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KASTELEYN'S THEOREM AND ARBITRARY GRAPHS 

CHARLES H. C. LITTLE 

1. Introduction and basic definitions. Familiarity with the basic 
notions of graph theory is assumed. Loops and multiple edges are not permitted. 

An orientation of an edge e of a graph G is a designation of one of the ends of 
e as the positive end and the other as the negative end. We say that e is 
oriented from the positive end to the negative end. If e joins vertex v to vertex 
w and v is the positive end of e, we write e = (v, w). An orientation of G is 
a set of orientations, one for each edge of G; a graph with an orientation is 
called a directed graph. 

Let G be a planar graph, and M a representation of G on the plane. Then 
according to a theorem of Kasteleyn [1], the edges of M may be oriented so 
that for every circuit C, the number of edges of C that are oriented in the 
clockwise sense is of opposite parity to the number of vertices enclosed by C. 
In section 2 of this paper, we give an easy proof of an extension of Kasteleyn's 
theorem to non-planar graphs, and we present a few simple related results. 
In section 3, a much more general theorem is proved and we show how 
Kasteleyn's theorem can also be derived from it. 

Let G be a finite graph with vertex set VG and edge set EG. If X, F Ç VG 
and X C\ Y = 0, we define bG(X, Y ) to be the set of edges of G each with one 
end in X and the other in Y. We define ôGX = ôG(X, VG — X). Whenever there 
is no ambiguity, the symbol bG will be replaced by 8. A coboundary is defined 
as a set of edges equal to bX for some vertex set X. A cutset is defined to be 
a minimal nonnull coboundary. A graph G is called connected if bX is nonnull 
for each nonnull proper subset X of VG. A component of G is a maximal 
nonnull connected subgraph. 

If X C VG, we define G[X] to be the subgraph of G whose vertex set is X 
and whose edge set is the set of edges of G having both ends in X. Define 
r(X) = \EG[X]\ — \X\ + po(X) where po(X) is the number of components 
of G[X]. Thus r(X) is the number of chords of a spanning forest of G[X]. If 
G is a directed graph, let b+X be the set of edges of bX with positive end in X. 
Then if v Ç VG, an orientation of G is defined to be odd relative to v if for every 
X C VG — {v} we have 

\b+X\ = r(X) + po(X) mod 2 

The outvalency of v is defined as the number of edges of G whose positive 
end is v. 
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2. Kasteleyn's theorem for non-planar graphs. In this section we show 
how to generalize Kasteleyn's theorem to non-planar graphs. Since Kasteleyn's 
theorem in the form in which it has been stated is meaningless for non-planar 
graphs, the method used is to find a dual form of the theorem that does have 
meaning in the non-planar case. Theorem 1 contains such a form as a special 
case. Kasteleyn's theorem then follows from this special case and the principle 
of duality for planar graphs. Theorems 2 and 4 present some further related 
results. 

THEOREM I. If G is a finite connected graph and v £ VG, then G has an odd 
orientation relative to v. 

We need a simple lemma. 

LEMMA 1. Let G be a finite connected graph and let v Ç VG. Then there is an 
orientation of G such that every vertex of VG — {v} has odd outvalency. 

Proof. Let R be an orientation of G such that the number of vertices of 
VG — {v\ of even outvalency is minimal. Let u ^ v be a vertex of even out
valency in R. Since G is connected, there is a simple path P joining u and v. 
Let R! be the orientation obtained from R by interchanging the positive and 
negative ends of each edge of P. Then u is of odd outvalency in R\ but all 
other vertices of VG — {v} have the same outvalency in R' as in R. Thus 
fewer vertices of VG — {v} have even outvalency in Rf than in R and the 
minimality property of R is contradicted. Therefore no vertex of VG — {v} 
has even outvalency in R. 

Proof of Theorem 1. Let G be oriented so that every vertex of VG — {v} 
has odd outvalency. Let X Ç VG — {v}. Thus 

(1) r(X) = \EG[X]\ - \X\ + Po(X). 

The total outvalency summed over all vertices in X is |£G[X]| + |5+X|. 
Since every vertex of X has odd outvalency, 

\EG[X]\ + \ô+X\ = |Z | mod 2, 

so that \EG[X]\ - \X\ = \8+X\ mod 2. Therefore, from (1), 

\ô+X\ s r(X) +po(X) mod 2, 

so that the given orientation is odd. The theorem is proved. 
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Remark. If G is planar, the dual of Kasteleyn's theorem is easily seen to be 
the case where 8X is a cutset, so that po(X) = 1. 

It is now a simple matter to characterize odd orientations. 

THEOREM 2. An orientation of the edges of a finite connected graph is odd 
relative to a vertex v if and only if every vertex other than v has odd outvalency. 

Proof. Let G be given an odd orientation relative to v. Let u G VG, u ^ v. 
Then |<5+{z/}| = r({u}) + 1 = l s o that u has odd outvalency. Therefore every 
vertex of VG — {v} has odd outvalency. 

The proof of the other half of this theorem is contained in the proof of 
Theorem 1. 

Remark. Whether or not v has odd outvalency of course is entirely dependent 
on \VG\ and \EG\. 

It may be of some interest to point out how odd orientations are related to 
each other. 

THEOREM 3. Let G be a finite, connected, directed graph with an odd orientation 
Ri relative to some vertex v. Then another orientation R2 is odd relative to v if and 
only if every vertex has incident upon it an even number of edges whose orienta
tions in Ri and R2 differ. 

Proof. For vertices in VG — {v} this theorem is obvious from Theorem 2 
and for v it is clear from the remark following Theorem 2. 

THEOREM 4. Let G be a finite, connected graph and let R be an odd orientation 
relative to some vertex v. Then R is odd relative to every vertex in G if and only if 
I VG\ = \EG\ mod 2.1f\ VG\ = \EG\ + 1 mod 2, then an odd orientation relative 
to a vertex w 9* v is obtained by interchanging the positive and negative ends of 
every edge of some simple path P joining v and w. 

Proof. Since R is odd relative to v, every vertex of VG — {v} has odd out
valency. If I VG\ = \EG\ mod 2, then v also has odd outvalency, since the total 
outvalency summed over all vertices of G is \EG\. Hence every vertex has odd 
outvalency and R is odd relative to w for every w 6 VG. However, if | VG\ = 
I-EG I + 1 mod 2, then v has even outvalency and R is not odd relative to w. 
In this case, if the positive and negative ends of every edge of P are inter
changed, w becomes the only vertex with even outvalency and thus the re
sulting orientation is odd relative to w. 

3. A further generalization of Kasteleyn's theorem. In this section, 
we show that Lemma 1 of the previous section is actually a special case of a 
much more general phenomenon, given in Theorem 5. Thus Kasteleyn's 
theorem is seen in a more general setting. 
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Definition. Let G be a finite graph and A, B disjoint subsets of VG. Then 
a subset W of VG is called a parity set relative to {A, B) if for every vertex 
v e A \J B, \8({v], W - {v})\ is even if v G A and odd if v 6 B. 

THEOREM 5. Let G be a finite graph and let A, B, X be subsets of VG such that 
A C\B = 0 . Then a necessary and sufficient condition for the existence of a 
subset W of X such that W is a parity set relative to (A, B) is that there does not 
exist a subset S of A \J B such that (i) \S C\ B\ is odd, and (ii) \8({v], S — {v})\ 
is even for every v Ç X. 

Proof. The theorem is an application of the following result in linear algebra. 
Given numbers atj (i = 1, . . . , m\ j = 1, . . . , n) and zt (i = 1, . . . , m), 
the equations 

n 

H aijyj = Zt (i = 1, • • • , m) 
3=1 

can be solved for yi, . . . , yn if and only if, for every sequence of coefficients 
Xi, . . . , \m such that the vector 

m 

2 ^ ^i\aiU ai2, • • • , & in) 

vanishes, we have 
m 

Z x*, = o. 
i=i 

In our application of this theorem, all the scalars belong to the field of residue 
classes modulo 2. Let X = {xiy x2, . . . , xn) and A KJ B = {vi, v2, . . . , vm}. If 
l ^ i ^ m , l ^ j ^ n , let atj be 1 if there is an edge joining vt to Xj and 0 
otherwise, and let zt be 1 if vt G B and 0 if vt G A. The scalars yi, . . . , yn 

correspond to W and Xi, . . . , \m to S in an obvious way, and the theorem is 
proved. 

A graph theoretical proof of this theorem can also be given, but it is con
siderably more complicated. 

In order to show how Lemma 1 is a special case of this theorem, we need 
a corollary. 

Definition. If G is a graph, a spanning subgraph of G is defined as a subgraph 
with vertex set VG. 

COROLLARY 1. Let G be a finite graph and A and B be disjoint subsets of VG. 
Then a necessary and sufficient condition for the existence of a spanning subgraph W 
of G such that every vertex of A has even valency in W and every vertex of B has odd 
valency in W, is that there does not exist a component CofG such that VC C A KJ B 
and | VC C\ B\ is odd. 

Remark. This result can be proved simply without recourse to Theorem 5, 
but our purpose is to show it as a special case of Theorem 5. 
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Proof. Define a bipar t i te graph H as follows: Let 

VH = VG\J EG, ÔHEG = ÔHVG = EH 

and let vertices v £ VG and e G EG be adjacent in H if and only if e is incident 
on v in G. Let X = EG. Then it is clear t h a t the required subgraph W of G 
exists if and only if some subset W of X is a par i ty set relative to (A, B). 
Therefore, by Theorem 5, if IF does not exist, there mus t be a subset S of A \J B 
such t h a t \Sr\B\ = 1 mod 2 and, for every e G X, \ô({e}, S - {e})\ = 0 mod 2. 
T h e la t ter condition means t h a t the ends of any edge e of G are either both 
in S or both in VG — S. Hence 8GS = 0, so t h a t S is the ver tex set of a set T 
of components of G, and every vertex of every component in T mus t be in 
A U B because S Q A KJ B. Since \S P\ B\ is odd, some component C £ T 
satisfies F C C 4 U 5 and | F C Pi B | s= 1 mod 2. 

T h e other half of this corollary is obvious from the fact t h a t the to ta l 
valency summed over all vertices in any component of a graph mus t be even. 

Proof of Lemma 1. Let R be any orientat ion of G. Le t A be the set of vertices 
of VG — {v} of odd outvalency, and let B = VG — A — {v}. In order to 
arrange t h a t every vertex of VG — {v} have odd outvalency, we mus t inter
change positive and negative ends of every edge of some spanning subgraph W 
of G with the proper ty t h a t every vertex of A has even valency in W and every 
vertex in B has odd valency in W. Since G has jus t one component and 
VG 9^ A KJ B, such a subgraph exists by Corollary 1. T h e lemma is proved 
and Kaste leyn 's theorem is seen as a consequence of Theorem 5. 

A \-factor of a graph G is defined to be a set T of edges such t h a t for every 
v G VG exactly one edge of T is incident on v. T h e symmetr ic difference of two 
1-factors is a set of circuits of even length, each of which is called an alter
nating circuit. Any circuit possesses two senses, which we call clockwise and 
counterclockwise respectively. If G is a directed graph, we say t ha t the orienta
tion of any edge of a circuit agrees or disagrees with the clockwise sense 
according as the direction of an arrow point ing from the positive to the 
negative end of the edge agrees with the clockwise or counterclockwise sense 
of the circuit. A circuit C is called clockwise odd if an odd number of edges of C 
are oriented to agree with the clockwise sense. Otherwise C is called clockwise 
even. 

If G is a directed graph, let F = {fi, . . . , fj} be the set of 1-factors of G, 
and for all i write 

fi = { (Ua, Wn), (Ui2, Wi2), . . . , (Uik, Wik)} 

where k = | | F G | and utj, wtj G VG for all j . Associate with ft a, plus sign 
if UiiWaUi2Wi2 . . . ui]cwi]c is an even permuta t ion of UnWnUi2Wi2 . . . UikWik, and 
a minus sign otherwise. Le t Si be the set of 1-factors t h a t are thus given a 
plus sign and let S2 = F — Si. Le t VG = {vi, v2, . . . , v2k} and let M = {mif) 
be the matr ix such t h a t m^ = 1 if (vu Vj) G EG, mtj = — 1 if (vjf vt) G EG, 
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and Mij = 0 otherwise. Let Pfikf be the Pfaffian of AT, and \M\ the determinant. 
Since M is a skew symmetric 2k X 2k matrix, we have \M\ = Pî2M by a 
theorem of Cayley [2; 3]. Furthermore, |PfM| = ||Si| - |S2 | |, so that if all 
the 1-factors of G have the same sign, then \F\ = |POf| and thus \F\ can 
readily be calculated. In addition, Kasteleyn [1] shows that the orientation 
whose existence for planar graphs is asserted in his theorem guarantees that 
all the 1-factors of G are given the same sign. The question of a characteriza
tion of those graphs that can be oriented to ensure that all 1-factors have the 
same sign thus arises. No practical characterization is known but Theorem 5 
can be used to give the following interesting theoretical characterization that 
sheds some light on the nature of the problem. 

A set 5 of spanning subgraphs of a graph G is said to be of empty digital sum 
if every edge of G is found in an even number of elements of S. 

COROLLARY 2. A necessary and sufficient condition for the existence of an 
orientation of G so that all 1-factors have the same sign is the non-existence of a 
set S of 1-factors such that S is of empty digital sum and an odd number of elements 
of S have a minus sign. 

Proof. Let H be the bipartite graph defined as follows. Let VH = F \J EG, 
8HF = EH, and let vertices v £ F and w Ç EG be adjacent if and only if 
w £ v in G. Let A = Si, B = S2, X = EG. Then the corollary is immediate 
upon applying Theorem 5 to H. 

Kasteleyn [1] has also shown that all the 1-factors have the same sign if 
and only if the orientation of G is such that all alternating circuits are clockwise 
odd. By using the same result from linear algebra that we used, Pla [4] has 
given necessary and sufficient conditions for the existence of such an orienta
tion. The reader should be warned, however, that Theorems 2 and 3 of Pla's 
paper are in general false. We now show that Pla's result is also a special case 
of Theorem 5, as is not surprising. 

COROLLARY 3. A necessary and sufficient condition for the existence of an 
orientation of G such that all alternating circuits of G are clockwise odd is the 
non-existence of a set S of alternating circuits such that S is of empty digital sum 
and an odd number of elements of S are clockwise even. 

Proof. The proof is identical to that of Corollary 2 except that F is replaced 
by the set of all alternating circuits of G. 

4. Conclusions. We have shown that the theorem of Kasteleyn mentioned 
in the introduction is a special case of the more general Theorem 5. Corollaries 
1, 2 and 3 of Theorem 5 illustrate the generality of that theorem and suggest 
that it may be a useful tool in solving a number of problems in which parity 
considerations play a rôle. It appears from these examples that applications of 
Theorem 5 to bipartite graphs show particular promise. 
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