MIXED ABELIAN GROUPS

JOHN A. OPPELT

Introduction. The difficulties encountered in the theory of mixed Abelian groups can become decidedly less complex, if it is possible to reduce the question to mixed groups whose torsion subgroup is p-primary. Call such a group a p-mixed group. In §1 we show that the splitting problem for a mixed group is reducible to the same problem for certain associated p-mixed groups. In §2 we look at groups which are a direct sum of p-mixed groups.

1. The splitting problem. When G is an extension of T by J we have the short exact sequence

(1.1) $E: 0 \to T \xrightarrow{\alpha} G \xrightarrow{\beta} J \to 0.$

Now if T is the direct sum

$$T=\sum_{i=1}^n T_i,$$

let $T^i = \sum_{j \neq i} T_j$. Then identifying T with $\alpha(T)$ we get the *n* short exact sequences

(1.2)
$$E_i: 0 \to T_i \xrightarrow{\alpha_i} G/T^i \xrightarrow{\beta_i} J \to 0$$

where $\alpha_i(T_i) = t_i + T^i$ and $\beta_i(g + T^i) = \beta(g)$ for $t_i \in T_i$, $g \in G$.

THEOREM 1. The short exact sequence (1) splits if and only if each of the n short exact sequences (2) splits.

Proof. The isomorphism

$$\operatorname{Ext}(J, T) \cong \sum_{i=1}^{n} \operatorname{Ext}(J, T_{i})$$

takes the class of E to the class of $\pi_1 E \oplus \ldots \oplus \pi_n E$ where $\pi_i: T \to T_i$ are the projection maps; cf. (2, Chapter 3). So E splits if and only if $\pi_i E$ splits for each *i*. Hence we need only show that $\pi_i E$ and E_i are in the same class; this is accomplished by the following commutative diagram

$$E_{i}: 0 \longrightarrow T_{i} \longrightarrow G/T^{i} \longrightarrow J \longrightarrow 0$$

$$\| \begin{array}{c} \downarrow \\ \alpha'_{i} \end{array} \downarrow^{\psi_{i}} \\ \beta'_{i} \end{array} \|$$

$$\pi_{i} E: 0 \longrightarrow T_{i} \longrightarrow G_{i} \longrightarrow J \longrightarrow 0$$

$$G_{i} \xrightarrow{(i-1)} J \xrightarrow{(i-1)} 0$$

where $G_i = (T_i + G)/N$, $N = \{(-t_i, t_i) | t_i \in T_i\}$, $\alpha'_i(t_i) = (t_i, 0) + N$, $\beta'_i((t_i, g) + N) = \beta(g)$, $\psi_i(g + T^i) = (0, g) + N$.

Received October 19, 1965. This work was partially supported by N.S.F. Grant GP-4.

1259

JOHN A. OPPELT

In the special case when T is a torsion group, α the inclusion map, and J is torsion-free G is a mixed group with miximal torsion subgroup tG = T.

COROLLARY. Suppose that the maximal torsion subgroup T of the mixed group G has the primary decomposition

$$T = \sum_{i=1}^{n} T_i,$$

where T_i is the p_i component of T. Then G splits if, and only if, the p_i -mixed groups G/T^i split for each i.

It should be noted that the corollary cannot be extended to the infinite case, i.e. when tG contains an infinite number of non-zero primary components. For example, let G be the unrestricted direct sum of the cyclic groups Z_p of order p, one for each prime. Then $tG = \sum Z_p$. Now G is reduced but G/tG is divisible so G does not split. However each of the p-mixed groups G/T^p do split.

2. Direct sums of p-mixed groups. We investigate the following question: If G has a direct sum decomposition into p-mixed groups, does a direct summand of G have the same decomposition?

First we mention some properties of torsion-free groups J. The rank of J is denoted by r(J) and if r(J) = 1 its type (1) is denoted by $\tau(J)$. J is completely decomposable if it is a direct sum of groups of rank one. If $J = \sum J_i$, $r(J_i) = 1$ for each $i \in I$, then $r(\alpha)$ for a given type α denotes the rank of that subgroup $\sum J_k$ of J, where the sum is taken over those $k \in I$ such that $\tau(J_k) = \alpha$.

Definition. Suppose G is the direct sum of the groups $\{G_i | i \in I\}$ and K is a subgroup of G. Then K is an *n*-diagonal subgroup of G if

$$K \subseteq \sum_{j=1}^n G_{i(j)},$$

and if $0 \neq g \in K$, then $g = g_1 + \ldots + g_n$ where $0 \neq g_j \in G_{i(j)}$ for $1 \leq j \leq n$. The proofs of the following are left to the reader:

(i) Suppose that $G = \sum G_i$ satisfies $r(G_i) \leq n$ for all $i \in I$. If K is a diagonal subgroup of G, then $r(K) \leq n$.

(ii) K is a diagonal subgroup of $\sum G_i$, $r(G_i) = 1$ for all $i \in I$, if and only if, $r(K) \leq 1$.

(iii) Suppose that the completely decomposable group G satisfies $r(\alpha) = 1$ for all types α . Then a rank one direct summand of G of maximal type (if one exists) appears in all internal direct decompositions of G into groups of rank one.

Call G a simple p-mixed group if G is a p-mixed group and $r(G/tG) \leq 1$. So if G is a direct sum of simple p-mixed groups, G/tG will be completely decomposable.

1260

PROPOSITION 1. Let G be a direct sum of a finite number of simple p-mixed groups for different primes p. Suppose also that G/tG satisfies $r(\alpha) = 1$ for all types α . Then any direct summand of G is a direct sum of simple p-mixed groups.

Proof. Let

$$G = \sum_{i=1}^{n} G_i = S \oplus K$$

where G_i is a simple p_i -mixed group. We can assume K is torsion-free and proceed by induction on n and r(K). If some G_i is a torsion group the argument is easy, so we have r(G/tG) = n.

r(K) = 1: Let $\pi: G \to G/tG$ be the natural quotient map and $\pi(X) = \bar{X}$ for any subgroup X of G. Then we have two decompositions of \bar{G} into groups of rank 1, namely $\bar{G} = \sum \bar{G}_i = \sum L_i$, where $L_1 = \bar{K}$ and $\bar{S} = L_2 + \ldots + L_n$. Now, since the types appearing must be the same we assume that $\tau(\bar{G}_i) = \tau(L_i)$. By (ii) and (iii) some L_j is 1-diagonal in $\sum \bar{G}_i$. If j = 1, then $L_1 = \bar{G}_1$ and

$$G = K \oplus tG_1 \oplus \sum_{i=2}^n G_i.$$

Hence

$$S \cong G/K \cong tG_1 \oplus \sum_{i=1}^n G_i,$$

which is a direct sum of *p*-mixed groups.

If L_2 is 1-diagonal, then $L_2 = \overline{G}_2$ and $G_2 \subseteq S$. So $S = G_2 \oplus S'$ for some subgroup S' of G. But then $H = G/G_2 \cong K \oplus S'$. Since r(H/tH) = n - 1 we get, by induction, that S' is a direct sum of simple *p*-mixed groups and then so also is $S = G_2 \oplus S'$.

r(K) > 1: Then $G = L_1 \oplus (L + S)$, where $r(L_1) = 1$ and $K = L_1 \oplus L$.

But then $L \oplus S$ is a direct sum of simple *p*-mixed groups by the above case. Hence, by induction, S has the desired decomposition.

THEOREM 2. Let G be a direct sum of simple p-mixed groups for different primes p and suppose that G/tG satisfies $r(\alpha) = 1$ for all types α . If $G = S_1 \oplus S_2$ and S_1/tS_1 has finite rank, then both S_1 and S_2 are a direct sum of simple p-mixed groups.

Proof. Let $G = \sum G_i$, $i \in I$, where G_i is a simple p-mixed group. Now

$$\bar{S}_1 = \sum_{k=1}^n J_k,$$

 $r(J_k) = 1$ for $1 \leq k \leq n$. So each J_k is an n_k -diagonal subgroup of $\sum \tilde{G}_i = \tilde{G}$. It follows that

$$\bar{S}_1 \subseteq \sum_{u=1}^s \bar{G}_{i(u)}$$

and thus

$$S_1 = \sum_{u=1}^s G_{i(u)} \oplus T',$$

where T' is a torsion subgroup of S_1 . Letting

$$H=\sum_{u=1}^{s}G_{i(u)},$$

we have $H = (H \cap S_1) \oplus (H \cap (T' \oplus S_2))$. So by Proposition 1 $H \cap S_1$ and thus S_1 is a direct sum of simple *p*-mixed groups, say $S_1 = \sum H_p$.

Now $G/T' \cong \sum H'_p \oplus S_2$, where $S_1/T' = \sum H'_p$ is a direct sum of simple *p*-mixed groups. If we let L = (H + T')/T', we get

$$G/T' \cong S_1/T' \oplus (S_2 \cap L) \oplus M,$$

where $M = \sum_{i \neq i(u)} G_i$, $1 \leq u \leq s$. Now $L = S_1/T' \oplus (S_2 \cap L)$ so that by Proposition 1 $S_2 \cap L$ is a direct sum of simple *p*-mixed groups. But $S_2 \cong (S_2 \cap L) \oplus M$; hence S_2 also has this property.

References

1. L. Fuchs, Abelian groups (London, 1960).

2. S. MacLane, Homology (New York, 1963).

University of Notre Dame, Notre Dame, Indiana and University of Virginia, Charlottesville, Virginia

1262