts are defined geometrically as sharp enough ridges of the surface, as
illustrated in figure 4(a). Given a surface elevation η(x, y) at one time instance, we find
its Gaussian curvatures κ1 and κ2, and determine the location of the breaking fronts by
the threshold κ2 < −3kp (‘ridges’ of the η surface), which works well across the different
scales. The Gaussian curvatures are computed from the Hessian matrix H(x, y) of surface
elevation η(x, y). Here, H(x, y) is defined as H(x, y) = [ ηxx ηyx

ηxy ηyy

]
, where ηxx, ηxy, ηyy are

the spatial second-order derivatives of η. The Gaussian curvatures κ1, κ2 (|κ1| < |κ2|) are
the eigenvalues of this 2 × 2 matrix. (Since the matrix is symmetric, the eigenvalues are
always real.)
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Figure 4. (a) A 3-D rendering of the breaking wave field with the colour indicating the surface layer flow
velocity. Inset shows the curvature of the breaking fronts as the detection criterion. (b) A more focused view
taken from the dotted white square in figure 3(a). The arrows are showing the velocity magnitude and direction
of each length element of the breaking fronts.

After the breaking regions (areas) are detected, we extract the breaking fronts (lines),
shown in figure 4(b). Then, we use the surface layer Eulerian velocity (ul−1 in figure 1) as
an estimate of the Lagrangian velocity of the breaking fronts cb. The velocity is mapped on
each discretised cell on the lines, which represents an element of length L0/Nx. Figure 4(b)
shows the mapped velocity magnitude and direction with arrows. The directionality of cb is
not discussed in this work, i.e. we only consider the magnitude cb = |cb|. We have tested
an alternative velocity mapping method by computing the correlation function between
two consecutive images of the detected crests (similar to particle tracking velocimetry),
and found no significant difference in the velocity magnitude detected or the resulting
Λ(cb) distribution.

We follow Phillips (1985), Kleiss & Melville (2010) and Sutherland & Melville (2013)
and assume that c = cb; and we use a correspondence between the breaking front velocity
and the underlying wavenumber through the dispersion relation c = √

g/k. We note that
observations have shown that cb = αc, where α is between 0.7 and 0.95 (Rapp & Melville
1990; Banner et al. 2014; Romero 2019), at least for large breakers. In the processing we
filter out the smaller-scale breakers by imposing a filter η(x, y) > 2.5〈η2〉1/2. This means
that only the large breakers with surface elevation above 2.5 r.m.s. value are included. As
a result, no further corrections for the underlying long-wave orbital velocity are needed.

3.4. The Λ(c) distribution of different wave fields
We study the relation of the breaking statistics to the wave spectra. Figure 5(a) shows
the (later quasi-steady stage) wave spectra for the various conditions, with variations
in spectrum maxima larger than one order of magnitude, and described by power laws
ranging from φ(k) ∝ k−2.5 to φ(k) ∝ k−3. Although the energy near the peak frequency
varies, a fixed level of saturation seems to be reached for the steeper cases with overlapping
spectra in the k−3 range.

As we see in figure 5(a), the value of μ(k) plateaus due to the drop off of the spectrum.
In weak nonlinear theories (such as wave-turbulence theory), μ < 0.1 is used to justify
the asymptotic expansions, at least for the range of k considered (Zakharov et al. 1992).
All the breaking cases in our simulation have μ close to or higher than 0.1, underlying
the strong nonlinearity of the breaking wave field. The correlation between the two global

968 A12-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.522


J. Wu, S. Popinet and L. Deike

10–4

10–1

10–3

10–2

102

∝ c–6 ∝ ĉ–6
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Figure 5. Wave energy spectra of different steepnesses and their Λ(c) distribution. The colours correspond
to different σ slopes according to the colour bar. (a) The wave energy spectra during the breaking statistics
collection time interval in non-dimensional form; the vertical grey line is kpL0 = 10π. Darker colour indicates
larger global slope kpHs (see (b) for the values). (b) The correlation of r.m.s. slopes σ and the global slopes kpHs
in the simulated cases. Crosses: N = 5; circles: N = 2; squares: N = 10. (c) The non-dimensional breaking
distribution Λ(c) normalised by cp and g. Solid lines: directional spreading parameter N = 5; dashed lines:
N = 2; dotted lines: N = 10. (d) Proposed scaling for the Λ(c) distribution using σ and cp. The pre-factor of
the dotted line is 800.

slope parameters kpHs (zeroth moment of the spectrum) and σ (second moment of the
spectrum) is shown by figure 5(b), which we caution is specific to the spectrum shape.

Figure 5(c) shows the breaking distributionΛ(c) for increasing σ (and kpHs) values and
the various directionalities. There is no breaking for the smallest σ = 0.0724 case (kpHs =
0.121) (not shown in figure 5c). An increase in slope to σ = 0.0978 (kpHs = 0.155) and
σ = 0.114 (kpHs = 0.173) starts to generate breakers. The extent of breaking speeds is
further increased for the steeper cases with σ > 0.101, with a clear Λ(c) ∝ c−6 scaling
up to around 0.9cp. This indicates that there exists a critical value of σ , below which the
breaking wave field is not saturated, with the threshold expected to depend on the spectrum
shape.

The shaded area in figure 5(c) spans the range of the breaker velocity between the peak
Λmax and Λ(c) = 0.01Λmax (for the case of σ = 0.153), where a power law scaling close
to Λ(c) ∝ c−6 can be observed. The same range in the k-space is shaded in figure 5(a)
as well. The upper limit of Λ(c) = 0.01Λmax corresponds to a lower limit of k ≈ 4kp.
Above that velocity, breakers near kp are very rare. We note that removing the filter of
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η(x, y) > 2.5〈η〉1/2 only changes the part of theΛ(c) distribution left of the peak, but does
not affect the part with c larger than the peak. Similarly, further increasing the horizontal
resolution would extend the move up and toward even smaller c, but the presented power
law region is unchanged.

The Λ(c) distributions from spectra of different directionality N are also shown with
different lines (dashed lines indicate more spreading (N = 2) and dotted lines less
spreading (N = 10)). For sufficiently steep cases (σ > 0.101), there is little difference in
the Λ(c) distribution between cases with different N, while for intermediate steepness
(σ = 0.85 and 0.101), there is a notable sensitivity to N. For the N = 10 cases with more
concentrated wave energy, there are overall more breaking events.

3.5. Wave-slope-based Λ(c) scaling
The current set of numerical experiments with different wave spectra enables us to study
the non-dimensional scaling of the breaking front distributionΛ(c), which has been a goal
for many theoretical studies and observational campaigns. The goal is to predict the Λ(c)
distribution based on some global quantities of the spectrum, leveraging similarity of the
breaking processes and the spectral shape.

The seminal work of Phillips (1985) predicted a purely wind-based scaling Λ(c) ∝
u3∗gc−6 through an energy balance argument (u∗ being the wind friction velocity). The
wave action balance equation d[gφ(k)/ω]/dt = Snl(k)+ Sin(k)+ Sdiss(k) involves the
following source terms: divergence of the nonlinear energy flux Snl, wind input Sin and
dissipation due to breaking Sdiss, written as (Phillips 1985)

Snl ∝ gk−3B3(k), Sin ∝ gk−3
(u∗

c

)2
B(k), and Sdiss ∝ gk−3f (B(k)), (3.4a–c)

with the saturation B(k) = k3φ(k), and f (B(k)) a functional dependence solely on B(k)
(assuming that breaking and consequent dissipation ‘are the result of local excesses,
however these excesses are produced’). The balance between Snl and Sdiss leads to f (B) ∝
B3, and therefore Sdiss ∝ gk−3B−3. The breaking front distribution Λ(c) is then obtained
by writing the equality between dissipation in the k-space and the c-space: ε(k) dk =
ε(c) dc. The left-hand side is ε(k) dk = (Sdissω) dk; the right-hand side can be related to
the fifth moment of Λ(c) through a scaling argument ε(c) dc = bg−1c5Λ(c) dc, where
b is a non-dimensional breaking parameter (Duncan 1981; Phillips 1985). Substituting a
spectral shape of φ(k) ∝ k−5/2 into the Sdiss would then lead to Λ(c) ∝ c−6. Considering
the equilibrium range, Snl ∝ Sin (Phillips 1985), gives φ(k) ∝ u∗g−1/2k−2.5, which leads
to

Λ(c) ∝ u3
∗gc−6. (3.5)

This wind-only scaling was, however, not confirmed by observations. To resolve
this, later works (Sutherland & Melville 2013; Deike & Melville 2018, etc.) proposed
modification of the scaling using a combination of wind speed, wave spectrum peak speed
and significant wave height, in the form of

Λ(c)c3
pg−1(cp/u∗)1/2 ∝ (c/

√
gHs)

−6, (3.6)

which significantly improved the collapse between data sets. This modification is empirical
and is not based on clear physical reasoning.

In our numerical simulations, since we have no wind forcing, the breaking statistics
are expected to scale only with the non-dimensional slope σ and spectrum peak
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speed cp. Shown in figure 5(d), by rescaling c using ĉ = c/(σcp) and Λ(c) using Λ̂(c) =
Λ(c)c3

pg−1σ−2, we are able to collapse the power law region well (for the sufficiently steep
cases). The grey dashed line marks the scaling

Λ(c)c3
pg−1σ−2 ∝ (

c/(σcp)
)−6

, (3.7)

and the corresponding pre-factor is 800. Alternatively, since the r.m.s. slope σ and the
effective slope kpHs are correlated, a scaling using kpHs could be proposed. However, we
have found that σ works better than kpHs as a scaling parameter for our simulated cases.
The reason is likely because σ as a global parameter is weighted favourably towards the
larger k part of the spectrum associated with breaking.

We note that, although most of the curves follow a Λ(c) ∝ c−6 scaling, the two largest
σ cases exhibit a shallower slope closer to c−5. We observe that these two cases have
the k−3 region of the energy spectrum extended further near the peak region, i.e. they have
higher energy near the peak than the k−2.5 ‘equilibrium’ shape, which results in more large
breakers and therefore a shallower Λ(c) slope. Similarly, a deficit of energy in the k−2.5

‘equilibrium range’ may result in a steeper slope of the power law region, which has been
observed in some observational cases as well (Zappa et al. 2012). It is consistent with the
argument in Phillips (1985) that the c−6 power law is a result of a choice of k−2.5 spectrum
shape.

3.6. Comparison with observations
We test our σ -based scaling with observational data sets from field campaigns (Kleiss
& Melville 2010; Sutherland & Melville 2013; Schwendeman, Thomson & Gemmrich
2014; Deike, Lenain & Melville 2017) where the spectrum information can be retrieved
and re-analysed. The results are plotted in figure 6(a) and provide strong evidence that
the σ -based scaling can be applied to rescale field data, without further need for wind
information. The r.m.s. slope σobs was computed from the observed wave spectra using
(3.3), with a cutoff at kmax = 8 m−1, similar to that in the numerical cases. Data from
Schwendeman & Thomson (2015) directly report σobs from the second moment of the wave
spectrum (up to 1 Hz, equivalent to k ≈ 4 m−1). Data from Sutherland & Melville (2013)
report the wave spectra measured up to k = 100 m−1 while Kleiss & Melville (2010) have
a lower resolution so that we extended the spectra with a k−3 tail up to k = 8 m−1 to
compute σobs. The reason why the Sutherland & Melville (2013) data set extends much
further into the small c range is that infrared imaging was used to capture very small
breaking features. The main focus should be on the horizontal and vertical positions of the
power law region. In general, the agreement of all three data sets within the numerically
resolved range of c gives confidence that the proposed σ -based scaling works well.

The agreement with the two data sets shown in figure 6 is a promising sign that the
proposed σ -based scaling can provide a concise and physics-based prediction of Λ(c)
only using information of the wave energy spectra. However, there are a limited number
of data sets that report both the wave energy spectra and Λ(c), with more data sets being
reported using empirical scaling such as (3.6). To compare with more data sets, and more
importantly, to help understand the possible reasons behind the success of the empirical
scaling, we perform the following re-analysis of the numerical data by inferring the wind
forcing from the wave energy spectrum in the simulation.

Since there is no explicit wind forcing in our simulations, the information of wind
speed and fetch/duration are encoded in the spectrum. We use the empirical (but very
robust) fetch-limited relationships (Toba 1972) that links the non-dimensional wave energy
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Figure 6. Comparison with observational data. (a) Rescaled Λ(c) following wave-slope-based scaling
proposed by this work. (b) Rescaled Λ(c) distribution following Sutherland & Melville (2013) with
simplifications proposed by Deike (2022). (c) Whitecap coverage W as a function of 10 m wind
speed U10.

gHsu−2∗ and the non-dimensional frequency ωpg−1u∗ (wave age u∗/cp) by

gHs/u2
∗ = C(u∗/cp)

−3/2, (3.8)

where C is an order-1 constant. Using (3.8) it is straightforward to show that the scaling
equation (3.7) with σ ∝ √

kpHs is equivalent to the scaling from Sutherland & Melville
(2013), since kpHs ∝ (cp/u∗)1/2. After that we plot all the data sets using the empirical
mixed wind-wave scaling in figure 6(b), and good agreement is observed. It indicates that
the slope-based scaling is fully compatible with the mixed-wind-slope-based scalings, and
the reason for that is the underlying fetch-limited relation. Note that the observational data
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are obtained from complex sea states, and do not necessarily have the same spectrum shape
as the current numerical data. Some of the observational curves have been bin averaged
according to the wave age c/u∗ and therefore shows less spreading.

Although we have shown that the proposed slope-based scaling is compatible with the
empirical mixed-wind-wave-based one, it provides an alternative form that is both concise
and fully interpretable. The wave field at a certain time and space is the result of the wind
forcing history, and breaking is caused by excessive energy in the wave spectrum. For a
mature and sufficiently steep wave field, breaking (particularly at large scale) is primarily
dictated by the wave spectrum itself. Although we do caution that for younger and less
steep wave fields, breaking can be more closely coupled to wind forcing. This can be
seen from the deviation of curves with very small σobs in figure 6(a), and such conditions
require further studies. An additional note is that the original derivation of theΛ(c) ∝ c−6

scaling is based on an energy dissipation argument, whereas in the numerical simulation,
breaking is discussed in a purely kinematic sense. It remains to be investigated whether
there is a simpler kinematic argument that would give rise to the same Λ(c) distribution.

Finally, we can infer classic breaking metrics such as the whitecap coverage from our
simulations and compare with more field data sets. The whitecap coverage W quantifies
the fraction of the wave surface covered by white foam, and can be estimated through
the second moment of Λ(c) as W = 2πγ g−1 ∫

c2Λ(c) dc, where γ is a dimensionless
constant representing the ratio of breaking time to wave period (here, γ = 0.56 following
Romero 2019). Figure 6(b) shows W as a function of the 10 m wind speed U10; U10 is
estimated from u∗ (inferred using (3.8)) by the COARE parameterisation (Edson et al.
2013), which is an empirical relation between u∗ and U10. The modelled whitecap coverage
falls within the scatter of recent data sets (Callaghan et al. 2008; Kleiss & Melville 2010;
Schwendeman & Thomson 2015; Brumer et al. 2017).

4. Conclusion

We demonstrate that a novel multi-layer model (Popinet 2020) can be used to simulate
free-surface waves with strong nonlinearity (and underwater turbulence) with reduced
computational complexity compared with a two-phase Navier–Stokes solver. We apply it to
study the breaking statistics associated with an ensemble of phase-resolved surface waves
simulated in the physical space. We analyse the breaking front distribution introduced by
Phillips (1985), and find good agreement with field observations. The breaking distribution
largely follows Λ(c) ∝ c−6 even in the absence of wind input, and can be scaled by the
wave r.m.s. slope, indicating that the universal breaking kinematics is primarily governed
by the wave field itself, while the wind controls the development of the wave spectrum.
The proposed scaling in terms of the r.m.s. slope is shown to apply to field data as well.

Our approach provides an unprecedented numerical framework to study breaking
statistics for complex wave spectra, which could help to understand the breaking
distribution in complex seas (in the presence of swell or currents) and complement existing
modelling approaches such as Romero (2019). In addition to the physical discussion of
breaking statistics, we demonstrate the capability of the multi-layer approach to solve
highly nonlinear geophysical flows with strong vertical–horizontal anisotropy.
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Appendix A. Independence of the breaking statistics from the initial spectral shape

In the numerical simulation, we observe that the wave field dissipates the excessive energy
and reaches a φ(k) ∝ k−3 quasi-steady energy spectrum independent of the initial spectral
shape, as long as there is excessive energy initially. This is consistent with the idea of
saturation, which dates back to Phillips (1958). It explains that in the limit where the wave
field is constrained by breaking, the spectrum should follow a k−3 shape. As a result, the
breaking statistics are not dependent on the choice of the initial spectral shape either (but
still dependent on the steepness).

To demonstrate that the breaking front distribution results are not due to the choice of a
particular initial spectral shape, we performed a simulation where the initial spectrum is a
Gaussian distribution given by

φ(k) = P
s

exp[−0.5(k − kp)
2/s2]. (A1)

In addition, we have considered a large variance s of the Gaussian distribution so that
there is more energy in the shorter-wave range than a typical wind wave spectrum. We
can see from figure 7 that the breaking model quickly dissipates the excessive energy and
establishes a quasi-steady k−3 distribution. After a quasi-steady spectrum is established,
the breaking front distribution exhibits a power law similar to cases initialised with typical
wind wave spectra, close to Λ(c) ∝ c−6. In figure 8 we compare the two initial Gaussian
spectra cases with the other initial wind wave spectra cases. The correlation between
kpHs and σ cases is spectrum shape dependent, but the proposed scaling for the Λ(c)
distribution works as well (because the spectra at late times are independent from the
initial conditions) and the pre-factor is the same for all cases.
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Figure 9. Convergence between horizontal grid point Nh = 1024 and 2048. (a–c) Wave energy spectra at
ωpt = 0, 146, 292, respectively. The grey vertical lines indicate kmaxL0 for Nh = 1024 and 2048 respectively.
(d) Energy evolution for case 1 and case 2 with varying horizontal grid points Nh. Solid lines: total energy;
dashed lines: two times kinetic energy; dotted lines: two times potential energy. (e) Breaking distribution for
case 1 and case 2 with varying horizontal grid points Nh. The grey vertical lines indicate the phase speed kmax
for Nh = 1024 and 2048, respectively.

Appendix B. Resolution effects on the wave energy spectrum and breaking statistics

We show with the following verification cases that the wave energy spectra and breaking
distributions are converged with respect to the horizontal number of grid point Nh.

Case 1 and case 2 are two cases with different initial energy contents. Their spectrum
evolution is shown in figure 9(a–c). The spectrum evolution is largely unchanged between
horizontal grid point Nh = 1024 and 2048 for k smaller than the resolution limit kmax,

968 A12-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.522


Wave breaking with multi-layer model

which is determined from 9(b,c) to be 2π/(16Δ), where Δ = L0/Nh is the horizontal grid
size. We use this value as our upper integration limit kmax in σ calculation.

The only discernible change when increasing the resolution is that there is a longer k−3

spectral tail in figure 9(b,c). Apart from the resolution effect, case 1 (less initial energy)
has an earlier fall off than case 2 (more initial energy) because of the less frequent breaking
events and therefore slower energy transfer to the large k range. In a word, the extent of the
k−3 range is both breaking limited and resolution limited. Given enough time, case 1 will
develop a k−3 tail as well.

The energy decay for case 1 and case 2 is shown in figure 9(d). Between Nh = 512 and
1024 the difference is very significant, especially for the less steep case 1, therefore we
use Nh = 1024 for all the cases reported in the paper. There remains a small difference
in energy dissipation between Nh = 1024 and 2048, and the difference is mostly in the
kinetic energy, which indicates a discrepancy mostly in the underwater turbulence.

As a result of the convergence in the wave energy spectra, there is a convergence in
the breaking distribution Λ(c) shown in 9(e), for c that are larger than the resolution
limit. Again this indicates that the kinematics of breaking is a direct result of the wave
energy spectrum, but not strongly coupled to its dynamic effects such as breaking-induced
dissipation.
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