Canad. Math. Bull. Vol. 41 (3), 1998 pp. 374-384

NORMAL INVARIANTS OF LENS SPACES

CARMEN M. YOUNG

ABSTRACT. We show that normal and stable normal invariants of polarized homo-
topy equivalences of lens spacesM = L(2™;rq,..., rm)andN = L(2W;sp,....s) are
determined by certain £-polynomials evaluated on the elementary symmetric functions
ai(r3,.... r2yand oi(s2, . ..., ). Each polynomial ¢, appears as the homogeneous part
of degree k in the Hirzebruch multiplicative L-sequence. When n = 8, the elementary
symmetric functions alone determine the relevant normal invariants.

1. Introduction. The development of surgery theory and the study of lens spaces
was largely motivated by questions concerning free actions of groups on spheres. For
example, which groups admit such actions? Is it possible to classify all free actions on
spheres in each of the smooth, piecewise linear and topological categories? If so, then
what invariants are available to make this classification explicit?

Consider free actionsof acyclic group G. By the L efschetz Fixed Point Theorem, only
Z, can act freely on an even-dimensiona sphere. We therefore assume G to be acting
on S"1If T is agenerator of G, then the isomorphism G = 71(S$"1/G) determines
a corresponding generator of the fundamental group of the quotient space. Fixing this
generator and the orientation induced by S*"-1, we obtain a polarization of "1 /G. A
map of polarized spaces which preservesthe individual polarizationsis itself said to be
polarized.

Now let C denote one of the smooth, piecewise linear or topological categories.
By definition, two actions ji1, p2: G x 71 — "1 are equivalent in C if thereis an
isomorphism (i.e., diffeomorphism, PL homeomorphism or homeomorphism) ¢ of "1
suchthat ¢ o puy(T,X) = uz(T. <,0(X)).

Since p1 and i are equivalent in C if and only if there is a polarized isomorphism
of %1/ u; and $1 /4, in C, one may hopeto classify free actions of G on "1 by
classifying all polarized quotients "1 /G.

If G = Z4 isafinite cyclic group, this quotient spaceis called a fake lens space. It is
characterized by the fact that its universal cover is asphere and its fundamental group is
cyclic of finite order.

Free linear actions of G = Z4 on " are defined in the following manner. Let

S, ..., S beintegerscoprimetod. Foreachj =1,.. ., n, lett5 bethefree 2-dimensiona
real orthogonal representation of Z4 which is given by rotation through ? radians. As
Sennns s, arechosen primeto d, the 2n-dimensional representationt™ +- - - +t% isfreeand

Received by the editors December 11, 1996.

This paper is based on the author’s M.Sc. thesis. The author wishes to thank lan Hambleton for advice
and support given during the completion of this work.

AMS subject classification: Primary: 57R65; secondary: 57S25.

(©Canadian Mathematical Society 1998.

374

https://doi.org/10.4153/CMB-1998-050-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-050-6

NORMAL INVARIANTS OF LENS SPACES 375

induces afree action of Z4 on the sphere S(t + - - - +t%) &~ "1, Theresulting quotient
space is called a classical lens space and is denoted L(d; s;, ..., ). The topology of
this space depends on the choice of weights s = (s;. . . ., S); in particular, s determines
apolarization of L(d; sy, . .. , sv). Thereis a polarized homotopy equivalence h between
two lens spaces L(d; rq.....rp) and L(d; sy, ..., &) if and only if TIr; = IIs mod d
(see[Q]).

Wall [W] showed that every fakelens spaceis homotopy equivalent to aclassical lens
space. Hence the problem of classifying free actions of Z4 on "1 is equivalent to that
of classifying manifolds having the homotopy type of a classical lens space. Problems
of this nature are addressed by surgery theory; hence it is important to compute the sets
and maps occurring in the surgery exact sequenceof N =L(d; sy, . ... S):

n® 'Y
= SEN) L TE(N) & LB,y (miN).

Here SC(N) is the structure set of N, consisting of h-cobordism classes of manifolds
homotopy equivalenttoN, and T¢ (N) isthe set of normal invariantsor normal cobordism
classes of degree 1 normal maps with target N. The basic elements of surgery may be
found in [W], [tDH] and [Br].

Throughout the present paper, two lens spacesM and N will be referred to asnormally
cobordant if there exists a polarized homotopy equivalence h: M — N such that (M, h)
is normally cobordant to (N, idy). In the topological category, normal cobordism classes
of pairs (M, h) with target N are classified by homotopy classes of maps of N into a
space F/ Top (see [MM]). The latter space behaves well under localization at 2 and
away from 2, thereby allowing one to compute the class of (M, h) as a combination of
its even and odd parts. For an explanation of homotopy theoretic localization of spaces,
the reader isreferred to [Su] and [A].

Let L(-) denote the Hirzebruch multiplicative L-sequence evaluated on the Pontrjagin
classes of amanifold. By a theorem of Szczarba[Sz], the integral Pontrjagin classes of
thelensspaceN = L(2™; sy, ..., sy) are given by the formula:

where o; denotes the i-th elementary symmetric polynomial and w € H?(N;Z) is a
generator. We let

6= (o D r(S . D).

where (y is the homogeneous polynomial of degree k appearing in the multiplicative
sequence L. We shall also abbreviate oi(sZ, . . . . §) to i(s). Then, for example, the first
three (-polynomials are;

CEEE

09 = 5=(7029 ~ (0209)°)
1

(3(8) = o5

(6203(9) — 1302(9)- 01(9) + 2(01(9)*)..
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Moreover, L(N) = 1 + S0 (k(S) - .
Our main result concerns normal cobordism of classical lens spaces.

THEOREM 1.1. Let M = L(2™rq,....rp) and N = L(2™; s, ..., S). Suppose that
r =5 = 1mod 4 for all j and further, that ITr; = I15 mod 2™3. Leth:M — N be a
polarized homotopy equivalence. Then (M, h) is normally cobordant to (N, idy) if and

only if £i(r) = («(s) mod 2™3 for 1 < k < 2L,

RemARK. If M and N are homotopy equivalent polarized lens spaces with 71M =
m1N = Zom then, by Lemma 2.1 and its proof, we can always find weightsr, ..., r, and
Siye.-s S, So that the hypotheses of Theorem 1.1 are satisfied. Therefore we may freely
apply Theorem 1.1 to any classical lens spaces having fundamental group of order 2™.

Following [CSSWW], M and N are said to be stably normally cobordant if the
stabilizationsM, = St +- - -+t +p) /ZgandN, = St +- - - +t5 +p) /Z4 arenormally
cobordant for all free representations p of Z4. As a consequence of Theorem 1.1, we
have:

THEOREM 1.2. Let M = L(2™rq,....rp) and N = L(2™; s, ..., Sh). Suppose that

=5 = 1mod 4 for all j and that ITr; = IIs mod 2™3. Then M and N are stably
normally cobordant if and only if £, (r) = ¢,(s) mod 2™ for all k > 0.

Let (i) denotethe number of non-trivial termsin the dyadic expression of the positive
integer i. Using Theorem 3.1, we are able to classify stable normal cobordism classes of
15-dimensional lens spaceswith 2-primary fundamental group in terms of the Pontrjagin
classes of these spaces.

COROLLARY 1.3. Letn=8. Supposerj =s = 1mod4forj=12,....8andfur-
ther, that [Trj = 1§ mod 2™3. The 15-dimensional lens spacesM = L(2™;rq, ..., ),

N = L(2™s.....s) are stably normally cobordant if and only if 2°0-1g,(r) =
2°0~15:(s) mod 2™3 for 1 <i < 8.

In particular, it isnot necessary for the Pontrjagin classesof stably normally cobordant
lens spacesto be congruent modulo 2™3, Theorem 1.2 thus correctsan earlier calculation
of these stable normal invariants made in [CSSWW]. It would seem that the five authors
neglected some powers of 2 which appear in the numerators of the £-polynomials.

Our results only determine the normal invariants of homotopy equivalence between
classical lens spaces. Therefore Theorem 1.1 does not completely compute the kernel of
17: STP(N) — TT(N) whend = 2™. Asfar aswe are aware, the homeomorphism classi-
fication of fake lens spacesis still unknown. The classification for d odd was completed
by Browder, Petrie and Wall [BPW]: in this case, fake lens spaces are determined up to
homeomorphism by their Reidemeister torsion and p-invariants.

2. Proof of Theorem 1.1. Henceforth M and N will denote classical lens spaces
whose fundamental groups are of order 2™, m € N. If m =1, then M and N are simply
projective spaces. If m = 2, then thereis a polarized homotopy equivalenceh: M = Nif
and only if M and N are diffeomorphic. Therefore we will assumethat mis at least 3.
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LEMMA 2.1. LetM =L(2™;ry, ..., rn) and N = L(2™ s, ..., S) belens spaces such
that w1(M) = m1(N) is cyclic of order 2™, m > 3. Given a polarized homotopy equiva-
lence h: M — N, there exist lens spaces My, N; and a polarized homotopy equivalence

h]_: M; — N such that

i) M,N are 8-fold coversof M1,N; respectively
ii) hcoversh; up to homotopy.

Proor. By the homotopy classification of lens spaces (see [O, Section 8]), I1r; =
I1s; mod 2™. Therefore, up to simultaneous reversal of orientation, we may assume that
ri=s=1mod4forj=12,....n Letzbeaninteger suchthatIr; — [Is = 2"z and
chooseas.....an. by, ..., b, € Z so that therelation

(1) st +s8p- - saby—ar = —r1-- @, =z (mod 8)
is satisfied. For example, becauses = 1 (mod 4) for al j, we may tekeb; = zs; - - - 5
andb2:~--:bn:a1:--~:an:0.

Let My = L(2™3;r1+2May. ..., ry+2Ma,) and Ny = L(2™3; 5, +2Mby, ... . $,+2™by).
Observe that

[1(rj +27ay) = ] rj+2™@ar2 - fn+--- +r1---rn_1an)
+ termsinvolving higher powers of 2™,

Asm > 3, thisimplies that

H(I’J + Zmaj) = H r] + 2m(a]_r2 B + ... 4 ri--- rnilan) mod 2I’T’H’3
i i

and hence that
H(rj+2mai')_l—[(§ +2mbj)EHrj_H§+2m(alr2"'rn+"'_blSQ"'S1_"')
j j
=2"z+2M@yrp- - rp+ - — b S — - - -) mod 2™3,

By equation (1), this last quantity is 0 mod 2™3, It follows that TI(r; + 2Ma) =
T1(s +2™b;) mod 2™ and that there exists a polarized homotopy equivalencehy: M; —
Nz. Any lifting of h; toamapM — N will preservegenerators of the fundamental groups
and will have degree one. By [O], thislifting will be homotopic to h. L]

ProOOF OF 1.1. Our proof follows Cappell and Shaneson’s proof of a similar result
(see[CS, Theorem 1.1]).

Let BF denote the classifying space for stable spherical fibrations, and BTop the
classifying space for stable topological Euclidean space bundles. The homotopy fibre
of the natural map BTop — BF is denoted F/ Top; it is the classifying space for stable
fibre homotopy trivialisation of topological Euclidean space bundles. Thus the normal
invariant of h: M — N is an element n(h) € [N,F/ Top]. For additional material on
F/ Top, we suggest the reader turn to [MM], [Su], [KS] and [N].
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ThespaceF/ Top carriestwo distinct infinite loop space structures[N], each of whose
corresponding H-space structures is homotopy commutative. In either case, [N, F/ Top]
is an abelian group, and equals the pullback over [N, F/ Top] @ Q of its localisations
[N.F/ Top]z and [N, F/ Top](dq). Since F/ Topis simply connected, Sullivan’s results
onlocalisationyield, for any set of primes, an equivalenceof functors: [—. F/ Top]¢) =
[—.F/ Top,]. Thereforeit is sufficient for us to show that the image of #(h) in each of
[N, F/ Topg] and [N, F / Topgq] istrivial.

One further consequence of Sullivan’swork is a description of the homotopy type of
F/ Top:

F / Top(odd) ~ Bo(odd)
F/ Topg ~ [1(K(Z2.4i — 2) x K(Z(. 4i))

i>0

The splitting at 2 is specified by the Kervaire class K € H**%(F/ Top,; Z2) =
[F/ Topp. K(Z2.4 * +2)] and by the class L € H*(F/ Topy):Zz) = [F/ Topy),
K(Z (. 4+)] defined by Morgan and Sullivan in [MoSu].

Let my: 1 — N denote the natural projection and Tr:KO (1) — KO'(N)
the Atiyah transfer in real K-theory. By a theorem of Becker and Gottlieb [BG], the
composite

% oA~0 1 —0 1
is an isomorphism. Hence y;: [N, BOgoag)] — [S"~1. BO(ouq] is @ monomorphism. By
Bott Periodicity (see [A, Section 5.1]), the latter groups are trivial and it follows that
[N, F/ Topgq)] = [N, BO(odq)] = 0.
In order to analyse the 2-primary part of 5(h), note that we have an isomorphism

[N.F/ Topy)] = G%(H‘“‘Z(N; Z,) & HY(N; Z(2))
1>

defined by the universal classesK . L in the cohomology of F/ Top,,. That part of 1(h)
lyingin H*~2(N; Z,) is seento be zero asfollows. Let h': RP?~1 — RP?"1 be ahomo-
topy equivalence covering h: M — N for which 7 (h) = n(h’). By [O], h’ is homotopic
to a diffeomorphism and so has 7(h’) = 0. Now the natural map K(Z,.1) — K(Zom, 1)
induces isomorphisms in even-dimensional Z,-cohomology (see [E, Section 2]). As
RP>1 and N are the (2n — 1)-skeleta of these classifying spaces, it follows that
w5 HA72(N; Z2) — HA=2(RP?"-1; Z,) is an isomorphism for 4i — 2 < 2n — 1. Thus
n(h) = (7)) n(h') = 0in H4~2(N; Z,), as required.

It remains to calculate n(h)*L. Let My, N; and h;: M; — N; be asin Lemma 2.1.
By [Mosu],

) 8n(hy)'L +1= () *Lu, - Ly}
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where Ly,, Ly, are the transversality characteristic classes of Mj, N; respectively.
By [SZ], the stable tangent bundles of M; and N; decompose as Whitney sums of SO,-
bundles. Following Cappell and Shaneson’s line of reasoning [CS], we conclude that
Lm, =L(M;)~tand Ly, = L(Ny)~1. Then (2) becomes

8n(h1)"L + 1= (h)~'L(M1)~* - L(Ny).

The map *: H¥ (Ny; Z(2) — H4(N; Z 2)) induced by the covering N - Nj is surjective
with kernel {x|8x = 0}. Hencen(h)*L = p*n(hy)*L istrivial if and only if 8(h;)*L =0,
that is, if and only if h;L(N;) = L(M31). Asthe normal invariant of h is measured entirely
by n(h)*L, this proves 1.1. "

We now have an algorithm for determining when two homotopy equivalent lens spaces
M and N, with m;M = 7N = Z,m, are normally cobordant. First normalize the weights
asin the proof of Lemma2.1sothatr; = § = 1 mod 4 and [Trj = I1§ mod 2™2. By
Theorem 1.1, M and N are normally cobordant if and only if £,(r) = (4(s) mod 2™3
forl <k < %. The ¢y are computable as known polynomials in the elementary
symmetric functionso1(r2, ..., r2), ..., on(r3...., r2). Alternatively, one may make use

of the multiplicativity of L = {/\ }k=0 and compute £ (r) as the coefficient of x?¢ in the

n
power series expansion of Héh%(
j=1
Now let N be alens spaceand 71N of arbitrary order. Wall [W, Section 14E] showed
that the odd torsion part of the normal cobordism class of N is determined by the p-
invariant of N. By passing to intermediate covering lens spaces, Wall's theorem and

Theorem 1.1 combineto prove:

COROLLARY 2.2. Let m > 0 and let q be odd. Then M = L(2"q; ry, ..., rn) and
N =L2"qg s, .-, s,) are topologically normally cobordant if and only if p(M) and

p(N) agreeand (y(r) = (x(s) mod 2™3 for all k < 221,

3. Stable Results. Let p; =t + ... +t'» denote the free representation of Zom
associated to the lens spaces M = L(2™;rq, ..., rn), and likewise let p, be the repre-
sentation defining N = L(2™; sy, ..., ). Let ITrj = II§ mod 2™2 and let h:M — N
be a polarized homotopy equivalence. If p = t© + --- + t% is an arbitrary free repre-
sentation of Z,m, the direct sum representations p1 + p, p2 + p define free actions of
Zom on the sphere FMP-1 = 14 41 Let M, = L(2™rq,... ., Crs- .., cg) and
N, =L(2™ s, ..., S Clyeves Cq) denote the lens spaces obtained from these actions and
let h; 1 — -1 pe the Zm-equivariant homotopy equivalence covering h. Then
hxidgq 1 P11, @114 41 jsaZ m-homotopy equivalenceand coversaho-
motopy equivalenceh,: M, = N,. We say that the stable normal invariant of h: M — N
vanishesif the normal invariant of h, vanishesfor all free representations p of Zom.

THEOREM 3.1. Let M = L(2™;ry, ..., ) and N = L(2™ s, ..., %). Suppose that

r =5 = 1mod 4 for all j and that ITr; = I1§ mod 2™3. Then the stable topological

normal invariant of h: M = N vanishes if and only if ¢x(r) = (4(s) mod 2™2 for all
k> 0.
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REMARK. By Hilbert's Nullstellensatz, the last condition is guaranteed by a certain
finite number of congruences, (i (r) = (,(S) mod 2™3, k < K. It would be useful to have
an explicit expression for K in terms of the weights.

Proor. By Theorem 1.1, n(h) is stably trivial if and only if (h,)*L(N,) = L(M,) mod
2™3 for all free representations p of Zon. Any free representation may be decomposed
as a sum of free 2-dimensional representations, so we may assume p = t¢ for some
c=1mod 4. Letw € H%(M,; Z () be the preferred generator. Then

L(M,) = L((1 + %) - TI(L +rfu)
L(1+c%w?) - L(TI(A +rfw))

1+ Q™| - [L+ 3 ti(r) o]
k>0 i>0

and similarly (h,)*L(N,) = [1 + Sk=0 (k(©)w] - [1 + Tixo (i(S)w?]. It follows that

LM = () L) =1+ 57 (0] [2(00) ~ (19)+]

i>0

and the homogeneous part of dimension 2nis

> (6 = 46(®) - Q)™

4i+4k=2n

If nisodd, thissumiszero. If n = 2/, then

> (600) = 46(9) - Q) = LX) — Lw(9),
di+4k=4r/
for the (unstable) vanishing of n(h) impliesthat ¢;(r) — £i(s) = 0 mod 2™3 for i < 2"7*1.
Therefore (h,)*L(N,) = L(M,) mod 2™3 if and only if ¢y (r) = £y(s) mod 2™3, as
required. ]

We contrast Theorem 3.1 with the following assertion of Cappell, Shaneson, Stein-
berger, Weinberger and West [CSSWW]:

LetM =L(2™ry,..., m),N=02ms,..., s») and supposethat ITrj = I1§ mod 2™3,
Then the stable normal invariant of h:M = N is trivial if and only if 6i(r%, ..., r2) =
oi(s2,....$) mod 2™3for 1 <i <n.

The last condition would imply that the Pontrjagin classes of N and any stabilization
N, pull back via h to those of M and its stabilization M,. It would then follow that
0 (r) = 0(s) mod 2™3 for al k > 0. When dealing with rational coefficients, the
converseis true, for the Pontrjagin classes may be expressed over Q as polynomialsin
the (-classes. Over Z o) however, the examplegiven below demonstratesthat equivalence
of the £-classes does not imply equivalence of the Pontrjagin classes.

Let usfirst fix some notation. Thei-th elementary symmetric function of nindetermi-
natesyi. Vs, . .., Vn is, asbefore, denoted oi( vy, - - . , yn)- Ifi > n, thenoi(ys,.... Yn) = 0.
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Letl =(q,..., .it) beapartition of k > 0. Then § will denote the unique polynomial in
k variables satisfying

S(o1(Y2 oY) oo OR(Yas oY) = DV W

where the summation is over all distinct monomials of the form yi1 y‘t For example,
if 1 =(,..., . 1), then S(o1, ..., ok) = Vi Yk = ok(Yis - Vo). If I = (K), then
S(o1s ..., oK) = er‘:lyjk, the k-th Newton polynomial invyjs, ..., . Yn. The polynomials S
satisfy the Newton formula:

©) S—Sc1-o1+ £S5 -0k 1Fkok=0
See [MiSt, Section 16], for a thorough discussion of symmetric functions and the poly-
nomiass.

For brevity, we shall write oi(r) (resp. oi(s)) in place of oi(r2, ..., r2) (resp.
oi($,.... . ).

By [MiSt, Section 19] or [H, Section 1], the ¢-polynomials are given by the formula:
4 () =% S(by,..., b)ai, (r) - - - 0, (r)
to be summed over all partitions| = (iy, ..., it) of k. Here by, k > 0, is the coefficient of
XX in the power series expansion of

VX 1 27Bi i
tanh /X =1+ kZ:( 2 (2k)'

and By isthe k-th Bernoulli number (see [MiSt, appendix B] ). Note that in all cases, the
numerator of By is odd whereas its denominator contains a single factor of 2.

Let v(-) denote 2-adic valuation: any integer g can uniquely be written in the form
g=2"-w, withwoddandv > 0. Then v(g) = v. Moreover, q is divisible by 2 if and
only if »(g) > O.

LEMMA 3.2. Let g € N and let a(q) denote the number of non-zero terms in the
dyadic expression for g. Then v(q!) = q — «(Q).

PROOF. The positive integer q determines &; € {0,1},i > 0, suchthat q = > ¢ 2'.

i>0
Then a straightforward counting argument shows:
V) =3 [ ] S 2= Y g2
>0 >1i>j 1<j<i
=Y e > 27]=3a@ - 1) =g— ). .
I<i 1<<i I<i

LemMMA 3.3. For all k> 0, v(by) = a(k) — 1.
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PROOF. Asby = 2= By, itiseasily seenthat v(by) = (2K)— (2k—a(2K))—1 = a(K)—1.

(2|<)'

LEMMA 3.4. S(b1.....b) = (1)K 1(2%1 — 1)b,.

The proof is an application of Cauchy’s Identity,

dlogf
f() (f(x))_l_x 03 (X)‘1+Z( D*S(Cts - - - » GIXK

with f(X) = tanh\/>_< (see [MiSt, problems 19B, 19C]).

We shall need to pay special attention to partitions | of the form (g, p,p, ... .p), that
is, | consists of an integer q # p followed by several copies of p. Such a partition shall
be written as (g, p), where . > 0 isthe multiplicity of pin|.

LEMMA 3.5. Letpy > 0.

i) Forg=3.5.6 mod 8, §q8:) = 0 mod 2.
if) For g=7mod 8, Sqe:) =0 mod 4 and Sq 4.8 = 0 mod 2.

PROOF. Lety > 0andq < 8. Thereexist ¢, e/ € {0,1} suchthat 1 = Yj>0 &2 and
q="Yi>0¢/2. Asq < 8,¢/ =0fori > 3. Therefore

q+8u= (56+5/1-2+5'2-22+Zsi,3~2i.
i>3

whencer(q+ 8u) > v(q) (with equality if and only if = 0).

Suppose now that g = 3.5 or 6 mod 8. We proceed by induction on . The case
p = Oistrivial, for § = by (mod 2) and v(bg) = a(q) — 1 > 0. For general values of p,
observethat Sqs:) = §q) * S81) — Sgrss-1)- By Lemmas 3.4 and 3.3, §q) iseven. By the
inductive hypothesis, S0 t00 is Sg:g.8:-1)-

Next, supposethat g = 7 mod 8. Then §;=0mod 4 and Sg4) = - S — Sqra) =
0 mod 2. Observing that

S7'SB“ :378")*-%158/’1)
S Sue) = S748) + e T Susas-y

our conclusionis now reached by the same inductive argument. ]

THEOREM 3.6. Letn=8andsupposerj=s =1mod4forallj=1,2 ...,8 Then
0x(r) = () mod 2™3 for all k > 0if and only if 220~1g;(r) = 220~14;(s) mod 2™3
foreachi=1,2,....8.

PrROOF. By assumption, r; = 1 mod 4, so rj2 = 1mod8 foreachj = 1,...,8.
Therefore oi(r) = Yj,<.<j I, -+ 17 = (Dj,<-<j; 1) = () mod 8. In particular, o4(r) =

2mod 4 and oi(r) = 0 mod 4 fori € {1.2,3,5,6, 7}. The same holdsfor ¢i(s), 1 <i <
8.
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Sufficiency: Suppose 2°0~1g;(r) = 2°0~1g;(s) for eachi = 1.2.....8. Then
(5) z0i(r) = zoi(s) mod 2™ for any integer z= 0 mod 2°®—1,
We claim that
S(by.....b) - oi, (1) - 63, () = S(by. ... 1) - 0, (9) - - - i, (5) mod 2™

forall k > Oandall partitions| of k. By (4), thiswill provethe congruences ((r) = (x(3),
k> 0.

If I =(g,8") and q = 3.5 or 6, then by Lemma 3.5, S(bq, ..., b) = 0mod 2.
From (5), we conclude that

S(b1...... bJoq(D)(08(D)" = S(bi..... BJog() ()" mod 2
= S(by. ....b)og(9)(os(s))" mod 23,

If I = (7,8") then by Lemma 3.5, S(bs,...,b) = 0mod 4 and a similar argument
shows that 8(7&)07([)(08([))# = &73“)07@)(08@))“'
IfI = (7.4,8") then S (by. .. .. b)) = 0 mod 2. Furthermore, o4(r) = 0 mod 2, and so

S(by, ..., bk)o4(r) = 0 mod 4. Again, (5) implies that

Soa)or(1)(o8(r))" = Soa)or()(os(r))"
= So4(8o7(8)(0s(9)" mod 2.

Now for any remaining partition |, we have oy, (r) - - - 0i,(r) = 0i,(3) - - - 7, (S) mod2™3,
For example, if | = (q,iy, ..., i) and g = 3,5 or 6, then it may be supposed that
1<ip; <7.As0,(r) = 0mod 2, wefind by (5):

aq()ai,(r) - - 61 (r) = q(9)i, (1) - - - 0i ().

Likewise, if | = (712, ..., i) then either we may assumei, € {1,2,3,5,6,7} or we
may assume i, = i3 = 4. But 0y,(r) = (04([))2 = 0 mod 4, so once again we have
77(D)01, (D) - 01,(1) = 07, (9) -+ 01, (9):

Necessity: Suppose (x(r) = (s for al k. By (4), £1(r) = %al(g). Hence o1(r) =
o1(s) mod 2™3,

Assume now that 2°0~1g;(r) = 200-1g(g) forall i < k < 8. If | = (iy,...,i)
is a partition of k which itself does not equal (k), then i;.....i; < k. As a result,
270 =1g; (r) = 27010y (s) for each j = 1.....t. Arguing as above, we find that § -
oi,(t)---0i,(r) = S - 0i,(9 - 73, (s) for all partitions | # (k). Therefore 0 = £4(r) —
0(8) = Sc - (ow(r) — ow(s)) mod 2™ By Lemmas 3.4 and 3.3, #(S) = a(k) — 1, S0
200015, (r) = 22015, (s) as desired. ]

COROLLARY 3.7. Letn=8andletrj =s = 1mod 4forj=1,2,...,8. Supposefur-
ther that ITr; = IT§ mod 2™3. The 15-dimensional lens spacesM = L(2™; 1y, ... rs),
N = L(2M;s,....s) are stably normally cobordant if and only if 2°0-1g,(r) =

200-1gi(s) for 1 <i < 8.
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Simple calculations now show that, for r = (1,1, 1, 1, 2297, 3271, 3449, 3769), and
s=(3., 3,3, 3,35, 181, 2243, 4005), the lens spaces

M = L(2%; 1, 1. 1, 1. 2297, 3449, 3769, 4921)
N = L(2%; 3,3, 3.3, 35, 181, 2243, 4005)

are stably normally cobordant, but oi(r) # oi(s) mod 214 fori = 3,7.
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