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Introduction

1.1 Presentation

Different authors might define “probabilistic number theory” in different ways.
Our point of view will be to see it as the study of the asymptotic behavior of
arithmetically defined sequences of probability measures, or random variables.
Thus the content of this book is based on examples of situations where we can
say interesting things concerning such sequences. However, in Chapter 7, we
will quickly survey some topics that might quite legitimately be seen as part of
probabilistic number theory in a broader sense.

To illustrate what we have in mind, the most natural starting point is a
famous result of Erdős and Kac.

Theorem 1.1.1 (the Erdős–Kac Theorem) For any positive integer n � 1, let
ω(n) denote the number of prime divisors of n, counted without multiplicity.
Then, for any real numbers a < b, we have

lim
N→+∞

1

N

∣∣∣∣{1 � n � N | a � ω(n)− log log N√
log log N

� b
}∣∣∣∣ = 1√

2π

∫ b

a

e−x
2/2dx.

To spell out the connection between this statement and our slogan, one
sequence of probability measures involved here is the sequence (μN)N�1,
defined as the uniform probability measure supported on the finite set �N =
{1, . . . ,N}. This sequence is defined arithmetically, because the study of
integers is part of arithmetic. The asymptotic behavior is revealed by the
statement. Namely, consider the sequence of random variables

XN(n) = ω(n)− log log N√
log log N

1
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2 Introduction

defined on �N for N � 3,1 and the sequence (νN) of their probability distribu-
tions, which are (Borel) probability measures on R defined by

νN(A) = μN(XN ∈ A) = 1

N

∣∣∣∣{1 � n � N | ω(n)− log log N√
log log N

∈ A

}∣∣∣∣
for any measurable set A⊂R. These form another arithmetically defined
sequence of probability measures, since primes are definitely arithmetic
objects. Theorem 1.1.1 is, by basic probability theory, equivalent to the fact that
the sequence (νN) converges in law to a standard Gaussian random variable as
N → +∞. (We recall here that a sequence of real-valued random variables
(XN) converges in law to a random variable X if

E(f (XN))→ E(f (X))

for all bounded continuous functions f : R → C, and that one can show that
it is equivalent to

P(a < XN < b)→ P(a < X < b)

for all a < b such that P(X = a) = P(X = b) = 0; for the standard Gaussian,
this means for all a and b; see Section B.3 for reminders about this.)

The Erdős–Kac Theorem is probably the simplest case where a natural
deterministic arithmetic quantity (the number of prime factors of an integer),
which is individually very hard to grasp, nevertheless exhibits a statistical or
probabilistic behavior which fits a very common probability distribution. This
is the prototype of the kinds of statements we will discuss (although sometimes
the limiting measures will be far from standard!).

We will prove Theorem 1.1.1 in the next chapter. Before we do this, we will
begin with a few results that are much more elementary but which may, with
hindsight, be considered as the simplest cases of the type of results we want to
describe.

1.2 How Does Probability Link with
Number Theory Really?

Before embarking on this, however, it might be useful to give a rough idea
of the way probability theory and arithmetic will combine to give interesting
limit theorems like the Erdős–Kac Theorem. The strategy that we outline here

1 Simply so that log log N > 0.
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1.2 How Does Probability Link with Number Theory Really? 3

will be, in different guises, at the core of the strategy of the proofs of many
theorems in this book.

We typically will be working with a sequence (Xn) of arithmetically
interesting random variables, and we wish to prove that it converges in law.
In many cases, we do this with a two-step process.

(1) We begin by approximating (Xn) by another sequence (Yn), in such a
way that convergence in law of these approximations implies that of (Xn),
with the same limit. In other words, we see Yn as a kind of perturbation
of Xn, which is small enough to preserve convergence in law. Notably, the
approximation might be of different sorts: the difference Xn − Yn might,
for instance, converge to 0 in probability, or in some Lp-space; in fact, we
will sometimes encounter a process of successive approximations, where
the successive perturbations are small in different senses, before reaching
a convenient approximation Yn (this is the case in the proof of Theorem
4.1.2).

(2) Having found a good approximation Yn, we prove that it converges in law
using a probabilistic criterion that is sufficiently robust to apply; typical
examples are the method of moments, and the convergence theorem of
P. Lévy based on characteristic functions (i.e., Fourier transforms),
because analytic number theory often gives tools to compute
approximately such invariants of arithmetically defined random variables.

Both steps are sometimes quite easy to motivate using some heuristic
arguments (for instance, when Xn or Yn are represented as a sum of various
terms, we might guess that these are “approximately independent,” to lead to
a limit similar to that of sums of independent random variables), but they may
also involve quite subtle ideas.

We will not dwell further on this overarching strategy, but the reader will be
able to recognize how it fits into this skeleton when we discuss the steps of the
proof of some of the main theorems.

In many papers written by (or for) analytic number theorists, the approx-
imations of Step 1, as well as (say) the moment computations of Step 2, are
performed using notation, terminology and normalizations coming from the
customs and standards of analytic number theory. In this book, we will try to
express them instead, as much as possible, in good probabilistic style (e.g.,
we attempt to mention as little as possible the “elementary events” of the
underlying probability space). This is usually simply a matter of cosmetic
transformations, but sometimes it leads to slightly different emphasis, in
particular concerning the nature of the approximations in Step 1. We suggest

https://doi.org/10.1017/9781108888226.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.002


4 Introduction

that the reader compare our presentation with that of some of the original
source papers, in order to assess whether this style is enlightening (as we often
find it to be), or not.

1.3 A Prototype: Integers in Arithmetic Progressions

As mentioned above, we begin with a result that is so elementary that it
is usually not presented as a separate statement (let alone as a theorem!).
Nevertheless, as we will see, it is the basic ingredient (and explanation) for
the Erdős–Kac Theorem, and generalizations of it become quite quickly very
deep.

Theorem 1.3.1 For N � 1, let �N = {1, . . . ,N} with the uniform probability
measure PN. Fix an integer q � 1, and denote by πq : Z −→ Z/qZ the
reduction modulo q map. Let XN be the random variables given by XN(n) =
πq(n) for n ∈ �N.

As N → +∞, the random variables XN converge in law to the uniform
probability measure μq on Z/qZ. In fact, for any function

f : Z/qZ −→ C,

we have ∣∣E(f (XN))− E(f )
∣∣ � 2

N
‖f ‖1, (1.1)

where

‖f ‖1 =
∑

a∈Z/qZ

|f (a)|.

Proof It is enough to prove (1.1), which gives the convergence in law by letting
N →+∞. This is quite simple. By definition, we have

E(f (XN)) = 1

N

∑
1�n�N

f (πq(n))

and

E(f ) = 1

q

∑
a∈Z/qZ

f (a).

The idea is then clear: among the integers 1 � n � N, roughly N/q are in
any given residue class a (mod q), and if we use this approximation in the first
formula, we obtain precisely the second.
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1.3 A Prototype: Integers in Arithmetic Progressions 5

To do this in detail, we gather the integers in the sum according to their
residue class a modulo q. This gives

1

N

∑
1�n�N

f (πq(n)) =
∑

a∈Z/qZ

f (a)× 1

N

∑
1�n�N

n≡a (mod q)

1.

The inner sum, for each a, counts the number of integers n in the interval
1 � n � N such that the remainder under division by q is a. These integers
n can be written n = mq + a for some m ∈ Z, if we view a as an actual
integer, and therefore it is enough to count those integers m ∈ Z for which
1 � mq + a � N. The condition translates to

1− a
q

� m � N− a
q
,

and therefore we are reduced to counting integers in an interval. This is
not difficult, although we have to be careful with boundary terms, since the
bounds of the interval are not necessarily integers. The length of the interval is
(N−a)/q−(1−a)/q = (N−1)/q. In general, in an interval [α,β] with α � β,
the number Nα,β of integers satisfies

β − α − 1 � Nα,β � β − α + 1

(and the boundary contributions should not be forgotten, although they are
typically negligible when the interval is long enough).

Hence the number Na of values of m satisfies

N− 1

q
− 1 � Na � N− 1

q
+ 1, (1.2)

and therefore ∣∣∣∣Na − N

q

∣∣∣∣ � 1+ 1

q
.

By summing over a in Z/qZ, we deduce now that∣∣∣∣∣∣ 1

N

∑
1�n�N

f (πq(n))− 1

q

∑
a∈Z/qZ

f (a)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

a∈Z/qZ

f (a)

(
Na
N
− 1

q

)∣∣∣∣∣∣
� 1+ q−1

N

∑
a∈Z/qZ

|f (a)| � 2

N
‖f ‖1.
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6 Introduction

Remark 1.3.2 As a matter of notation, we will sometimes remove the
variable N from the notation of random variables, since the value of N is
usually made clear by the context, frequently because of its appearance in
an expression involving PN(·) or EN(·), which refers to the probability and
expectation on �N.

Despite its simplicity, this result already brings up a number of important
features that will occur extensively in later chapters.

A first remark is that we actually proved something much stronger than the
statement of convergence in law: the bound (1.1) gives a rather precise estimate
of the speed of convergence of expectations (or probabilities) computed using
the law of XN to those computed using the limit uniform distribution μq . Most
importantly, as we will see shortly, these estimates are uniform in terms of
q, and give us information on convergence, or more properly speaking on the
“distance” between the law of XN and μq , even if q depends on N in some way.

To be more precise, take f to be the characteristic function of a residue
class a ∈ Z/qZ. Then since E(f ) = 1/q, we get∣∣∣∣P(πq(n) = a)− 1

q

∣∣∣∣ � 2

N
.

This is nontrivial information as long as q is a bit smaller than N. Thus, this
states that the probability that n � N is congruent to a modulo q is close to the
intuitive probability 1/q, uniformly for all q just a bit smaller than N, and also
uniformly for all residue classes. We will see, both below and in many similar
situations, that uniformity aspects are essential in applications.

The second remark concerns the interpretation of the result. Theorem 1.3.1
can explain what is meant by such intuitive statements as the probability that
an integer is divisible by 2 is 1/2. Namely, this is the probability, according to
the uniform measure on Z/2Z, of the set {0}, and this is simply the limit given
by the convergence in law of the variables π2(n) defined on �N to the uniform
measure μ2.

This idea applies to many other similar-sounding problems. The most
elementary among these can often be solved using Theorem 1.3.1. We present
one famous example: what is the “probability” that an integer n� 1 is
squarefree, which means that n is not divisible by a square m2 for some
integer m� 2 (or, equivalently, by the square of some prime number)? Here
the interpretation is that this probability should be

lim
N→+∞

1

N
|{1 � n � N | n is squarefree}|.
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1.3 A Prototype: Integers in Arithmetic Progressions 7

If we prefer (as we do) to speak of sequences of random variables, we can
take the sequence of Bernoulli random variables BN indicators of the event
that n ∈ �N is squarefree, so that

P(BN = 1) = 1

N
|{1 � n � N | n is squarefree}|.

We then ask about the limit in law of (BN). The answer is as follows:

Proposition 1.3.3 The sequence (BN) converges in law to a Bernoulli random
variable B with P(B = 1) = 6

π2 . In other words, the “probability” that an

integer n is squarefree, in the interpretation discussed above, is 6/π2.

Proof The idea is to use inclusion-exclusion: to say that n is squarefree means
that it is not divisible by the square p2 of any prime number. Thus, if we denote
by PN the probability measure on �N, we have

PN(n is squarefree) = PN

( ⋂
p prime

{p2 does not divide n}
)

.

There is one key step now that is both obvious and crucial: because of the
nature of �N, the infinite intersection may be replaced by the intersection over
primes p �

√
N, since all integers in �N are � N. Applying the inclusion-

exclusion formula, we obtain

PN

( ⋂
p�N1/2

{p2 does not divide n}
)
=
∑

I

(−1)|I| PN

(⋂
p∈I

{p2 divides n}
)
,

(1.3)

where I runs over the set of subsets of the set {p � N1/2} of primes � N1/2,
and |I| is the cardinality of I. But, by the Chinese Remainder Theorem, we have⋂

p∈I

{p2 divides n} = {d2
I divides n},

where dI is the product of the primes in I. Once more, note that this set is
empty if d2

I > N. Moreover, the fundamental theorem of arithmetic shows that
I �→ dI is injective, and we can recover |I| also from dI as the number of prime
factors of dI. Therefore, we get

PN(n is squarefree) =
∑
d�N1/2

μ(d)PN(d
2 divides n),
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8 Introduction

where μ(d) is the Möbius function, defined for integers d � 1 by

μ(d) =
{

0 if d is not squarefree,

(−1)k if d = p1 · · ·pk with pi distinct primes

(see Definition C.1.3).
But d2 divides n if and only if the image of n by reduction modulo d2 is 0.

By Theorem 1.3.1 applied with q = d2 for all d � N1/2, with f the indicator
function of the residue class of 0, we get

PN(d
2 divides n) = 1

d2
+ O(N−1)

for all d, where the implied constant in the O(·) symbol is independent of d
(in fact, it is at most 2). Note in passing how we use crucially here the fact that
Theorem 1.3.1 was uniform and explicit with respect to the parameter q.

Summing the last formula over d � N1/2, we deduce

PN(n is squarefree) =
∑
d�n1/2

μ(d)

d2
+ O

(
1√
N

)
.

Since the series with terms 1/d2 converges, this shows the existence of the
limit, and that (BN) converges in law as N → +∞ to a Bernoulli random
variable B with success probability

P(B = 1) =
∑
d�1

μ(d)

d2
, P(B = 0) = 1−

∑
d�1

μ(d)

d2
.

It is a well-known fact (the “Basel problem,” first solved by Euler; see Exercise
1.3.4 for a proof) that

∑
d�1

1

d2
= π

2

6
.

Moreover, a basic property of the Möbius function states that∑
d�1

μ(d)

ds
= 1

ζ(s)

for any complex number s with Re(s) > 1, where

ζ(s) =
∑
d�1

1

ds
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1.3 A Prototype: Integers in Arithmetic Progressions 9

is the Riemann zeta function (Corollary C.1.5), and hence we get∑
d�1

μ(d)

d2
= 1

ζ(2)
= 6

π2
.

Exercise 1.3.4 In this exercise, we explain a proof of Euler’s formula
ζ(2) = π2/6.

(1) Assuming that

sin(πx)

πx
=
∏
n�1

(
1− x

2

n2

)

(another formula of Euler), find a heuristic proof of ζ(2) = π2/6. [Hint: First,
express the sum of the inverses of the roots of a polynomial (with nonzero
constant term) in terms of its coefficients.]

The following argument, due to Cauchy, can be seen as a way to make
rigorous the previous idea.

(2) Show that for n � 1 and x ∈ R πZ, we have

sin(nx)

(sin x)n
=

∑
0�m�n/2

(−1)m
(

n

2m+ 1

)
cotan(x)n−(2m+1).

(3) Let m � 1 be an integer, and let n = 2m+ 1. Show that

m∑
r=1

cotan
( rπ
n

)2 = 2m(2m− 1)

6

and
m∑
r=1

1

sin
( rπ
n

)2
= 2m(2m+ 2)

6
.

[Hint: Using (1), view the numbers cotan(rπ/n)2 as the roots of a polynomial
of degree m, and use the formula for the sum of the roots of a polynomial.]

(4) Deduce that

2m(2m− 1)

6
<

m∑
k=1

(
2m+ 1

kπ

)2

<
2m(2m+ 2)

6
,

and conclude.

The proof of Proposition 1.3.3 above was written in probabilistic style,
emphasizing the connection with Theorem 1.3.1. It can be expressed more
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10 Introduction

straightforwardly as a sequence of manipulation with finite sums, using
the formula ∑

d2|n
μ(d) =

{
1 if n is squarefree,

0 otherwise
(1.4)

for n � 1 (which is implicit in our discussion) and the approximation∑
1�n�N
d|n

1 = N

d
+ O(1)

for the number of integers in an interval which are divisible by some d � 1.
This goes as follows:∑

n�N
n squarefree

1 =
∑
n�N

∑
d2|n
μ(d) =

∑
d�√N

μ(d)
∑
n�N
d2|n

1

=
∑
d�√N

μ(d)

(
N

d2
+ O(1)

)

= N
∑
d

μ(d)

d2
+ O(

√
N).

Obviously, this is much shorter, although one needs to know the for-
mula (1.4), which was implicitly derived in the previous proof.2 But there is
something quite important to be gained from the probabilistic viewpoint, which
might be missed by reading too quickly the second proof. Indeed, in formulas
like (1.3) (or many others), the precise nature of the underlying probability
space �N is quite hidden – as is customary in probability where this is often
not really relevant. In our situation, this suggests naturally to study similar
problems for different sequences of integer-valued random variables rather
than taking integers uniformly between 1 and N.

This has indeed been done, and in many different ways. But even before
looking at any example, we can predict that some new – interesting –
phenomena will arise when doing so. Indeed, even if our first proof of
Proposition 1.3.3 was written in a very general probabilistic language, it did
use one special feature of �N: it only contains integers n � N, and even more
particularly, it does not contain any element divisible by d2 for d larger than√

N. (More probabilistically, the probability PN(d
2 divides n) is then zero.)

2 Readers who are already well versed in analytic number theory might find it useful to translate
back and forth various estimates written in probabilistic style in this book.
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1.3 A Prototype: Integers in Arithmetic Progressions 11

Now consider the following extension of the problem, which is certainly
one of the first that may come to mind beyond our initial setting: we fix an
irreducible polynomial P ∈ Z[X] of degreem � 1, and consider new Bernoulli
random variables BP,N which are indicators of the event that P(n) is squarefree
on �N (instead of n itself). Asking about the limit of these random variables
means asking for the “probability” that P(n) is squarefree, when 1 � n � N.
But although there is an elementary analogue of Theorem 1.3.1, it is easy to
see that this does not give enough control of

PN(d
2 divides P(n))

when d is “too large” compared with N. And this explains partly why, in fact,
as of 2020 at least, there is not even a single irreducible polynomial P ∈ Z[X]
of degree 4 or higher for which it is known that P(n) is squarefree infinitely
often.

Exercise 1.3.5 (1) Let k � 2 be an integer. Compute the “probability,” in the
same sense as in Proposition 1.3.3, that an integer n is k-free, that is, that there
is no integer m � 2 such that mk divides n.

(2) Compute the “probability” that two integers n1 and n2 are coprime, in
the sense of taking the corresponding Bernoulli random variables on�N×�N

and their limit as N →+∞.

Exercise 1.3.6 Let P ∈ Z[X] be an irreducible polynomial of degree m � 1.
For q � 1, let πq be the projection from Z to Z/qZ as before.

(1) Show that for any q � 1, the random variables XN(n) = πq(P(n))
converge in law to a probability measure μP,q on Z/qZ. Is μP,q uniform?

(2) Find values of T, depending on N and as large as possible, such that

PN(P(n) is not divisible by p2 for p � T) > 0.

How large should T be so that this implies straightforwardly that

{n � 1 | P(n) is squarefree}
is infinite?

(3) Prove that the set

{n � 1 | P(n) is (m+ 1)-free}
is infinite.

We conclude this section with another very important feature of Theorem
1.3.1 from the probabilistic point of view, namely, its link with independence.
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If q1 and q2 are positive integers which are coprime, then the Chinese
Remainder Theorem implies that the map{

Z/q1q2Z −→ Z/q1Z× Z/q2Z,

x �→ (x (mod q1),x (mod q2))

is a bijection (in fact, a ring isomorphism). Under this bijection, the uniform
probability measure μq1q2 on Z/q1q2Z corresponds to the product measure
μq1 ⊗ μq2 . In particular, the random variables x �→ x (mod q1) and x �→
x (mod q2) on Z/q1q2Z are independent.

The interpretation of this is that the random variables πq1 and πq2 on �N

are asymptotically independent as N →+∞, in the sense that

lim
N→+∞

PN(πq1(n) = a and πq2(n) = b) =
1

q1q2

=
(

lim
N→+∞

PN(πq1(n) = a)
)
×
(

lim
N→+∞

PN(πq2(n) = b)
)

for all (a,b) ∈ Z2. Intuitively, one would say that divisibility by q1 and q2 are
independent, and especially that divisibility by distinct primes are independent
events. We summarize this in the following extremely useful proposition:

Proposition 1.3.7 For N � 1, let�N = {1, . . . ,N}with the uniform probability
measure PN. Fix a finite set S of pairwise coprime integers.

As N → +∞, the vector (πq)q∈S seen as random vector on �N with
values in

XS =
∏
q∈S

Z/qZ

converges in law to a vector of independent and uniform random variables. In
fact, for any function

f : XS −→ C,

we have ∣∣E(f ((πq)q∈S))− E(f )
∣∣ � 2

N
‖f ‖1. (1.5)

Proof This is just an elaboration of the previous discussion. Let r be the
product of the elements of S. Then the Chinese Remainder Theorem gives
a ring-isomorphism XS −→ Z/rZ such that the uniform measure μr on the
right-hand side corresponds to the product of the uniform measures on XS.
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1.3 A Prototype: Integers in Arithmetic Progressions 13

Thus f can be identified with a function g : Z/rZ −→ C, and its expectation
to the expectation of g according to μr . By Theorem 1.3.1, we get∣∣E(f ((πq)q∈S))− E(f )

∣∣ = ∣∣E(g(πr))− E(g)
∣∣ � 2‖g‖1

N
,

which is the desired result since f and g have also the same 
1 norm.

Remark 1.3.8 (1) Note that the random variables obtained by reduction
modulo two coprime integers are not exactly independent: it is not true in
general that

PN(πq1(n) = a and πq2(n) = b) = PN(πq1(n) = a)PN(πq2(n) = b).
This is the source of many interesting aspects of probabilistic number theory
where classical ideas and concepts of probability for sequences of independent
random variables are generalized or “tested” in a context where independence
only holds in an asymptotic or approximate sense.

(2) There is one subtle point that appears in quantitative applications of
Theorem 1.3.1 and Proposition 1.3.7 that is worth mentioning. Given an
integer q � 1, certain functions f on Z/qZ might have a large norm ‖f ‖1,
and yet they may have expressions as linear combinations of functions f̃ on
certain spaces Z/dZ, where d is a divisor of q, which have much smaller
norms ‖f̃ ‖1. Taking such possibilities into account and arguing modulo d
instead of modulo q may lead to stronger estimates for the error

EN(f (πq(n)))− E(f )

than those we have written down in terms of ‖f ‖1. This is, for instance,
especially clear if we take f to be a nonzero constant, in which case the
difference is actually 0, but ‖f ‖1 is of size q.

One can incorporate formally these improvements by using a different norm
than ‖f ‖1, as we now explain.

Let q � 1 be an integer. Let �q be the set of functions ϕd,a : Z/qZ → C
which are characteristic functions of classes x ≡ a (mod d) for some positive
divisor d | q and some a ∈ Z/dZ (these are well-defined functions modulo q).
In particular, the function ϕq,a is just the delta function at a in Z/qZ, and ϕ1,0

is the constant function 1.
For an arbitrary function f : Z/qZ → C, let

‖f ‖c,1 = inf

{∑
d|q

∑
a (mod d)

|λd,a| | f =
∑
d|q

∑
a (mod d)

λd,aϕd,a

}
.

This defines a norm on the space of functions on Z/qZ (the subscript c refers
to congruences); the norm ‖f ‖c,1 measures how simply the function f may be
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expressed as a linear combination of indicator functions of congruence classes
modulo divisors of q.3 Note that ‖f ‖c,1 � ‖f ‖1, because one always has the
representation

f =
∑

a∈Z/qZ

f (a)ϕq,a .

Now the estimates (1.1) and (1.5) can be improved to∣∣E(f (XN))− E(f )
∣∣ � 2

N
‖f ‖c,1, (1.6)

∣∣E(f ((πq)q∈S))− E(f )
∣∣ � 2

N
‖f ‖c,1, (1.7)

respectively. Indeed, it suffices (using linearity and the triangle inequality) to
check this for f = ϕd,a for some divisor d | q and some a ∈ Z/dZ (with
‖ϕd,a‖c,1 replaced by 1 in the right-hand side), in which case the difference (in
the first case) is

1

N

∑
n�N

n≡a (mod d)

1− 1

q

∑
x (mod q)
x≡a (mod d)

1 = 1

N

∑
n�N

n≡a (mod d)

1− 1

d
,

which reduces to the case of single element modulo d, for which we now apply
Theorem 1.3.1.

Another corollary of these elementary statements identifies the limiting
distribution of the valuations of integers. To state it, we denote by SN the
identity random variable on the probability space �N = {1, . . . ,N} with
uniform probability measure of Theorem 1.3.1.

Corollary 1.3.9 For p prime, let vp denote the p-adic valuation on Z. The
random vectors (vp(SN))p converge in law, in the sense of finite distributions,
to a sequence (Vp)p of independent geometric random variables with

P(Vp = k) =
(

1− 1

p

)
1

pk

for k � 0. In other words, for any finite set of primes S and any nonnegative
integers (kp)p∈S, we have

lim
N→+∞

PN(vp(SN) = kp for p ∈ S) =
∏
p∈S

P(Vp = kp).

3 In terms of functional analysis, this means that this is a quotient norm of the 
1 norm on the
space with basis �q .
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1.4 Another Prototype: The Distribution of the Euler Function 15

Proof For a given prime p and integer k � 0, the condition that vp(n) = k
means that n (modpk+1) belongs to the subset in Z/pk+1Z of residue classes
of the form bpk where 1 � b � p − 1; by Theorem 1.3.1, we therefore have

lim
N→+∞

PN(vp(SN) = k) = p − 1

pk+1
= P(Vp = k).

Proposition 1.3.7 then shows that this extends to any finite set of primes.

Example 1.3.10 Getting quantitative estimates in this corollary is a good
example of Remark 1.3.8 (2). We illustrate this point in the simplest case,
which will be used in Section 2.2.

Consider two primes p �= q and the probability

PN(vp(SN) = vq(SN) = 1).

The indicator function ϕ of this event is naturally defined modulo p2q2, and its
norm ‖ϕ‖1 is the number of integers modulo p2q2 that are multiples of pq, but
not of p2 or q2. By inclusion-exclusion, this means that ‖ϕ‖1 = (p−1)(q−1).
On the other hand, we have ϕ = ϕ1 − ϕ2 − ϕ3 + ϕ4 where

• the function ϕ1 is defined modulo pq as the indicator of the class 0;

• the function ϕ2 is defined modulo p2q as the indicator of the class 0;

• the function ϕ3 is defined modulo pq2 as the indicator of the class 0;

• the function ϕ4 is defined modulo p2q2 as the indicator of the class 0.

Hence, in the notation of Remark 1.3.8 (2), we have ‖ϕ‖c,1 � 4; using this
remark, or by applying Theorem 1.3.1 four times, we get

PN(vp(SN) = vq(SN) = 1) = 1

pq

(
1− 1

p

)(
1− 1

q

)
+ O

(
1

N

)
,

instead of having an error term of size pq/N, as suggested by a direct
application of (1.1).

1.4 Another Prototype: The Distribution of the
Euler Function

Although Proposition 1.3.7 is extremely simple, it is the only necessary
arithmetic ingredient in the proof of a result that is another prototype of
probabilistic number theory in our sense. This is a theorem proved by Schoen-
berg [108] in 1928, which therefore predates the Erdős–Kac Theorem by about
ten years (although Schoenberg phrased the result quite differently, since this
date is also before Kolmogorov’s formalization of probability theory).
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The Euler “totient” function is defined for integers n � 1 by ϕ(n) =
|(Z/nZ)×| (the number of invertible residue classes modulo n). By the Chinese
Remainder Theorem (see Example C.1.8), this function is multiplicative, in
the sense that ϕ(n1n2) = ϕ(n1)ϕ(n2) for n1 coprime to n2. Computing
ϕ(pk) = pk − pk−1 = pk(1 − 1/p) for p prime and k � 1, one deduces
that

ϕ(n)

n
=
∏
p|n

(
1− 1

p

)

for all integers n � 1 (where the product is over primes p dividing n).
Now define random variables FN on �N = {1, . . . ,N} (with the uniform

probability measure as before) by

FN(n) = ϕ(n)
n

.

We will prove that the sequence (FN)N�1 converges in law, and identify its
limiting distribution. For this purpose, let (Bp)p be a sequence of independent
Bernoulli random variables, indexed by primes, with

P(Bp = 1) = 1

p
and P(Bp = 0) = 1− 1

p

(such random variables will also occur prominently in the next chapter).

Proposition 1.4.1 The random variables FN converge in law to the random
variable given by

F =
∏
p

(
1− Bp

p

)
,

where the infinite product ranges over all primes and converges almost surely.

This proposition is not only a good illustration of limiting behavior of
arithmetic random variables, but the proof that we give, which emphasizes
probabilistic methods, is an excellent introduction to a number of techniques
that will occur later in more complicated contexts. Before we begin, note how
the limiting random variable is highly nongeneric, and in fact retains some
arithmetic information, since it is a product over primes. In particular, although
the arithmetic content does not go beyond Proposition 1.3.7, this theorem is
certainly not an obvious fact.
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Proof For M � 1, we denote by FN,M the random variable on �N defined by

FN,M(n) =
∏
p|n
p�M

(
1− 1

p

)
.

It is natural to think of these as approximations to FN. On the other hand,
for a fixed M, these are finite products and hence easier to handle. We will
use a fairly simple “perturbation lemma” to prove the convergence in law of
the sequence (FN)N�1 from the understanding of the behavior of FN,M. The
lemma is precisely Proposition B.4.4, which the reader should read now.4

First, we fix M � 1. Since only primes p � M occur in the definition
of FN,M, it follows from Proposition 1.3.7 that the random variables FN,M

converge in law as N →+∞ to the random variable

FM =
∏
p�M

(
1− Bp

p

)
.

Thus Assumption (1) in Proposition B.4.4 is satisfied. We proceed to check
Assumption (2), which concerns the approximation of FN by FN,M on average.

We write EN,M = FN − FN,M. The expectation of |EN,M| is given by

EN(|EN,M|) = 1

N

∑
n�N

∣∣∣∣∏
p|n

(
1− 1

p

)
−
∏
p|n
p�M

(
1− 1

p

) ∣∣∣∣
� 1

N

∑
n�N

∣∣∣∣ ∏
p|n
p>M

(
1− 1

p

)
− 1

∣∣∣∣.
For a given n, expanding the product, we see that the quantity∏

p|n
p>M

(
1− 1

p

)
− 1

is bounded by the sum of 1/d over integers d � 2 which are squarefree,
divide n, and have all prime factors > M; let Dn be the set of such integers. In
particular, we always have M < d � N if d ∈ Dn.

4 Note that a similar argument reappears in a much more sophisticated context in Chapter 5
(see the proof of Theorem 5.2.2).
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Thus

EN(|EN,M|) � 1

N

∑
n�N

∑
d∈Dn

1

d
�

∑
M<d�N

1

d
× 1

N

∑
n�N

n≡0 (mod d)

1

�
∑

M<d�N

1

d2
� 1

M

for all N � M. Assumption (2) of Proposition B.4.4 follows immediately, and
we conclude that (FN)N�1 converges in law, and that its limit is the limit in
law F of the random variables FM as M → +∞. The last thing to check in
order to finish the proof is that the random product∏

p

(
1− Bp

p

)
(1.8)

over primes converges almost surely, and has the same law as F. The almost
sure convergence follows from Kolmogorov’s Three Series Theorem, applied
to the logarithm of this product, which is a sum∑

p

Yp, Yp = log

(
1− Bp

p

)
of independent random variables. Note that Yp � 0 and that it only takes the
values 0 (with probability 1 − 1/p) and log(1 − 1/p) (with probability 1/p),
so that

E(Yp) = 1

p
log

(
1− 1

p

)
∼ − 1

p2
,

V(Yp) = E(Y2
p)− E(Yp)2 = 1

p
log

(
1− 1

p

)2

− 1

p2
log

(
1− 1

p

)2

� 1

p3
,

which implies by Theorem B.10.1 that the random series
∑

Yp converges
almost surely, and hence so does its exponential, which is the product (1.8).
Now, from this convergence almost surely, it is immediate that the law of the
random product is also the law of F.

In Section 2.2 of the next chapter, we will state and prove a theorem due to
Erdős and Wintner that implies the existence of limiting distributions for much
more general multiplicative functions.

Remark 1.4.2 The distribution function of the arithmetic function n �→
ϕ(n)/n is the function defined for x ∈ R by

f (x) = P(F � x).
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Figure 1.1 Empirical plot of the distribution function of ϕ(n)/n for n � 106.

This function has been extensively studied, and is still the object of current
research. It is a concrete example of a function exhibiting unusual properties
in real analysis: it was proved by Schoenberg [108, 109] that f is continuous
and strictly increasing, and by Erdős [34] that it is purely singular, that is, that
there exists a set N of Lebesgue measure 0 in R such that P(F ∈ N) = 1; this
means that the function f is differentiable for all x /∈ N, with derivative equal
to 0 (Exercise 1.4.4 explains the proof).

In Figure 1.1, we plot the “empirical” values of f coming from integers
n � 106.

In the next two exercises, we use the notation of Proposition 1.4.1.

Exercise 1.4.3 Prove probabilistically that

lim
N→+∞

EN(FN) = 1

ζ(2)
and

lim
N→+∞

EN(F
−1
N ) =

∏
p

(
1+ 1

p(p − 1)

)
= ζ(2)ζ(3)

ζ(6)
,
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where

ζ(s) =
∏
p

(1− p−s)−1

is the Riemann zeta function (see Corollary C.1.5 for the product expression).
In other words, we have

lim
N→+∞

1

N

∑
n�N

ϕ(n)

n
= 1

ζ(2)
and lim

N→+∞
1

N

∑
n�N

n

ϕ(n)
= ζ(2)ζ(3)

ζ(6)
.

Recover these formulas using Möbius inversion (as in the “direct” proof of
Proposition 1.3.3).

Exercise 1.4.4 (1) Prove that the support of the law of F is [0,1]. [Hint: Use
Proposition B.10.8.]

By the Jessen–Wintner Purity Theorem (see, e.g., [20, Th. 3.26]), this fact
implies that the function f is purely singular (in the sense of Remark 1.4.2),
provided there exists a set N of Lebesgue measure 0 such that P(F ∈ N) > 0. In
turn, by elementary properties of absolutely continuous probability measures,
this follows if there exists α > 0 and, for any ε > 0, a Borel set Iε ⊂ [0,1]
such that

(1) we have P(F ∈ Iε) � α for all ε small enough; and
(2) the Lebesgue measure of Iε tends to 0 as ε→ 0.

The next questions will establish the existence of such sets. We define
G = log(F), and for M � 2, we let GM denote the partial sum

GM =
∑
p�M

log

(
1− Bp

p

)
.

(2) Prove that for any δ > 0, we have

P(|G− GM| > δ)� 1

δM
for any M > 0.

(3) For any finite set T of primes p � M, with characteristic function χT,
prove that

P(Bp = χT(p) for p � M)� 1

log M
×
∏
p∈T

1

p
.

Hint: Use the Mertens Formula (Proposition C.3.1).
(4) Let TM be a set of subsets T of the set of primes p � M, and let XM be

the event

{ there exists T ∈ TM such that Bp = χT(p) for p � M }.
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Show that

P(XM)� 1

log M

∑
T∈TM

∏
p∈T

1

p
.

(5) Let δ > 0 be some auxiliary parameter and

IM =
⋃

T∈TM

[∑
p∈T

log(1− 1/p)− δ,
∑
p∈T

log(1− 1/p)+ δ,
]

.

Show that the Lebesgue measure of IM is � 2δ|TM| and that

P(G ∈ IM)� 1

log M

∑
T∈TM

∏
p∈T

1

p
− 1

δM
.

(6) Conclude by finding a choice of δ > 0 and TM such that the Lebesgue
measure of IM tends to 0 as M → +∞ whereas P(G ∈ IM) � 1 for M large
enough.

1.5 Generalizations

Theorem 1.3.1 and Proposition 1.3.7 are obviously very simple statements.
However, Proposition 1.4.1 has already shown that they should not be dis-
regarded as trivial (and our careful presentation should – maybe – not be
considered as overly pedantic). A further and even stronger sign in this
direction is the fact that if one considers other natural sequences of probability
measures on the integers, instead of the uniform measures on {1, . . . ,N},
one quickly encounters very delicate questions, and indeed fundamental open
problems.

We have already mentioned the generalization related to polynomial values
P(n) for some fixed polynomial P ∈ Z[X]. Here are two other natural
sequences of measures that have been studied.

1.5.1 Primes

Maybe the most important variant consists in replacing the space �N of
positive n � N by the subset �N of prime numbers p � N (with the
uniform probability measure on these finite sets). According to the Prime
Number Theorem (Theorem C.3.3), there are about N/(log N) primes in �N.
In this case, the qualitative analogue of Theorem 1.3.1 is given by the theorem
of Dirichlet, Hadamard and de la Vallée Poussin on primes in arithmetic
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progression (Theorem C.3.7), which implies that, for any fixed q � 1, the
random variables πq on �N converge in law to the probability measure on
Z/qZ which is the uniform measure on the subset (Z/qZ)× of invertible
residue classes (this change of the measure compared with the case of integers
is simply due to the obvious fact that at most one prime may be divisible by
the integer q).

It is expected that a bound similar to (1.1) should be true. More precisely,
there should exist a constant C � 0 such that∣∣E�N(f (πq))− E(f )

∣∣ � C(log qN)2√
N

‖f ‖1, (1.9)

but that statement, once it is translated to more standard notation, is very close
to the Generalized Riemann Hypothesis for Dirichlet L-functions (which is
Conjecture C.5.8).5 Even a similar bound with

√
N replaced by Nθ for any

fixed θ > 0 is not known, and would be a sensational breakthrough. Note that
here the function f is defined on (Z/qZ)× and we have

E(f ) = 1

ϕ(q)

∑
a∈(Z/qZ)×

f (a),

with ϕ(q) = |(Z/qZ)×| denoting the Euler function (see Example C.1.8).
However, weaker versions of (1.9), amounting roughly to a version valid on

average over q �
√

N, are known: the Bombieri–Vinogradov Theorem states
that, for any constant A > 0, there exists B > 0 such that we have∑

q�√N/(log N)B

max
a∈(Z/qZ)×

∣∣∣∣P�N(πq = a)−
1

ϕ(q)

∣∣∣∣� 1

(log N)A
, (1.10)

where the implied constant depends only on A (see, e.g., [59, Ch. 17]). In many
applications, this is essentially as useful as (1.9).

Exercise 1.5.1 Compute the “probability” that p − 1 be squarefree, for
p prime. (This can be done using the Bombieri–Vinogradov Theorem, for
instance.)

[Further references: Friedlander and Iwaniec [43]; Iwaniec and Kowalski
[59].]

1.5.2 Random walks

A more recent (and extremely interesting) type of problem arises from
taking measures on Z derived from random walks on certain discrete groups.

5 It implies it for nontrivial Dirichlet characters.

https://doi.org/10.1017/9781108888226.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.002


1.5 Generalizations 23

For simplicity, we only consider a special case. Let m � 2 be an integer, and
let G = SLm(Z) be the group of m×m matrices with integral coefficients and
determinant 1. This is a complicated infinite (countable) group, but it is known
to have finite generating sets. We fix one such set S, and assume that 1 ∈ S
and S = S−1 for convenience. (A well-known example is the set S consisting
of 1 and the elementary matrices 1 + Ei,j for 1 � i �= j � m, where Ei,j is
the matrix where only the (i,j)th coefficient is nonzero, and equal to 1, and
their inverses 1 − Ei,j ; the fact that these generate SLn(Z) can be seen from
the row-and-column operation reduction algorithm for such matrices.)

The generating set S defines then a random walk (γn)n�0 on G: let (ξn)n�1

be a sequence of independent S-valued random variables (defined on some
probability space �) such that P(ξn = s) = 1/|S| for all n and all s ∈ S. Then
we let

γ0 = 1, γn+1 = γnξn+1.

Fix some (nonconstant) polynomial function F of the coefficients of an
element g ∈ G, so F ∈ Z[(gi,j )] (for instance, F(g) = g1,1, or F(g) = Tr(g)
for g = (gi,j ) in G). We can then study the analogue of Theorem 1.3.1 when
applied to the random variables πq(F(γn)) as n→+∞, or in other words, the
distribution of F(g) modulo q, as g varies in G according to the distribution of
the random walk.

Let Gq = SLm(Z/qZ) be the finite special linear group. It is an elementary
exercise, using finite Markov chains and the surjectivity of the projection map
G −→ Gq , to check that the sequence of random variables (πq(F(γn)))n�0

converges in law as n → +∞. Indeed, its limit is a random variable Fq on
Z/qZ defined by

P(Fq = x) = 1

|Gq | |{g ∈ Gq | F(g) = x}|,

for all x ∈ Z/qZ, where we view F as also defining a function F: Gq −→
Z/qZ. (In other words, Fq is distributed like the direct image under F of the
uniform measure on Gq .)

In fact, elementary Markov chain theory (or direct computations) shows
that there exists a constant cq > 1 such that for any function f : Gq −→ C,
we have ∣∣E(f (πq(γn))− E(f )

∣∣ � ‖f ‖1

cnq
, (1.11)

in analogy with (1.1), with

‖f ‖1 =
∑
g∈Gq

|f (g)|.
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This is a very good result for a fixed q (note that the number of elements
reached by the random walk after n steps also grows exponentially with n). For
applications, our previous discussion already shows that it will be important to
exploit (1.11) for q varying with n, and uniformly over a wide range of q.
This requires an understanding of the variation of the constant cq with q. It is
a rather deep fact (Property (τ ) of Lubotzky for SL2(Z), and Property (T) of
Kazhdan for SLm(Z) if m � 3) that there exists c > 1, depending only on m,
such that cq � c for all q � 1. Thus we do get a uniform bound∣∣E(f (πq(γn))− E(f )

∣∣ � ‖f ‖1

cn

valid for all n � 1 and all q � 1. This is related to the theory (and applications)
of expander graphs.

[Further references: Breuillard and Oh [21], Kowalski [65], [67].]

1.6 Outline of the Book

Here is now a quick outline of the main results that we will prove in the
text. For detailed statements, we refer to the introductory sections of the
corresponding chapters.

Chapter 2 presents first the Erdős–Wintner Theorem on the limiting dis-
tribution of additive functions, before discussing the Erdős–Kac Theorem.
These are good examples to begin with, because they are the most natural
starting point for probabilistic number theory, and remain quite lively topics of
contemporary research. This will lead to natural appearances of the Gaussian
distribution as well as Poisson distributions.

Chapters 3 and 4 are concerned with the distribution of values of the
Riemann zeta function. We discuss results outside of the critical line (due to
Bohr–Jessen, Bagchi and Voronin) in the first of these chapters, and consider
deeper results on the critical line (due to Selberg, but following a recent pre-
sentation of Radziwiłł and Soundararajan) in the second. The limit theorems
one obtains can have rather unorthodox limiting distributions (random Euler
products, sometimes viewed as random functions, and – conjecturally – also
eigenvalues of random unitary matrices of large size).

Chapter 5 takes up a fascinating topic in the distribution of prime numbers:
the Chebychev bias, which attempts to compare the number of primes � x

in various residue classes modulo a fixed integer q � 1, and to see if some
classes are “more equal” than others. Our treatment follows the basic paper of
Rubinstein and Sarnak.
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In Chapter 6, we consider the distribution, in the complex plane, of
polygonal paths joining partial sums of Kloosterman sums, following work
of the author and W. Sawin [79, 12]. Here we will use convergence in law
in Banach spaces and some elementary probability in Banach spaces, and the
limit object that arises will be a very special random Fourier series.

In all of these chapters, we usually only discuss in detail one specific
example of fairly general results and theories: just the additive function ω(n)
instead of more general additive functions, just the Riemann zeta function
instead of more general L-functions, and specific families of exponential sums.
However, we will briefly mention some of the natural generalizations of the
results presented.

Similarly, since our objective in this book is explicitly to write an introduc-
tion to the topic of probabilistic number theory, we did not attempt to cover the
most refined results or the cutting-edge of research, or to discuss all possible
topics. For the same reason, we do not discuss in depth the applications of
our main results, although we usually mention at least some of them. Besides
the discussion in Chapter 7 of other areas of interaction between probability
theory and number theory, the reader is invited to read the short survey by
Perret-Gentil [92].

At the end of the book are appendices that discuss the results of complex
analysis, probability theory and number theory that we use in the main chapters
of the book. In general, these are presented with some examples and detailed
references, but without complete proofs, at least when they can be considered
to be standard parts of their respective fields. We do not expect every reader to
already be familiar with all of these facts, and in order to make it possible to
read the text relatively linearly, each chapter begins with a list of the main
results from these appendices that it will require, with the corresponding
reference (when no reference is given, this means that the result in question
will be presented within the chapter itself). We also note that the number-
theoretic results in Appendix C are stated in the “classical” style of analytic
number theory, without attempting to fit them to a probabilistic interpretation.
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