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Abstract
The induction of the electric fields near a rotating neutron star is considered within the framework
of General Relativity. It is demonstrated that within the open magnetic field region, filled by rela-
tivistically moving charged particles, a sufficiently strong component of the electric field is generated.
This component is due to the effect of dragging of inertial frames of reference and predominates in the
case when a neutron star is not exactly an orthogonal rotator. Finally, we discuss some implications
of our results ou the theory of radio pulsars.

Introduction

Several years ago we studied the electric fields generated near a rotating neutron star in vacuo in General
Relativity and discussed some plausible consequences for pulsars (Muslimov and Tsygan 1986). In the
present revort we would like to outline some more recent results (Muslimov and Tsygan 1990a, Muslimov
and Tsygan 1990b) on General Relativistic effects which pertain to the electrodynamics of neutron stars.
Here we concentrate on a pulsar model like that considered by Scharlemann, Arons and Fawley (1978)
and Arons and Scharlemann (1979). The main reason for this is that the alternative models of Sturrock
(1971) and Ruderman and Sutherland (1975) confront us with a number of problems which arise if the
cohesive energies of atoms in the very strong magnetic fields at the neutron-star surface are much lower
(Jones 1986) (~100eV) than those found previously (~3keV). Our main purpose here is not to propose
a detailed model but to point out the hitherto neglected possibility of General Relativistic effects which
generate strong electric fields and electron-positron avalanches above the polar caps of a neutron star.

The basic equations and solutions

Consider the metric of an asymptotically flat, stationary, axially symmetric spacetime near a rotating
neutron star. The non-vanishing components of the metric tensor (in coordinates z° = ct, z! = R,
r? =, 1% = ¢) are (Landau and Lifshitz 1975)

goo = —1/guu=(1-rg/R) = a?, gy = —=R?, 933 = —R%sin? 9, go3 = wR?sin? ¥,

where rg = 2GM/c? is the gravitational radius of a neutron star, G the gravitational constant, M the
stellar mass, ¢ the velocity of light, w = 2GJ/c*R3, and J the stellar angular momentum.

In the following we will neglect effects which are quadratic in J/Mecrg. Bear in mind that the non-
diagonal component of the metric, go3, leads to the well known effect of dragging of inertial frames of
reference with the angular velocity wJ/J (Bardeen, Press, and Teukolsky 1972).

The equations of electrodynamics will be expressed in terms of absolute (but curved) 3-dimensional
space and universal time in accordance with the formalism of Macdonald and Thorne (1982). The electric
field, E, magnetic field. B, electric charge density, p, and electric current density, j, are defined in a
ZAMO (Zero-Angular-Momentum-Observer) frame of reference, which is described by an orthonormal
tetrad of 4-vectors.

The Maxwell equations are (Macdonald and Thorne 1982)

V-B = 0, (1)
1 /6B
Vx(aE) = -- (TaT+C“'"B)’ (2)
V.-E = dnmp, (3)
Vx(aB) = l(a—gﬁtcm}:)ﬁ—”aj, 4)
c \ Ot c

where L, is the Lie derivative along the vector w = wm, and m = rsin ﬂeé is the Killing vector of
axial symmetry.
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Consider a neutron star rotating with angular velocity 2 relative to a distant observer and pass to
1e frame of reference corotating with the star. Then from eq.(2) we obtain

Vx (az-l(w-u)x3)=%%% (5)

c

here u = Qrsinde;.
Assuming that the magnetosphere (at least, in the near zone) is stationary in the frame corotating
ith a star, on the basis of eq.(5) we can write

aE—-i—(w—u)xB:—V@, (6)

here the scalar potential, ®, satisfies the Poisson equation in General Relativity

v-(3v8) = —4x(o- o), ™)
o per = 7=V (;}(w -u) B) (8)

the effective charge density.

For further purposes we will use an adequate approximation, ¥ € 1. Then the equation of the last
pen magnetic field lines (for the dipole magnetic field in the Schwarzschild background) takes the form
Muslimov and Tsygan 1989, 1990)

0= 00 [n7 1)/ S (9)

‘here

60 = (Qa/c)'/2f71/3(1)

: the magnetic colatitude of the last open field lines at the stellar surface,

n = Rfa,
sy = -3(2) [ln(l— §)+§(1+{;] ,
e = rg/a

i a compactness parameter, and a is the radial coordinate of the stellar surface.
The explicit expression for the effective charge density is

QBy 1

3 .
Peff = __W?Z’F (F(n) cosx + 5H(1})t9 sin x cos /\) , (10)

rhere

Bo B:(R=a,9 = 0)/2f(1),
F(m) = f(n)(-«x/7%),
Ho) = ) (1= (- e/n)/n-w/r) + — (1= 3e/2n+ x/20°),
k = 2GJ/Qac,

nd where x is the angle between the angular and magnetic momenta of a neutron star, and A = ¢ — §2t.
Here we shall consider space charge limited flow (see, e.g., Scharlemann et al. 1978) with the following
tandard boundary conditions for the potential and electric field

i. There exists a closed magnetosphere filled with plasma where E - B = 0.

ii. The boundary between the closed magnetosphere and the open field lines is a surface of & = 0. At
the stellar surface ® =0 and Ey = E-B/B =0.
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The motions of charged particles (e~,e*) in the intense magnetic field can be approximated as a rela
tivistic motion along field lines, with

Jj=cpB/B. (11
For the stationary axially symmetric case eqs.(4) and (11) yield
B-V(ap/B)=0. (12
Now it is convenient to introduce coordinates n = R/a and £ = 9/6. Then the solution of eq.(12) is
_ By 1 3, H(1)
p=-o p: f(n) (kl(l K)cosx + 21:2 0 o€ sin x cos A (13

where k,, ko are the constants to be determined.

Consider the solution of eq.(7) near the very surface of a neutron star when n — 1 = z € 1. In thi
case V| - E| =~ (1 —£)'/2a=26%®/82z%. By solving eq.(7) with the above boundary conditions, we ca
determine the constants k; and k; from the requirement that at R — a > 6 (where § is the polar ca
radius) this solution is matched with that far from the stellar surface (see below).

The expression for the longitudinal component of the electric field is

109

E||(Z,19) =FE-: B/B = —;E

= _1p g2 (G 1y IS™ (1 = e-Piz/tai-07) o g o(Bid/b0
= 2B090( c-"f(l) [Z(l e ) x8ﬂ?']l(ﬂi) cos x

Q = 9
+—Cg€03 [Z (1 - e_"“/o"(l_‘)m) GJI(‘7 (/0)0] sinxcosA) , (14
i=1 7i

where
s=H(1)/2+ H(1)=f1)(1+(3c=r)/2) - (1 +5(c¢ — k) /2 — (9 - Tx)[2) /2(1 - 6)2.

Bi and «; are the positive roots of the Bessel functions Jo(z) and Jy(z), respectively.
We will demonstrate all solutions by setting the constants k; and k; equal to unity. This is justifiec
since

00(1 — )1/2 _ \1/2
300(1 - ¢) ~1, ky =14 8o(1 —¢)
Bi(1 - 1/x) viH(1)
Now we present the solution above the polar cap when 8y € 7 — 1 < ¢/Qa. In this case we can neglec
V| - E} in Poisson’s equation and write V- E = V, - E,. Then we obtain the solution

) 19% 6GJ f(1 3Qa }
Ey(n,€) = —;a—n = --By 0 -3 ffs) cosx + Z—C—Q(n)Goﬁsmxcosz\ (1—{2) (1€

ky=1- H(1)~1. (1¢

where

Q) = (F/fm)* w2 (=f(m) (1 - (2 - 3¢/n+4x/7%)/n) In +...
+9(1— (e = x/1%)/2n) [2(n—€)*f(n) +3 (1 - (1 —¢/n)/n—k/n’) [2(n—€) +...
— (1 - (Be—&/n*)/21) /(n—€)* - (8 — (15e = Tx/n?)[n) [20(n - €)) ,

with Q = f3/2(1)/2n/2, when 3 1.
The expression for E when z > 85(1 — €)'/2/min(8;, g;) is

Ey(z,9) = —%Boﬁg (cha f(1)cosx + g?—sﬂsmxcosk) (1-9%/6}). (1¢

It is easy to see from the above solutions that allowance for the effects of General Relativity leads to
new physical result (Muslimov and Tsygan 1989, 1990). Namely, for all inclination angles x # 7/2 a
electric field proportional to (6GJ)/(a%c®) = (6/5)[(Qa)/c|(rg/a) [(5I)/(2Ma?)] (where I is the momer
of inertia of a neutron star) is induced which is ~(c/€2a)'/? times greater than that in the case of a flz
spacetime.
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Discussion

Now we demonstrate that the essentially relativistic electric field under consideration can lead to the
‘ormation of an electron-positron avalanche above the polar cap along a path of the order of a stellar
-adius. In the following estimates we will use the crude approximation rg/a < 1.

The value of the accelerating electric field can be estimated as

Ej ~0.5B, (Qa/c)?, (19)

for rg/a ~ 0.4 and I ~ (2/5)Ma?.

The Lorentz factor of the primary particles is ¥ = eEja/3m.c?, where e is the electric charge of
an electron. The critical frequency of the spectrum of curvature radiation is we = 3¢I'3/2Rcyrv, Where
Reurv 2 (4/3)a (c/Qa)l/2 is the radius of curvature of a polar field line.

Now writing the condition for pair creation

hw. B a

21ne¢:2 E Rcurv ~ 01 ’ (20)

when (hwe)/(mec?)(a/Reurv) > 1. Here B, & 4.4 x 103 G is the quantum magnetic field.

The above condition is satisfied for B = 10'? G and pulsar rotation period P = 0.5s, when photons
with the critical energy of the curvature spectrum, Ahw, are absorbed. The number of such photons,
smitted by primary particles moving along a path a, is of the order of 3 x 102. The period of pulsar
rotatiorr for which pair formation ceases may be estimated as (for rg/a < 1)

P=P.B!", (21)

where P. ~ 0.5s and B2 = B/10'2G.
The total power going into particle acceleration can now be estimated as

4
~0.47E 5242 Qa 51
P=~04 . B*a*c (——c ) (——2M02 ) (22)

which is of the order of that lost by a rotating neutron star from magnetic dipole radiation.
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