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Abstract
A totally ordered set (and corresponding order-type) is said to be rigid if it is
not similar to any proper initial segment of itself. The class of rigid order-
types is closed under addition and multiplication, satisfies both cancellation
laws from the left, and admits a partial ordering that is an extension of the
ordering of the ordinals. Under this ordering, limits of increasing sequences
of rigid order-types are well defined, rigid and satisfy the usual limit laws
concerning addition and multiplication. A decomposition theorem is
obtained, and is used to prove a characterization theorem on rigid order-types
that are additively prime. Wherever possible, use of the Axiom of Choice
is eschewed, and theorems whose proofs depend upon Choice are marked.

Subject classification (Amer. Math. Soc. (MOS), 1970): primary 04 A 10; secondary
06 A 05

Unless the contrary is either obvious or stated explicitly, the term "set" is
throughout this paper taken to mean "ordered set", with the ordering generally
being denoted by <. Sets and elements of sets are denoted by upper and lower case
Latin letters respectively, order-types by lower case Greek letters, and—where
necessary—classes of order-type by upper case Greek letters. The first transfinite
ordinal is as usual denoted by w, and natural numbers by k,m,n,p,q. We assume
understanding of the concepts of initial (final) segment, and of interval.

An order-preserving map/ : A->B having the property that f"A (={/(a)efi;
a eA}) is an initial segment of B is said to be a monomorphism; an isomorphism is
a surjective monomorphism. If/: A -» B is an isomorphism then A and B are said
to be similar (A~B). The order-type of a set A is o(A), and ordered unions and
ordered products are denoted by w and x respectively; we take the product
A x.B of two sets A,B as being ordered antilexicographically; thus (a,b)<(a',b')
if either b < V or b = V and a < a'. The converse of a set A (order-type a) is A *(a*).

Whilst it has not proved practicable to do without the Axiom of Choice entirely,
we have attempted to keep its use to a minimum. Our reason for this course is
two-fold; firstly, a general interest in delineating the role of Choice in the classical
theory of order-types; secondly, the class of order-types examined in this present
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204 J. L. Hickman [2]

paper is a generalization of classes of order-types studied in previous papers
(Hickman, 1975; Hickman, submitted), and which are of intrinsic interest only
when Choice is rejected.

DEFINITION 1. Let A be a nonempty set.
(1) A is said to be rigid if there is no proper initial segment B of A with B~ A.

We say that A is fully rigid if every nonempty initial segment of A is rigid.
(2) A is said to be regressive if A is not rigid, and to be fully regressive if every

nonempty initial segment of A is regressive.
(3) A is said to be atomic if A is rigid and every nonempty proper initial segment

of A is regressive.
Naturally the above nomenclature is extended to order-types in the obvious

manner. Our reason for excluding 0 from either rigidity or regressiveness is simply
one of practical convenience.

Obviously every nonzero ordinal is rigid, in fact fully rigid, whilst 17, the order-
type of the rationals, is fully regressive. The order-type 77 + a> is rigid but not fully
rigid, whereas co+17 is regressive but not fully regressive. The simplest nontrivial
atomic order-type is probably 77 + 2. Finally, in case anyone is tempted to conjecture
that every fully rigid order-type is an ordinal, we present two examples to disillusion
him. To obtain the first of these, we let N~ be the set of negative integers (ordered
in the usual fashion); the required order-type is then J^{ca~n; neN~}, that is,
... + a>n+1 + <on+...+a)2+a>, where n ^ l . For the second, we let Q be the set of
rationals (again with the standard ordering), and let/: Q->a> be an arbitrary but
fixed bijection. Our order-type is then T,{wf{Q); qeQ}.

It is immediate from the definition that a nonzero order-type a is rigid if and
only if there is no j8 ^0 such that <*+/? = a. It was shown in Hickman (1977) that
an order-type a is regressive if and only if a = |8+ya>* for some p,y with

DEFINITION 2. A binary relation j is defined on the class of all order-types by setting
a I jS if and only if /? = a + y for some y =£ 0. The relation "a j j8 or a = /?" is written
"a =± j8". The order-type a is said to be a subtype of the order-type j8 if a = jS.

DEFINITION 3. F = {a; a is rigid}.
It is routine to show that the restriction of j to F defines a strict partial order

on F, that is, \ is irreflexive and transitive on F. This is not true if we remove
the restriction of j to F; for example, we have 77 j 77 +1 j 77, but not 77 = 77 +1.

The following result was obtained in Hickman (1977), but as its proof is short
and the result itself plays a role of importance in our present work, we re-prove
it here. After the above paper was written, the author discovered that this result
constitutes one half of a theorem by Tarski (Theorem 1.27 of Tarski, 1956).
Despite receiving arguments to the contrary, however, the author is not at all
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[3] Rigidity in order-types 205

convinced that a direct translation of Tarski's proof into the present context would
avoid the use of Choice, and hence he prefers to rely upon the proof set forth
below.

THEOREM 1. For any order-types a,/?,y, if a. = /?+a+y, then /J+a = a = a+y.

PROOF: Let A be a representative set for a. The hypothesis says that
A = BwA°vC for some sets B,A°, C with respective order-types /J,a,y. Let
f:A~A° be an isomorphism, and define g:A-+A by g(x) = rma{x,f(x)} for
each xeA. It is routine to show that g is order-preserving and that g"A = BwA°.
Hence a = j8 + a. But now we have a+y = jS + a + y = a.

We wish to show that the class F is closed under order-type addition and multi-
plication, and we achieve this via proofs that the elements of F satisfy both left-
cancellation laws. With respect to addition, this has already been demonstrated in
Hickman (1977), but once again for the sake of convenience we repeat the proof.

THEOREM 2. Let a be any nonzero order-type. Then a. e F if and only if for any
order-types j8,y, we have a+jS = a+y => ]8 = y.

PROOF. If a^F, then there is some /J^O such that a+fi = ac = <x+0. Now
suppose that a+/J = a+y for some ]8,y with j9^~y. Let A,B,C be pairwise
disjoint representative sets for a,jS,y respectively, and let/: A \JB~A w C be an
isomorphism. As we cannot have f"B = C (since j3 ^y), it must be the case that
either/(a) e C for some a eA or f(b)e A for some beB. In the first instance A is
a proper initial segment off"A, and in the second instance/"^ is a proper initial
segment of A, and so whichever of these two alternatives is the case, we have

THEOREM 3. For all a,j8eF, we have a+j3eF.

PROOF. Take any order-types y, S, and suppose that a+j3+y = a+j3+S. Since
aeF , Theorem 2 tells us that /?+y = j8 + S. Repeating, we obtain y = S, and one
further appeal to Theorem 2 yields a

We could show that rigid order-types are multiplicatively left-cancellable by
observing that for any rigid order-type a and an arbitrary order-type /?, we have
a = aj8 if and only if j8 = 1, then applying Theorem 3.10 of Morel (1959). However,
this procedure would once again involve the Axiom of Choice, and so we prefer
to give a direct proof.

THEOREM 4. For any a 6 F and order-types J3, y, i/aj3 = ay, then /? = y.

https://doi.org/10.1017/S1446788700020206 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020206


206 J. L. Hickman [4]

PROOF. Let A,B,C be representative sets for a,/J,y respectively, and let
/ : A xB~A x C be an isomorphism. Take any beB; we claim that one of the
following is true:

(1) there is a unique ceC such that f "(A x{b})^A x{c};
(2) there are unique elements c0, cx of C such that cx immediately succeeds c0 and

f"(Ax{b})nA x{c0}*0*f\A x{b})nAx{cj.

In case (1), if such a c exists, then it is clearly unique. Suppose that with regard
to case (2) the existence of c0,cxeC satisfying the conditions has been established.
Then these two elements are uniquely determined. For if there is another such
pair, (c'o, Cj), then as cx (c )̂ immediately succeeds c0 (c'o) we may without loss of
generality assume that c± < c'o. This means, however, that

for some D,D'V 0 ; an application of Theorem 1 immediately tells us that a£ T,
contrary to hypothesis. Therefore, in order to establish our claim, it suffices to
show, on the assumption that case (1) does not apply, the existence of co,cxeC
satisfying the conditions of case (2). Now since (1) does not hold, there certainly
exist c^c^eC with co<cx and f"(A x {b}) n A x {cj ^ 0, i = 0,1. Suppose that
co<c<c1 for some ceC. Then/"04 x {b}) = D w A x{c} w D' for some D, D' ̂  0,
and we arrive at the same contradiction as before. Thus no such c exists, and our
claim is established.

We have just shown that for each beB there is a greatest ceC (with respect to
the ordering on C) such that f'\A x{b})nix{c}#0, and we now define a map
g: B->C by letting g(b) be this c. It is clear from this definition that if we take
b0, bxeB with b0 < bx, then g(b0) ̂  g(&i); but it is not necessarily true that g(b0) < g(b^).
Nevertheless, the function g has the following property:

If b0,bxeB are such that b0<bx and g(b0) = gfa), then
(1) there is no beB with bo<b<b±;
(2) there is an interval I(b0) of B such that

( # ) (i) o(I(b0)) = co*,
(ii) b0 is the greatest element of /(£>„) (with respect to the ordering on B),

(iii) for any d0, dx e I(b0), if d0 < dx then g(dQ) < g(dj).
To demonstrate this, we take b0,bxeB and suppose that b0<bt and g(b0) = g(b^).

It follows at once from the definition of g that f" (Ax {bj})^ Ax {gib^}, and so
from Theorem 1, the assumption that g(b0) = gibj), and the fact that A is rigid, we
conclude that f"(A x {bj) is a (nonempty) proper final segment of A xfe^)}. But
now a second application of Theorem 1 tells us that we cannot have

whence it follows that g(Z»x) (—g(b0)) has an immediate predecessor cxeC with
f\Ax{b<$)nAx{c3=t&^f"(Ax{b<$)nAx{g(b-d}. If now we had beB with
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[5] Rigidity in order-types 207

bo<b< bx, then f"(Ax {b}) would be a nonempty, nonfinal segment of A x
which by Theorem 1 is impossible. Thus we have established (1) of (#) .

We have seen that g(b0) has an immediate predecessor ^ e C and that
f"{Ax{b0})nAx{cj^0. But since f\Ax{b0})nAx{g(b0)}¥= 0, we know from
Theorem 1 that we cannot have A x {cJS/%/4 x {b0}). Since/is an isomorphism,
there must exist dx e B with d1 < b0 and f"{A x {dy}) nAx {cj ¥= 0 . The same argu-
ment as before shows that dx immediately precedes b0 in B, and it is clear that

A routine induction argument now tells us that there exist elements dn of B
and elements cn of C such that for each w^ 1, dn+1 immediately precedes dn,cn+1

immediately precedes cn, and g(dn) = cn. Setting I(b0) = {bo}u{dn; n^ 1}, we see
that (2) of ( # ) is satisfied.

We define a map h: B-+C as follows. Take beB; there are two possibilities.
(I) We have bel(bo) for some bosB such that b0 has an immediate successor

bxeB with g(b0) = g(bj). Then we have seen that b has an immediate predecessor
b' eB, and we put h(b) = g(b').

(II) We have bel(bo) for no such boeB. In this case we put h(b) = g(b).
Obviously h is order-preserving. Thus if h is surjective, then we will have B~ C,

the desired result. Assume for the moment that g is surjective, take ceC, and let
b e B be such that g(b) = c. Then either h(b) = COT else b has an immediate successor
b°eB and h(b°) = g(b) = c.

It simply remains to show that g is surjective. Take c e C: since / is an iso-
morphism, there must exist beB such that f"(A x{b})nAx{c}^=0, and we have
seen that there are at most two such b. Let b° be the least such b; then g(b°) = c.

Unlike the additive case, the converse to Theorem 4 is not necessarily true.
For it is fairly obvious that if a is any order-type with CT# 1, then a>*cr^a>*.
However, it is shown in Morel (1959) that an order-type tp is multiplicatively left-
cancellable if and only if tfiT^ifi for every T / 1.

THEOREM 5. For all <x, £ e F we have a/3 e F.

PROOF. Take a,jSeF and let A,B be representative sets for a,/J respectively.
Assume that a)3 j a/3. Thus for some nonempty set C we have an isomorphism
f: AxB~AxBvC. By considering the initial segment f~\A xB) of AxB, we
see that we must have a/3 = <x8 + fj, for some order-types S, p with S jj3, p[a..
If [i = 0, then we would have a/3 = aS, whence by Theorem 4 we would obtain the
contradiction /? = S j /?. Thus we must have /x ^ 0, and we now use this fact to
show that B has a final segment of type <o*, once again contradicting the hypothesis
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Since a/3 = aS+/x, it follows that AxB has a final segment M of type /x. But
01 /x \. a, and so Theorem 1 tells us that B has a final element b0, for otherwise
we would have M = Z)o w D±w D2 for some sets Dt with DX~A and D2 ŷ  0.

Suppose now that we have shown that B = Bn\jCn for some sets Bn,Cn with
o(Cn) = M, where n is some positive integer. Put 6 = o(Bn); then we have
ad+an = aj3 = aS+/i. From the rigidity of a and Theorem 1 we conclude
that S = T+(M — 1) for some T. Thus a0+a« = aT+(a(w — l)+(i), and since
a(n— I)+ii I an, we can repeat the above argument and show that Bn has a final
element bn.

By induction therefore, it follows that for each n> 1, we have £ = B B u C , for
some sets Bn, Cn with o(Cn) = n, and from this it is easy to see that B has a final
segment of type co*.

We wish now to turn to what we consider to be one of the most interesting
features of the class F; that it is possible to give a natural definition of a limit
operation and show that T is closed under this operation.

DEFINITION 4. Let {«f}iej be a family of order-types, where the index set / is
ordered. We say that {aj}i6/ is increasing if oj = a.} for all ijel with i^j, and in
this case we define a to be the limit of {aJieZ if a is the unique order-type satisfying
the following:

(1) for each is I we have â  — a;
(2) for any order-type jS, if /? \ a then ^ — oq for some is I.
If the limit of {ai}fe/ exists, then it is denoted by

It is the uniqueness restriction in the above definition that causes the trouble.
As will become apparent in the proof of the following theorem, for any increasing
family of order-types there will be order-types satisfying conditions (1) and (2)
above; it is not usually the case, however, that there is only one such order-type.
For example, if we take / such that o(/) = w and <% = -q (the order-type of the
rationals) for each is I, then it is readily seen that both -q and TJ +1 satisfy (1) and (2).

With the aid of the Axiom of Choice, however, we can show that limits of
increasing families of rigid order-types exist and are themselves rigid.

* THEOREM 6. Let {a.^ieI be an increasing family of rigid order-types. Then \iraieI a4

exists and is rigid.

PROOF. Using Choice, we choose for each is I a set Ai with o(At) = a{, and for
each pair (ij)slxl with /< / we lety^: A^Aj be a monomorphism. Without
loss of generality we may assume the At to be pairwise disjoint, and by using
Choice again we may also assume thatfjkfij ~fik for all i,j,ksl with
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[7] Rigidity in order-types 209

We now put A0 = \J {At; iel}, and define an equivalence relation ~ on A0 by
setting x~y if (l)x = y, (2)xeAi,yeAj{orsomei,jeIv/ithi<jandfii(x) = y, or
(3) xeAit yeAj for some i, jeI With j<i and/^(j>) = x. It is easily checked that
~ is an equivalence relation, and we let A be the quotient structure A°/~. Take
[x], [y] e A; then there exists iel and x', y' e A{ such that x' e [x], y' e [y], and we
set [JC]^[J>] if x'^y'. It is routine to show that < is a well-defined order-relation
on A, and with respect to this order-relation we set a = o(A) and claim that a. is
the required order-type.

Before demonstrating this, we observe that the correspondence JCI-*-[;C] defines
for each iel a monomorphism/^: At-*A, and that for each LF]G^4 there exists
iel and yeAt such that [y] =fi(y). Therefore we may assume without loss of
generality that each At is an initial segment of A and that A = (J {Ai; iel}. We
are of course now relinquishing our previous assumption that the At were pairwise
disjoint.

We show firstly that a is rigid. Suppose not; then there is a proper initial segment
B of A such that B~A. Since B is proper in A, we must have B^At for some iel.
But because B~ A ,there exists an initial segment CofB with C~ At. It is easily seen
that C must be proper in At ,which contradicts the rigidity of At. Thus a. must be
rigid.

From the above observation and assumption, it is clear that a satisfies (1) and (2)
of Definition 4, and so it remains to show that a is unique in this respect.

Suppose there is an order-type a' ̂  a satisfying (1) and (2), and let A' be a
representative set for a. For each iel we have a monomorphism A^A', and so
the Axiom of Choice gives us a monomorphism A^-A'. Thus a j a ' , and in a
similar manner we can show that a! \ a.. Hence a j a, which is a contradiction.

The above limit operation has some of the usual properties with respect to
addition and multiplication.

THEOREM 7. Let {ai}ieI be an increasing family of rigid order-types, put
oc = lim^jcxi, and take any jSe F. Then W + oci}ieI and {/Jaf}ieI are increasing and
have respective limits )3 + a and jSa.

PROOF. It is clear that {j8 + a j i e 7 and {p<xi}ieI are increasing families of rigid
order-types, and so we concentrate on determining their limits. First of all we have
jS + ctfi/J + a for each iel because ô  ̂  a. Now take yj/J + a. If y —j3, then
obviously y ^ j3+otj for some i e I, and so we may assume that j3 j y \. )3+a, whence
y = jS+8 for some S j a, and once again it is clear that y ± j3+c^ for some iel.
Thus j8 + a = lim^jjS + a*.

We turn to multiplication, and since /Ja clearly satisfies (1) of Definition 4, we
take y j jSa. Then y = fi8 + fi for some S j a and some fj. \ j8. If /A = 0, then it is
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immediate that y = fi^ for some iel, and so we may assume that fi^O, whence
8 +1 i a. If 8 +11 a, then again the result is clear, and so there only remains the
case 8 +1 = a. Now since 8 = ĉ  for some / e / and a = l im^c^, we must have
a = <Xj for somey e /, and we have once more attained our goal. Thus j8a = lim^ e x jSa,-.

We remark that a definition of the limit of a decreasing family of order-types
can also be formulated, although it does not correspond exactly to Definition 4.
The situation here, however, is not as satisfactory as the one discussed above, as
far as the class F is concerned anyway. For in the first place limits of decreasing
families of rigid order-types do not always exist (again it is the uniqueness condition
that gives trouble), and in the second place even when they do exist, they are not
necessarily rigid.

In the theory of ordinal numbers the prime components play an interesting and
often very useful role: we recall that an ordinal a is called a "prime component"
if a > 0 and /?+a = a for every /?<a. Since F can be regarded as a fairly natural
extension of the class of ordinals, it is plausible to ask whether the concept of prime
component can be extended to F in any manner that yields interesting results.
The remainder of this paper is mainly devoted to this question.

DEFINITION 5. A rigid order-type a is said to be primitive if fi+oc = a. for every
rigid order-type fi such that £ j a.

Since every prime component is obviously primitive, the concept of a primitive
order-type is indeed an extension of that of a prime component. Moreover, every
atomic order-type is primitive, and so the extension is nontrivial. Our aim is to
show that every primitive order-type can be expressed as a product fi8, where
either (i) p is atomic and 8 is a prime component, or (ii) y. is fully regressive and 8
is continuous, fully rigid, and such that if y j S and 1 - y*, then 8 = yp for some
prime component p. We do not really believe that an order-type having the
properties attributed to S in (ii) can exist, but despite fairly strenuous efforts, we
have been unable to back up our belief with a formal proof.

We approach the result given above via a decomposition theorem that is in the
style of Theorem 3.1 of Morel (1959), but which does not seem to be derivable
from it.

THEOREM 8. Let A be a nonempty set. There is an ordered family {A^ieI ofpairwise
disjoint intervals of A such that

(1) A = v{Ai;ieI};
(2) for each iel, At is either atomic or fully regressive;
(3) for any interval B of A, ifB is either atomic or fully regressive, then 5 g Aifor

some iel.
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[9] Rigidity in order-types 211

eJ is a second such decomposition of A, then there is an isomorphism/: I~J
such that At = A^H)for each iel. Finally, ifJ is some nonempty initial segment of I
such that either J has no last element or else J = {iel; i<i0} for some i°el, then
w {Aj;jeJ} is rigid.

PROOF. Take any xeA. We define subsets S(x), U(x), T(x) of A by:

S(x) = {yeA;y<x};
U(x) = U {S^A; S is a rigid initial segment of S(x)};
T(x) = {yeA;U(y)=U(x)}.

It is clear that S(x) and U(x) are both initial segments of A; moreover, from
* Theorem 6 we see that U(x) is either empty or rigid (an analysis of the proof of
* Theorem 6 shows that the Axiom of Choice is not used here). We claim that
T(x) is an interval of A, that T(x) is either atomic or fully regressive, and that for
any a, be A, either T(a) = T(b) or T(a)nT(b) = 0.

Firstly, take a,b,ceA with a^b^c, and suppose that a,ceT{x). Obviously
£/(a)£ U{b)c U(c), and as U(a) = U(x) = U(c), we conclude that U(b) = U(x),
tha.tis,beT(x).

Let S be any nonempty proper initial segment of T(x): we will show that S is
regressive, thereby proving that T(x) is either atomic or fully regressive. Now
U(x) n T(x) = 0 and U(x) w T(x) is an initial segment of A. For if y e T(x), then
U{y) = {/(x), whence U(x) S £(>>), and so j> £ £/(x): hence U(x) n T(x) = 0 . Take j ,
ze^f with yeT(x) and z^y. Then either zeT(x) or C/(z)$ t/0>) = U{x), which
yields z e U(x). Since it is clear that for any y e T(x) and z G t/(x) we have z^y, this
shows that U{x) u r(^c) is an initial segment of A. Now if S were rigid, then
V = i7(x) w S would be a rigid initial segment of A having U(x) as a proper
initial segment. However, since S is proper in T(x), there must exist y e T{x) such
that 5£ 5(j). Therefore F is a rigid initial segment of S(y), and so we conclude
that U(x)4p F s t/O) = U{x), a contradiction. Thus S is regressive.

Finally, take a,beA, and suppose that yeT(a)nT(b) for some j>£v4. Then
C/(a) = U(y) = C/(6), whence it follows easily that T(a) = T(b).

Put I = {T(x); xeA}; since the T(x) are pairwise disjoint intervals of A, the
ordering on A induces an ordering on I. If we now put At = i for each iel, we
obtain an ordered family {A^ieI of pairwise disjoint intervals of A satisfying
(1) and (2).

Let B be a nonempty interval of A, and suppose that B is either atomic or fully
regressive; we wish to show that BzAt for some iel. There is of course aeA
such that BnT(a) ^ 0 , and we claim that T(a) is the appropriate At.

Suppose that it is not the case that B^T(q). Then there exists beB such that
either x < b for all x e T(a), or x > b for all x e T(a). Consider the first possibility.
We must have U(x)^U(b) for all xeT(a), and so T(a)c U{b)Z S(b), whence it
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follows that Bn U(b) is a proper rigid initial segment of B, contradicting our
assumption on B.

We must therefore have x>b for all xeT(a); since it has been shown that
U(a) w T(a) is an initial segment of A, we conclude that beU(a). Thus Bn U(a)
is a proper rigid initial segment of B, once again contradicting our assumption on B.
Thus B^T(a). This shows that {A^ieI satisfies (3).

Let {AV}jeJ be a second decomposition of A satisfying (l)-(3). Then (3) tells us
that for each iel there exists f(i)eJ such that A{ = A°fH), and clearly this defines
an isomorphism/: / ~ / .

Finally, let / be a nonempty initial segment of / such that either J has no last
element, or else / = {iel; i<i°} for some i°el. Put B = (J {At; ieJ}, and suppose
firstly that J has no last element. It follows that for each ieJ we have A{^ U(b)
for some beB, whence * Theorem 6 tells us that B is rigid (again no use of Choice
is made here).

We may thus assume that / has a final element j°, whence it follows from our
assumption on J that j° has an immediate successor i° in /. We claim that Ap is
atomic. For if Ap is fully regressive, then for any yeAp the interval Cy defined by
Cy = Aj-o^{xeAfo; x^y} is either atomic or fully regressive, and so by (3) we
have Cy^At for some iel. This of course is absurd, and so Ap is atomic. But now
B = U(x) for any xeAp, and so B is rigid.

We remark at this stage that if A and {A^isI are as in Theorem 8 and B is any
nonempty interval or segment of A, then {BnAjj^j is the corresponding decompo-
sition of B, where J = {iel; BnAt^ 0}. The proof of this is routine.

THEOREM 9. Let a be a primitive order-type, and let fi = a be rigid. Then a = j8p
for some prime component p.

PROOF. Put T = {T; T is a prime component and fir ^ a}. Then 1 e Y and so T =£ 0.
At the same time it is clear that Y is a set of ordinals, and so /> = sup Y is a well-
defined ordinal, which is itself easily seen to be a prime component. By * Theorem 7
we have fip = limT6T/?T, and since /?r = <x for every reY, it follows that pp i a.
Now if ftp I a, then we must have fip+a. = a, and a simple induction argument
shows that fipn + a = a, whence fipn j a, for every n < w. Using limits again, we
obtain fipa> ± a, which means that pco e Y, contradicting the definition of p. Hence

* THEOREM 10. Let a be a rigid order-type. Then a is primitive if and only if a =
for some order-types \i, S such that
either (1) /x. is atomic and 8 is a prime component,
or (2) /A is fully regressive and

(a) 8 is continuous,
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(b) S is fully rigid,
(c) ify\8 is nonzero and such that ~(1 — y*), then 8 = yp for some

prime component p.

PROOF. Suppose that a = /xS has the decomposition given in (1), and let jS j a be
rigid. Then jS = fiip+e for some \ji< 8 and some e j . / * . Now since /x is atomic, we
cannot have e ^ 0, for otherwise e and hence jS would be regressive. Thus j3 = fu/i,
and so we have )3+a = fiip+fj.8 = (i(ip+ S) = /u,S = a.

Now suppose that a = /x8 has the decomposition given in (2), and let /} | 8 be
rigid. Once again we have j3 = /x</r+e for some tp \. 8 and some s^fi, and since /x
is this time fully regressive, it follows as above that e = 0. Moreover, we cannot
have 1 =*= ip*, since otherwise there would be t,\ip such that j8 = /x£+/n, which
implies that jS is regressive. This means that 8 ~ tfip for some prime component p,
whence /?+« = j9+j9p = /?p = a, since p> 1.

We turn now to the converse, assume that <x is primitive, and let {<Xi}iei be the
decomposition of a corresponding to Theorem 8. Our first aim is to show that /
has a first element and that af = a,- for all ijel. To this end we may of course
assume that | / | > 1 .

Choose any i°el such that i<i° for some iel, and put j8 = S W ; i<i0}; then
Theorem 8 tells us that j8 is rigid, and so by * Theorem 9 we have a = /?/> for some
prime component p. Since jS^ a, we must have />> 1. Put 7° = {/e/; />/0}, and
y = 2{«i; ie/0}. From the remark following Theorem 8 we see that {aJfsJo is
the decomposition of y corresponding to Theorem 8. But j8+a = a = jS+y, and so
a = y. Thus by Theorem 8 there is an isomorphism 7~/°; since 7° has a first
element, it follows that 7 has one too, and we let this be i'.

We now show that ai0 = a^; since i° was chosen arbitrarily in 7— {*"}, this will
establish our claim. Let A, C be representative sets for a, y respectively, and let
{Ai}ieI, {Ci}ieIo be the respective decompositions of A,C given by Theorem 8.
We know that there is an isomorphism/: A~ C, and so by (3) of Theorem 8 we
see that / " ^ £ Qo. Similarly we obtain f~l Qo£ Av, and so v4f,~Qo, whence
O ^ = Ojo.

We thus see (using Choice) that a = fi8 for some order-types /*, S, where n is
either atomic or fully regressive. If /u. is atomic, then by * Theorem 9 there is some
prime component p such that a = \x,p, and from Theorem 4 we conclude that 8 = p.
Hence we have obtained the decomposition given by (1).

Assume that fx. is fully regressive, let M, D be representative sets for fi, 8
respectively, and consider Mx D. Without loss of generality we may assume that

(1) D is dense. Take do,d1eD and suppose that d0 immediately precedes d^.
Then iV = M x {d^dj is a fully regressive interval of A, and so by (3) of Theorem 8
we must have NzMx{d} for some deD. But this is absurd.
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(2) D is continuous. Let E be a nonempty proper initial segment of D, and;
suppose that E has no last element. By Theorem 8, Mx E is a rigid initial segment
of A, and of course A ¥<MxE. Thus by * Theorem 9 we have a = o(MxE)fi
for some prime component p> 1. The remark following Theorem 8 tells us that;
M x (D—E) is the decomposition of A — (M x E) given by Theorem 8; furthermore,
from a = o(M xE)p and p > 1 it follows that A~A-{MxE). Therefore D-E~D.
However, D~I, and we have seen that / has a first element. Thus D—E has a first
element.

(3) D is fully rigid. Let £ be a nonempty initial segment of D. Since D is
continuous, either E has no last element or else E = £°u{d} for some deD and
some initial segment E° of D having no last element. Clearly in this latter case E
is rigid if E° is, and so it suffices to prove E rigid under the assumption that E has
no last element. But under this assumption M x E is rigid, by Theorem 8, and it
follows at once that E is also rigid.

Now let E be a nonempty initial segment of D without last element. As usual
MxE is rigid and A~(MxE)xR for some set R such that o{R) is a prime
component. It is easy to see, however, that Mx(ExR) is a decomposition of Y4
satisfying the conditions of Theorem 8, and so we must have D~LxR.

This concludes the proof of our theorem.

COROLLARY. Let a be a fully rigid order-type. Then a. is a primitive if and only if
a. is a prime component.

PROOF. Suppose that a is primitive, and let a. = p.8 be the decomposition given
by * Theorem 10. We know that /x is either atomic or fully regressive, and so if
/x 7^1, there exist e, <f> with e regressive and e+<f> = /z. Since S ^ 0, there exist fi,y
such that 8 = j8+1 +y, and we have a = fj,p+e+<j>+[iy. But of course /ijS+e is
regressive, contradicting the fact that a is fully rigid. Hence fi = 1, whence S is a
prime component and a = 8.

We observe that in the first part of the proof of * Theorem 10, only property (c)
was used to show that if a had the decomposition (2), then a was primitive. The
trivial case in which p. is any fully regressive order-type and 8 = 1 shows that the
assumption that a is rigid is essential in the proof of primitivity. This contrasts
with the situation in (1), for clearly if /u. is atomic and S is a prime component, then
fi8 is rigid and hence primitive.

With the exception of the case 8 = I, we have thus far been unable to produce
any order-type satisfying (a), (b), (c); on the other hand, all our attempts to prove
that such order-types do not exist have ended in equal failure. There are of course
rigid continuous order-types (other than 1), the simplest being perhaps (1 +A)o>1,
where A is the order-type of the reals. However, the construction of a nontrivial
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fully rigid continuous order-type in the presence of the Axiom of Choice does not
appear to be a particularly simple task. (Without Choice it is a different matter,
for clearly every ordered medial set is fully rigid—see Hickman, 1975.)

The author would like to express his thanks to the referee for pointing out many
misprints and for suggesting improvements in some of the proofs. He would also
like to thank an unfortunately anonymous correspondent for correcting several
errors that occurred in a prototype of this paper.
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