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Abstract

In this article we analyse the behaviour of the extremes of a random walk in a random
scenery. The random walk is assumed to be in the domain of attraction of a stable
law, and the scenery is assumed to be in the domain of attraction of an extreme value
distribution. The resulting random sequence is stationary and strongly dependent if the
underlying random walk is recurrent. We prove a limit theorem for the extremes of the
resulting stationary process. However, if the underlying random walk is recurrent, the
limit distribution is not in the class of classical extreme value distributions.
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1. Introduction

Extreme value theory has been developed for independent, identically distributed (i.i.d.)
random variables by Gnedenko in the 1940s (see Gnedenko (1943)). He proved that those
maxima converge toward special types of random variables called extreme value distributions.
Later, these theorems were generalised to stationary sequences of dependent random variables.
In order to address these problems, some concepts of fading dependence were introduced.
Among the most advanced of these concepts were the D(un) and D′(un) conditions (see
Section 3), which were introduced by Leadbetter to describe a weak-mixing-type dependence for
the tails of stationary sequences. If they are satisfied, the random sequence behaves essentially
like the independent sequence with the same individual distributions (see Leadbetter et al. (1983,
p. 57)). Another concept which quantifies the amount of clustering in the dependent sequence
is the extremal index. If the extremal index is larger than 0, the asymptotics of the extremes
for the dependent sequence can be compared to the independent situation (see Leadbetter et al.
(1983, p. 68)).

In this article we investigate the behaviour of a special dependent stationary sequence.
Specifically, we investigate the behaviour of a random walk in a random scenery, where the
random walk is assumed to be in the domain of attraction of a stable Lévy process and the
scenery consists of random variables which are in the domain of attraction of an extreme value
distribution. We will see that if the underlying random walk is recurrent, the sequence does not
satisfy the D(un) condition introduced by Leadbetter. However, we can prove a limit theorem
in this situation. In the transient case, the resulting sequence satisfies the D(un) condition, but
not the D′(un) condition. We also compute the extremal index for a random walk in a random
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scenery. It turns out to be 0 when the natural scaling of the underlying random walk is larger
than 1.

Our investigation is motivated by the work of Kesten and Spitzer (1979). They proved limit
theorems for the sums of stationary sequences arising from recurrent random walks in random
sceneries. The resulting limits turned out to be new kinds of self-similar processes with strong
dependence in the recurrent case.

We now come to the definition of the model that we will investigate in this article. Let
{Xk, k ∈ N} be a sequence of centred, integer-valued, i.i.d. random variables with the property
that, for Sn = X1 + · · · + Xn and all x ∈ R, we have

P(n−1/αSn ≤ x) → Fα(x) as n → ∞,

where Fα is the distribution function of a stable law with characteristic function given by

ϕ(θ) = exp(−|θ |α(C1 + iC2 sgn θ)), α ∈ (0, 2].
We will denote by {Y (t), t ≥ 0} the right-continuous α-stable Lévy process with characteristic
function given by ϕ(tθ). It is well known that the processes

S(n)(t) := n−1/αS[nt] (1)

converge in distribution to Y with respect to the Skorokhod topology (see Kesten and Spitzer
(1979)). Here and in the following we denote by [x] the integer part of a positive real
number x.

Let {ξ(k), k ∈ Z} be a family of R-valued, i.i.d. random variables which we assume to be
independent of the sequence {Xk, k ∈ N}. The sequence of random variables {ξ(Sn), n ∈ N}
is called a random walk in a random scenery in the literature. The sequence {ξ(Sn), n ∈ N} is
a stationary sequence with some nontrivial long-range dependence.

For the random variables {ξ(n), n ∈ Z} belonging to the domain of attraction of a stable
law with exponent β and for α �= 1, Kesten and Spitzer (1979) proved a limit theorem for the
sum

Wn := ξ(S1) + · · · + ξ(Sn).

It turns out that the scaled sequence W(n)(t) := n−δW[nt] converges in distribution to a self-
similar process. The scaling exponent δ is 1 − 1/α + 1/αβ if α ∈ (1, 2] and β if α ∈ (0, 1).
The case in which α = 1 is more difficult, since the underlying random walk is then only
zero-recurrent. Besides the fundamental work of Kesten and Spitzer, a lot of refinements and
generalisations in various directions were obtained by other authors (see Lang and Nguyen
(1983), Shieh (1995), Maejima (1996), Arai (2001), and Saigo and Takahashi (2005)).

In this article we investigate the asymptotic behaviour of the maxima

Kn := max{ξ(S1), ξ(S2), . . . , ξ(Sn)}.
For this, we will assume that the distribution function F of the random variables {ξ(n), n ∈ Z}
is in the domain of attraction of an extreme value distribution G(x). This means that there exist
two sequences {an > 0, n ∈ N} and {bn ∈ R, n ∈ N} such that, for

Mn := max{ξ(1), . . . , ξ(n)},
we have

P

(
Mn − bn

an

≤ x

)
= (F (anx + bn))

n → G(x) as n → ∞.
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The convergence to types theorem reduces the class of possible limit distributions G to three
particular cases: the Fréchet distribution, the Weibull distribution, and the Gumbel distribution
(see Resnick (1987, p. 9)). The corresponding domains of attraction are well known and can
be found in Resnick (1987, p. 38ff).

To the distribution function G, we associate an extreme value process having finite-
dimensional distributions defined as

Gt1,...,tk (x1, . . . , xk) := Gt1

( k∧
i=1

xi

)
Gt2−t1

( k∧
i=2

xi

)
· · · Gtk−tk−1(xk).

The resulting stochastic process {Z(t), t > 0} is a Markov process with nondecreasing paths.
A version of this process exists in D(0, ∞). We define the sequence

Z(n)(t) := M[nt] − bn

an

.

It is well known that Z(n) converges in distribution to Z with respect to the Skorokhod topology
(see Resnick (1987, p. 211)).

The difference between the sequence Mn = max{ξ(1), . . . , ξ(n)} and the sequence Kn =
max{ξ(S1), . . . , ξ(Sn)} is due to the fact that the random walk {Sn, n ∈ N} visits certain sites
several times. It is obvious that the distribution of Kn depends on the number of sites that the
random walk {Sk, k ∈ N} has visited until time n. In fact, it is the range

Rn := card{S1, . . . , Sn}
of the underlying random walk {Sk, k ∈ N} which determines the behaviour of the sequence
{Kn, n ∈ N}. The asymptotic behaviour of the range for the rescaled integer-valued random
walksS(n) defined in (1) can be found in Le Gall and Rosen (1991). They presented the following
results. If S(n) converges to an α-stable Lévy process Y then the following statements hold.

(R1) If α < 1 then we have

1

n
R[nt] → qt P -almost surely as n → ∞,

where q := P(Sk �= 0, k ∈ N).

(R2) If α = 1 then we have

h(n)

n
R[nt] → t in Lp(�, P) as n → ∞,

where

h(n) := 1 +
n∑

k=1

P(Sk = 0)

is the truncated Green function.

(R3) If 1 < α ≤ 2 then we have, for all L ∈ N and all t1 < t2 < · · · < tL,

n−1/α(R[nt1], . . . , R[ntL]) → (m(Y (0, t1)), . . . , m(Y (0, tL)))

in distribution as n → ∞, where m denotes the Lebesgue measure on R.
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Remark. The first statement was proved by Kesten, Spitzer, and Whitman for 0 < α ≤ 2.
However, q is equal to 0 in the transient case, i.e. α > 1 (see Spitzer (1976, p. 35ff)). For
2
3 ≤ α < 1, we know that h(n) → q−1 as n → ∞, and (R1) yields the almost-sure convergence
of (h(n)/n)R[nt] towards t (see Le Gall and Rosen (1991)). The case in which α = 1 is a
particular case since in this situation it is in general not known whether the random walk is
transient or recurrent. The second and third statements were proved in Le Gall and Rosen
(1991). We mention that Le Gall and Rosen (1991) only stated the marginal convergence in
(R3). However, their proof also covered the joined convergence described in (R3). The reason
is as follows. To prove the convergence in distribution of R[nt] towards m(Y(0, t)), they used
the Skorokhod representation theorem to introduce a process {S̃(n)(t), t ≥ 0} which has the
same distribution as {S(n)(t), t ≥ 0} and converges almost surely to {Y (t), t ≥ 0} with respect
to the Skorokhod topology. For all n ∈ N, the associated range processes {R̃(n)

t , t ≥ 0} then
have the same distributions as {R[nt], t ≥ 0}. Le Gall and Rosen then proved that n−1/αR̃

(n)
t

converge in L1 to m(Y(0, t)) for all t ≥ 0. This also implies the L1-convergence of the vectors
n−1/α(R̃

(n)
t1

, . . . , R̃
(n)
tL

) towards the vector (m(Y (0, t1)), . . . , m(Y (0, tL))), which yields (R3).

We are now in the position to state the first main result.

Theorem 1. For α ≤ 1, the sequence

K(n)(t) := max{ξ(S1), . . . , ξ(S[nt])} − bm(n)

am(n)

converges in distribution to the extreme value process Z associated to the extreme value
distribution G, where

m(n) :=

⎧⎪⎨
⎪⎩

[qn] for α < 1,[
n

h(n)

]
for α = 1.

This theorem is a classical result in the sense that the limit distribution is again an extreme
value distribution. Only the scaling has to be modified according to the behaviour of the
range of the underlying random walk. We will see in the final section that the sequence
{ξ(Sn), n ∈ N} satisfies the D(un) condition, but not the D′(un) condition for appropriate
sequences {un, n ∈ N} when α < 1. Furthermore, we will see in the final section that the
extremal index of the sequence {ξ(Sn), n ∈ N} can be computed and is equal to q. However,
q turns out to be 0 for α > 1. This explains why we have to modify the scaling in the second
statement. Subsequently, we will see that, for α > 1, the sequence {ξ(Sn), n ∈ N} does not
satisfy the D(un) condition for the sequence un := a[n1/α]x + b[n1/α]. However, we can prove
the following limit theorem.

Theorem 2. For α > 1, the sequence

K
(n)
t := max{ξ(S1), . . . , ξ(S[nt])} − b[n1/α]

a[n1/α]
converges in distribution to the stochastic process

K(t) := Z(m(Y (0, t))).

It is important to note that the limit distribution in Theorem 2 is not of extreme value type.
We will discuss this in the final section of this article.
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The stationary sequence {ξ(Sn), n ∈ N} is dependent due to the recurrence of an underlying
random walk. There have been some investigations on stationary sequences with dependence
resulting from an underlying Markov structure. The most popular of these concepts is the chain-
dependent sequence, which has been studied extensively in extreme value theory (see Resnick
(1972), Denzel and O’Brien (1975), and Turkman and Oliveira (1992)). However, we will see
in the final section that the sequence {ξ(Sn), n ∈ N} is not chain dependent. A generalisation
of chain dependence has been introduced in Turkman and Walker (1983). Nevertheless, the
underlying process in their model has only a finite state space and an invariant measure, which
is not the case for the integer-valued random walk studied in this article.

2. Proof of the limit theorems

In many extreme value situations there exists an underlying point process. Often it is more
suitable to prove limit theorems on the level of those point processes and then to use the
continuous mapping theorem in order to understand the behaviour of the extremes. We will
follow this approach in our subsequent investigation. We first define the stopping times

τk := inf{m ∈ N; card{S1, . . . , Sm} ≥ k},
and note that

Kn = max{ξ(Sτk
); τk ≤ n}.

Moreover, we define

Q(n)(t1, t2] := card{m ∈ N; nt1 < m ≤ nt2, Sm /∈ {S1, . . . , Sm−1}}.
The process S(n) defined in (1) visits a new site during the time interval (t1, t2] if and only if
there exists an integer k such that τk/n ∈ (t1, t2]. This implies that the total number of new
sites visited by S(n) during the time interval (t1, t2] is

∑
k 1(t1,t2](τk/n). We therefore have the

following identity:

Q(n)(t1, t2] =
∑

k

1(t1,t2]
(

τk

n

)
= R[nt2] − R[nt1].

The next lemma states the independence of the ξ(Sk)-sequence and the τk-sequence.

Lemma 1. For all L ∈ N, and all measurable sets Bk ⊂ N and Ak ⊂ R with 1 ≤ k ≤ L, we
have

P(τk ∈ Bk, ξ(Sτk
) ∈ Ak, 1 ≤ k ≤ L)

= P(ξ(k) ∈ Ak, 1 ≤ k ≤ L) P(τk ∈ Bk, 1 ≤ k ≤ L).

Proof. We use the independence of the random walk and the scenery to prove that

P(τk ∈ Bk, ξ(Sτk
) ∈ Ak) =

∑
m∈Bk

P(τk = m, ξ(Sm) ∈ Ak)

=
∑

m∈Bk

∑
z∈Z

P(τk = m, Sm = z, ξ(z) ∈ Ak)

=
∑

m∈Bk

∑
z∈Z

P(τk = m, Sm = z) P(ξ(k) ∈ Ak)

= P(τk ∈ Bk) P(ξ(k) ∈ Ak).

The general case follows by a similar proof.
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For an L ∈ N, we denote by Pξ the joint distribution of {ξ(k), 1 ≤ k ≤ L} on R
L.

Lemma 2. For every L ∈ N and every bounded measurable function

f : R
L × N

L → R, ((xk), (mk)) 
→ f ((xk), (mk)),

we have

E[f ((ξ(Sτk
)), (τk))] = E

[∫
RL

f ((xk), (τk)) Pξ (d(xk))

]
.

Proof. In order to avoid notational overload, we just prove a simplified statement for the
one-dimensional marginal distributions. Let

f (x, m) =
M∑
i=1

K∑
j=1

αij 1Ai
(x) 1Bj

(m)

be a step function over measurable sets Ai, 1 ≤ i ≤ M , in R and Bj , 1 ≤ j ≤ K , in N. Then
it follows from the previous lemma that

E[f (ξ(Sτk
), τk)] =

M∑
i=1

K∑
j=1

αij P(ξ(Sτk
) ∈ Ai, τk ∈ Bj )

=
M∑
i=1

K∑
j=1

αij P(ξ(k) ∈ Ai) P(τk ∈ Bj )

= E

[∫
R

f (x, τk) Pξ(k)(dx)

]
.

The result now follows from a monotone class argument.

Now we use the sequence {ξ(Sτk
), k ∈ N} to construct a sequence of random measures on a

suitable state space. We denote by Pn the distribution of the random variable (ξ(1) − bn)/an.
If ξ(1) is in the domain of attraction of the extreme value distribution G, it is well known that

nPn((x, ∞)) = n P

(
ξ(1) − bn

an

> x

)
→ − log(G(x)) as n → ∞.

This can be rephrased as the vague convergence of nPn towards a suitable measure ν on a suitable
topological space E. If G is a Fréchet distribution, this holds for the right-compactified interval
E := (0, ∞] and ν(x, ∞] := x−γ ; if G is a Weibull distribution, this holds for E := (−∞, 0]
and the measure ν(x, 0] := (−x)−γ ; if G is a Gumbel distribution, this holds for the right-
compactified interval E := (−∞, ∞] and ν(x, ∞] := e−x (see Resnick (1987, p. 210)).

For a Borel measure κ on R
+ × E and a measurable function f : R

+ × E → [0, ∞), we
define

κ(f ) :=
∫

R+

∫
E

f (s, x)κ(ds, dx).

To the intensity measure µ := m× ν on R
+ ×E, there exists a Poisson point process N which

is characterised by its Laplace functional through

E[e−N(f )] = exp

(
−

∫
R+

∫
E

(1 − ef (s,x))ν(dx) ds

)
.
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We denote by Mp the set of point measures on R
+×E, and remark that Mp is a closed subset of

the set M+ of Borel measures with respect to the vague topology (see Resnick (1987, p. 140)).
We are now in position to state the theorem for the transient situation.

Theorem 3. For α ≤ 1, the point processes

N(n) :=
∑

k

δ(τk/n,(ξ(Sτk
)−bm(n))/am(n))

converge weakly to the Poisson point process N with intensity measure m × ν, where

m(n) :=

⎧⎪⎨
⎪⎩

[qn] for α < 1,[
n

h(n)

]
for α = 1.

In the following, let NY be the Poisson point process on R
+ × E with random intensity

measure
µ(dt, dx) = mY (dt) × ν(dx),

where mY (t) := m(Y(0, t)) is a random distribution function on R
+. Such point processes

are called Cox processes in the literature (see Daley and Vere-Jones (1988, p. 261)). For an
arbitrary continuous function f : R

+ × E → R with compact support, the Laplace functional
of NY is given by

L(f ) := E[exp(−NY (f ))]
= E

[
exp

(
−

∫
R+

∫
E

(1 − e−f (s,x))ν(dx)mY (ds)

)]
.

Theorem 4. If we define ãn := a[n1/α] and b̃n := b[n1/α], the point processes

N(n) :=
∑

k

δ
(τk/n,(ξ(Sτk

)−b̃n)/ãn)

on R
+ × E converge weakly to the point process NY .

Proof. We give a detailed proof of Theorem 4; however, a proof of Theorem 3 can be
obtained from this by changing the scale parameters and by using (R1) and (R2), respectively,
instead of (R3) in the subsequent proof.

The Laplace functional of N(n) is given by

Ln(f ) = E[exp(−N(n)(f ))]

= E

[
exp

(
−

∑
k

f

(
τk

n
,
ξ(Sτk

) − b̃n

ãn

))]
.

We have to prove that the Laplace functionals of N(n) converge to the Laplace functional of
NY (see Resnick (1987, p. 153)).

Let f : R
+ × E → [0, ∞) be a continuous function with compact support contained in

(t0, T ] × E. For L ∈ N, let {0 < t0 < · · · < tL = T } be a partition with the property that
ti+1 − ti < 1/m. We can define the following truncated function:

fm(t, x) :=
L−1∑
i=0

1(ti ,ti+1](t)gi(x),
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where gi(x) := inf ti≤s≤ti+1 f (s, x). We know that fm ↑ f uniformly in R
+ × E as m → ∞.

The Laplace functional in fm has the form

Ln(fm) = E

[
exp

(
−

∑
k

fm

(
τk

n
,
ξ(Sτk

) − b̃n

ãn

))]

= E

[
exp

(
−

∑
k

∑
i

gi

(
ξ(Sτk

) − b̃n

ãn

)
1(ti ,ti+1]

(
τk

n

))]
.

We apply Lemma 2 and obtain

Ln(fm) = E

[∫
RL

exp

(
−

∑
k

∑
i

gi

(
xk − b̃n

ãn

)
1(ti ,ti+1]

(
τk

n

))
Pξ (d(xk))

]
.

Now, we can use the i.i.d. property of the sequence {ξ(k), k ∈ N} to obtain

Ln(fm) = E

[∏
k

∫
E

exp

(
−

∑
i

gi

(
x − b̃n

ãn

)
1(ti ,ti+1]

(
τk

n

))
Pξ(1)(dx)

]

= E

[∏
k

∏
i

(
1 −

∫
E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
P[n1/α](dz)

)]
.

For the following, we define

λi,k;n :=
∫

E

exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

))
P[n1/α](dz)

and

ϕi,k;n := exp

(
−n−1/α

∫
E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
ν(dz)

)
.

As nPn converges to ν in the vague topology, we have, uniformly for all 1 ≤ i ≤ L and all
k ∈ N,

−(1 − λi,k;n) ∼ log(ϕi,k;n) as n → ∞.

This implies that
log(λi,k;n) ∼ log(ϕi,k;n) as n → ∞.

From this we deduce that

sup
i,k

∣∣∣∣ log(λi,k;n) − log(ϕi,k;n)
log(ϕi,k;n)

∣∣∣∣ → 0 as n → ∞.

We note that ∣∣∣∣ ∑
i,k

log(λi,k;n) −
∑
i,k

log(ϕi,k;n)
∣∣∣∣

≤ R[nT ] sup
i,k

| log(ϕi,k;n)| sup
i,k

∣∣∣∣ log(λi,k;n) − log(ϕi,k;n)
log(ϕi,k;n)

∣∣∣∣.
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The fact that the functions x 
→ gi(x) are compactly supported implies that

sup
i,k

∣∣∣∣
∫

E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
ν(dz)

∣∣∣∣ < C for all n ∈ N,

which yields ∣∣∣R[nT ] sup
i,k

| log(ϕi,k;n)|
∣∣∣ ≤ Cn−1/αR[nT ] for all n ∈ N.

Moreover, we know from (R3) that n−1/αR[nT ] converges in distribution to m(Y(0, T )). Hence,
it follows that

P(|R[nT ] log(ϕi,k;n)| > N) → P(m(Y (0, T )) > N) as n → ∞.

Since the right-hand side can be made arbitrarily small by choosing N ∈ N large enough, we
obtain ∣∣∣∣ ∑

i,k

log(λi,k;n) −
∑
i,k

log(ϕi,k;n)
∣∣∣∣ → 0 in probability as n → ∞,

which is equivalent to∣∣∣∣ ∏
i,k

λi,k;n −
∏
i,k

ϕi,k;n
∣∣∣∣ → 0 in probability as n → ∞.

Taking expectations and using dominated convergence shows that the sequence

Ln(fm) = E

[∏
k

∏
i

(
1 −

∫
E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
P[n1/α](dz)

)]

has the same limit as

E

[∏
k

∏
i

exp

(
−n−1/α

∫
E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
ν(dz)

)]

= E

[
exp

(
−

∑
k

∑
i

n−1/α

∫
E

(
1 − exp

(
−gi(z) 1(ti ,ti+1]

(
τk

n

)))
ν(dz)

)]

= E

[
exp

(
−

∑
k

∑
i

n−1/α

∫
E

(1 − exp(−gi(z))) 1(ti ,ti+1]
(

τk

n

)
ν(dz)

)]

= E

[
exp

(
−

∑
i

n−1/α

∫
E

(1 − exp(−gi(z)))ν(dz)(R[nti+1] − R[nti ])
)]

.

It then follows from (R3) that the previous sequence converges to

E

[
exp

(
−

∑
i

∫
E

(1 − exp(−gi(z)))ν(dz)(m(Y (0, ti+1)) − m(Y(0, ti)))

)]

= E

[
exp

(
−

∫
R+

∫
E

(1 − exp(−fm(z, t)))ν(dz)mY (dt)

)]
,
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which is just L(fm). Since fm → f in the supremum norm as m → ∞, it follows that

Ln(fm) → Ln(f ) as m → ∞
uniformly in n ∈ N. Moreover, we have just proved that, for all m ∈ N,

Ln(fm) → L(fm) as n → ∞.

Therefore, we have
Ln(f ) → L(f ) as n → ∞.

This proves Theorem 4.

Proofs of Theorem 1 and Theorem 2. In order to prove Theorem 1, we define the map

F : Mp(R+ × E) → D(0, ∞), N =
∑

k

δtk,jk

→

(
t 
→

∨
0<tk≤t

jk

)
.

It can be proved that F(N(n)) = K(n) (see Resnick (1987, p. 209)). Moreover, F is continuous
PN -almost surely, where PN denotes the distribution of the point process N on Mp(R+ × E)

(see Resnick (1987, p. 214)). The continuous mapping theorem and the previous theorem then
imply that K(n) converges to Z = F(N).

For Theorem 2, we use the random transformations

f : R
+ × E → R

+ × E, (t, x) 
→ (m(Y (0, t)), x).

If we use the transformation formula for Poisson point processes, we can see that NY = f(N)

(see Resnick (1987, p. 134)). With the representation N = ∑
k δ(tk,jk), this implies that

NY =
∑

k

δ(m(Y (0,tk)),jk).

It then follows that

F(NY )(t) =
∨

0<m(Y(0,tk))≤t

jk = Z(m(Y (0, t))).

3. The long-range dependence

As we already mentioned in the introduction, the sequence does not satisfy the weak-mixing
conditions introduced by Leadbetter if the underlying random walk is recurrent. We investigate
this behaviour in this section.

3.1. The D(un) condition

The D(un) condition is a condition which assures a mixing-type behaviour for the tails of
the joint distributions of a stationary sequence of random variables. For a sequence of random
variables {
i, i ∈ N}, we denote its joint distribution function by Fi1,...,in , 1 ≤ i1 < · · · < in.
Let {un, n ∈ N} be a given sequence of increasing positive real numbers.

Condition 1. A stationary sequence of random variables {
i, i ∈ N} satisfies the D(un)

condition if, for any integers 1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n with the property that
j1 − ip ≥ l, we have

|Fi1,...,ip,j1,...,jq (un) − Fi1,...,ip (un)Fj1,...,jq (un)| ≤ αn,l,

where αn,l → 0 as n → ∞ for some sequence l = o(n).

https://doi.org/10.1239/aap/1246886619 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886619


462 B. FRANKE AND T. SAIGO

The D(un) condition is used to prove that the limit distribution of the maxima of a stationary
sequence is of the same type as that of the independent sequence with the same marginal
distributions (see Leadbetter et al. (1983, p. 57)).

Proposition 1. For α > 1, the stationary sequence {ξ(Sn), n ∈ N} does not satisfy the
condition D(un) with un = a[n1/α]x + b[n1/α].

Proof. We first note that, for un = a[n1/α]x + b[n1/α], we have

n1/α(1 − F(un)) → − log G(x) as n → ∞.

From this, it follows that, as n → ∞,

(F (un))
n1/α = exp(n1/α log(1 − (1 − F(un)))) ∼ exp(−n1/α(1 − F(un))) → G(x).

We know from (R3) that R(n) := n−1/αRn converges in distribution to R := m(Y(0, 1)).
Therefore, there exist random variables R̃(n) and R̃ with the same distribution as R(n) and R,
respectively, such that R̃(n) converges to R̃ almost surely (see Billingsley (1986, p. 343)). It
then follows that, P-almost surely,

((F (un))
n1/α

)R̃
(n) → (G(x))R̃ as n → ∞.

Hence, by dominated convergence and Lemma 1,

F1,...,n(un) = P(ξ(S1) ≤ un, . . . , ξ(Sn) ≤ un)

= E[P(ξ(S1) ≤ un, . . . , ξ(Sn) ≤ un | Rn)]
= E[(F (un))

Rn ]
= E[(F (un))

n1/αR̃(n) ]
converges to

E[(G(x))R̃] = E[(G(x))m(Y (0,1))].
If l = o(n), we can prove in the same way that

F1,...,n,n+l,...,2n(un) → E[(G(x))m(Y (0,2))] as n → ∞
and

Fn+l,...,2n(un) = F1,...,n−l (un) → E[(G(x))m(Y (0,1))] as n → ∞.

It then follows that |F1,...,n,n+l,...,2n(un) − F1,...,n(un)Fn+l,...,2n(un)| converges to

E[(G(x))m(Y (0,2))] − (E[(G(x))m(Y (0,1))])2

> E[(G(x))m(Y (0,1))+m(Y(1,2))] − E[(G(x))m(Y (0,1))]2

= 0,

where we used the fact that m(Y(0, 2)) is strictly smaller than m(Y(0, 1))+m(Y(1, 2)) almost
surely, and the fact that the two random variables m(Y(0, 1)) and m(Y(1, 2)) are independent.
This proves that the D(un) condition does not hold for the sequence un = a[n1/α]x + b[n1/α].
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Proposition 2. For α ≤ 1, the sequence {ξ(Sn), n ∈ N} satisfies the D(un) condition with

un :=
{

a[qn]x + b[qn] for α < 1,

a[n/h(n)]x + b[n/h(n)] for α = 1.

Proof. Assume that, for a fixed ε > 0, there exists, for every n ∈ N, a family of integers
1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ 2n with the property that j1 − ip ≥ l(n), where
l(n)/n → 0 as n → ∞ and

|Fi1,...,ip,j1,...,jq (un) − Fi1,...,ip (un)Fj1,...,jq (un)| > ε.

We define Rj1,...,jq := card{Sj1 , . . . , Sjq }, Ri1,...,ip := card{Si1 , . . . , Sip }, and

R
i1,...,ip
j1,...,jq

:= Rj1,...,jq + Ri1,...,ip − card{Si1 , . . . , Sip , Sj1 , . . . , Sjq }.
It then follows that

(F (un))
card{Si1 ,...,Sip , Sj1 ,...,Sjq } − (F (un))

Rj1,...,jq +Ri1,...,ip

= (F (un))
Rj1,...,jq +Ri1,...,ip ((F (un))

−R
i1,...,ip
j1,...,jq − 1)

≤ ((F (un))
−R

1,...,ip
ip+l,...,2n − 1). (2)

We note that ip is a sequence of integers, where the nth element is bounded by 2n. It follows that
ip/n must have convergent subsequences. We can therefore assume without loss of generality
that ip/n → u as n → ∞. It follows from (R1) that the sequence

1

[nq]R
1,...,ip
ip+l,...,2n = 1

[nq] (R1,...,ip + Rip+l,...,2n − R1,...,2n)

∼ 1

[nq] (R1,...,[nu] + R[nu]+l,...,2n − R1,...,2n)

converges almost surely to u + (2n − u) − 2n = 0 as n → ∞. As we have

qn(1 − F(un)) → − log G(x) as n → ∞,

it follows that

(F (un))
nq ∼ exp(−nq(1 − F(un))) → G(x) as n → ∞.

This together with the convergence of (1/[nq])R1,...,ip
ip+l,...,2n toward 0 implies that, P-almost surely,

((F (un))
−R

1,...,ip
ip+l,...,2n − 1) → 0 as n → ∞. (3)

We note that
Fj1,...,jq (un)Fi1,...,ip (un)

= E[(F (un))
Rj1,...,jq ] E[(F (un))

Ri1,...,ip ]
= E[E[(F (un))

Rj1,...,jq | Si1 , . . . , Sip ](F (un))
Ri1,...,ip ]

= E[E[(F (un))
Rj1,...,jq (F (un))

Ri1,...,ip | Si1 , . . . , Sip ]]
= E[(F (un))

Rj1,...,jq (F (un))
Ri1,...,ip ].
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This together with (2) and (3) implies that

|Fi1,...,ip,j1,...,jq (un) − Fi1,...,ip (un)Fj1,...,jq (un)|
= E[(F (un))

card{Si1 ,...,Sip , Sj1 ,...,Sjq } − (F (un))
Rj1,...,jq +Ri1,...,ip ]

≤ E
[(

(F (un))
−R

1,...,ip
ip+l,...,2n − 1

)]
converges to 0. This contradicts the initial assumption and proves the first statement of the
proposition. The second statement follows in the same way by using (R2) instead of (R1).

3.2. The D′(un) condition for α < 1

The following condition is called the D′(un) condition in the literature.

Condition 2. A stationary sequence of random variables {
i, i ∈ N} satisfies the D′(un)

condition if

lim sup
n→∞

n

[n/k]∑
j=2

P(
1 > un, 
j > un) → 0 as k → ∞.

The D′(un) condition together with the D(un) condition implies that

P(max{
1, . . . , 
n} ≤ un) − P(max{
̃1, . . . , 
̃n} ≤ un) → 0 as n → ∞,

where {
̃n, n ∈ N} is an independent sequence with the same marginals as {
n, n ∈ N} (see
Leadbetter et al. (1983, p. 61)).

Proposition 3. For α < 1, the sequence {ξ(Sn), n ∈ N} does not satisfy the D′(un) condition
with un = a[qn]x + b[qn].

Proof. Owing to the definition of the sequences un, we have

qn(1 − F(un)) → − log(G(x)) as n → ∞.

We have

n

[n/k]∑
j=1

P(ξ(S1) > un, ξ(Sj ) > un)

= n

[n/k]∑
j=1

P(ξ(S1) > un, ξ(Sj ) > un | Sj = S1) P(Sj = S1)

+ n

[n/k]∑
j=1

P(ξ(S1) > un, ξ(Sj ) > un | Sj �= S1) P(Sj �= S1)

= n(1 − F(un))

[n/k]∑
j=1

P(Sj = S1) + n(1 − F(un))
2

[n/k]∑
j=1

P(Sj �= S1). (4)

Since we have

0 ≤
[n/k]∑
j=1

P(Sj �= S1) ≤
[
n

k

]
,
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it follows for the second term on the right-hand side of (4) that

lim
k→∞ lim

n→∞ n(1 − F(un))
2

[n/k]∑
j=1

P(Sj �= S1) = − lim
k→∞

log(G(x))

k
= 0.

It follows for the first term on the right-hand side of (4) that

lim
n→∞ n(1 − F(un))

[n/k]∑
j=1

P(Sj = S1) ≥ − log(G(x)) P(there exists j ∈ N : Sj = S1)

= log(G(x))(1 − q).

This is larger than 0 since, for α < 1, we have 0 < q < 1.

Remark. Proposition 3 also follows from the fact that the extremal index is q (see Leadbetter
(1983, p. 59)).

3.3. The extremal index

The extremal index is a measure for the dependence in the tails of a stationary sequence. This
concept appeared in the work of Newell (1964) and Loynes (1965) for m-dependent variables
and was later named the extremal index in Leadbetter (1983).

Definition. A θ ∈ [0, 1] is called an extremal index for the stationary sequence {
i, i ∈ N} if,
for every τ > 0,

(i) there exists a sequence vn ↑ ∞ such that n(1 − F(vn)) → τ ,

(ii) P(max{
1, . . . , 
n} ≤ vn) → e−τθ .

The extremal index is an indicator for the existence of clusters of exceedances (see Hsing
et al. (1988)). Usually, for a model with extremal index θ ∈ (0, 1), the observed cluster size is
1/θ . In our situation the expected number of visits to a site is 1/q. This motivates the following
proposition.

Proposition 4. The extremal index of the sequence {ξ(Sn), n ∈ N} is equal to q = P(Sk �= 0,

k ∈ N).

Proof. Let {vn, n ∈ N} be a sequence such that

n(1 − F(vn)) → τ as n → ∞.

We know from the theorem of Kesten, Spitzer, and Whitman that Rn/n converges almost surely
to q = P(Sk �= 0, k ∈ N) as n → ∞ (see Spitzer (1976, p. 38)). Then it follows from Lemma 1
that

P(max{ξ(S1), . . . , ξ(Sn)} ≤ vn) = P(ξ(S1) ≤ vn, . . . , ξ(Sn) ≤ vn)

=
n∑

k=1

P(ξ(Sτ1) ≤ vn, . . . , ξ(Sτk
) ≤ vn, Rn = k)

=
n∑

k=1

P(ξ(1) ≤ vn, . . . , ξ(k) ≤ vn) P(Rn = k)

= E[(F (vn))
Rn ].
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We note that by the assumption on the sequence {vn, n ∈ N} as n → ∞ we have

(F (vn))
n = exp(n log(1 − (1 − F(vn)))) ∼ exp(−n(1 − F(vn))) → e−τ .

This implies, together with the result of Kesten, Spitzer, and Whitman, that, P-almost surely,

(F (vn))
Rn = ((F (vn))

n)Rn/n → e−qτ as n → ∞.

Hence, by dominated convergence we have

P(max{ξ(S1), . . . , ξ(Sn)} ≤ vn) = E[(F (vn))
Rn ] → e−qτ as n → ∞.

This proves that the extremal index is q.

Remark. We note that q = 0 is equivalent to the random walk being recurrent, i.e. α > 1.

3.4. The type of limit distribution for α > 1

It is of course interesting to determine whether in the recurrent case the limit distribution
has one of the extremal types. This is, however, not the case.

Proposition 5. The distribution H of Z(m(Y (0, 1))) is not an extreme value distribution.

Proof. If G is the distribution function associated with the extreme value process Z, we
have

H(x) = P(Z(m(Y (0, 1))) ≤ x) = E[(G(x))m(Y (0,1))].
We first concentrate on the case where {ξ(k), k ∈ Z} is in the domain of attraction of a Fréchet
distribution �γ . We then have, for all x ≥ 0,

H(x) = E[(�γ (x))m(Y (0,1))] =
∫ ∞

0
exp(−tx−γ ) Pm(Y(0,1))(dt).

From this expression we see that the support of H is equal to [0, ∞). If we assume that H is
an extreme value distribution, it must be a Fréchet distribution �γ ′ . Furthermore, it is easy to
see from the previous expression that 1−H is regularly varying with exponent γ . This implies
that γ ′ = γ and that H(x) is equal to �γ (ax − b) for suitable a > 0 and b ∈ R. Since the
support of H is [0, ∞), it follows that b = 0. Moreover, we can see from the previous equation
that

e−ax = H(xγ ) =
∫ ∞

0
e−tx Pm(Y(0,1))(dt),

which is the Laplace transform of the distribution of m(Y(0, 1)). This is a contradiction,
since this would imply that m(Y(0, 1)) is constant. Therefore, H cannot be an extreme value
distribution.

A similar reasoning works if {ξ(k), k ∈ Z} is in the domain of attraction of a Weibull
distribution �γ . Again, we assume that H is an extreme value distribution. Comparison of
the support shows that H must be a Weibull distribution �γ ′ . A regular variation argument
shows that γ ′ = γ . A change of variable unveils an equality involving the Laplace transform
of m(Y(0, 1)), which would imply that m(Y(0, 1)) is constant. This is obviously wrong and,
therefore, H cannot be an extreme value distribution.

If {ξ(k), k ∈ Z} is in the domain of attraction of a Gumbel distribution, and if H was an
extreme value distribution, then it could only be a Gumbel distribution. This follows from the
fact that H has full support on R. A suitable change of variables again leads to an equation
involving the Laplace transform of m(Y(0, 1)). The expression for the Laplace transform would
imply that m(Y(0, 1)) is constant, which is not true.
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3.5. Chain-dependent Markov processes

Chain-dependent Markov processes are special stationary sequences, where the dependence
comes from an underlying Markovian structure. Their extreme value behaviour has been studied
extensively in the past three decades (see Resnick (1972), Denzel and O’Brien (1975), Turkman
and Oliveira (1992), and Fereira (1998)). It is worth mentioning that applications of chain-
dependent processes to meteorology have been described in Katz (1977). In the following, let
Z be a countable set.

Definition. A double sequence of random variables {
n, ζn, n ∈ N} is called a chain-dependent
Markov process with state space R × Z if, for all i, j ∈ Z and x ∈ R,

P(
n ≤ x, ζn = j | 
0, ζ0, . . . , 
n−1, ζn−1 = i) = P(
n ≤ x, ζn = j | ζn−1 = i),

where the right-hand side does not depend on n.

Proposition 6. The double sequence {ξ(Sn), Sn, n ∈ N} is not a chain-dependent Markov
process.

Proof. Let i and j be integers such that P(Sn = j | Sn−1 = i) �= 0. Then we have

0 = P(ξ(Sn) ≤ x, Sn = j | ξ(S1) > x, S1 = j, Sn−1 = i)

�= P(ξ(Sn) ≤ x, Sn = j | Sn−1 = i).

This completes the proof.

A generalisation of chain-dependent stationary sequences was described in Turkman and
Walker (1983). The process {ξ(Sn), Sn, n ∈ N} satisfies some of the structural properties of
the sequences {
n, ζn, n ∈ N} considered there. It satisfies the ζn-dependence of 
n, i.e.

P(
n ≤ x | ζ1 = s1, . . . , ζn = sn) = P(
n ≤ x | ζn = sn),

and the conditional independence of 
1, . . . , 
n from {Sn+k, k ∈ N}, i.e.

P(
1 ≤ x1, . . . , 
n ≤ xn | ζ1 = s1, . . . , ζn+k = sn+k)

= P(
1 ≤ x1, . . . , 
n ≤ xn | ζ1 = s1, . . . , ζn = sn).

However, they only considered sequences of random variables {ζn, n ∈ N} with a finite state
space Z. This is not the case in our situation.
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