ON A COMBINATORIAL PROBLEM IN NUMBER THEORY

Bernt Lindström

(received October 17, 1964)

1. Introduction and statement of results. Given an integer $k \ge 2$ and a finite set M of rational integers. Let v_i (i = 1, 2, ..., n) be m-dimensional (column-)vectors with all components from M and such that the k^n sums

(1.1)
$$\sum_{i=1}^{n} \varepsilon_{i} v_{i} (\varepsilon_{i} = 0, 1, 2, ..., k-1)$$

are all different. Then we shall say that $\{v_1, v_2, \ldots, v_n\}$ is a detecting set of vectors.

Let a be the maximum of absolute values of the elements in M. Then the components of the sums (1.1) lie between -akn and akn. The number of m-dimensional vectors with all components in this interval is less than $(2akn)^m$. Hence

(1.2)
$$k^{n-m} < (2an)^m$$
.

For m fixed n is bounded above. Let $F_k(m)$ be the maximal number of m-dimensional vectors forming a detecting set. Similarly, m is bounded below for n fixed. Let $f_k(n)$ be the minimal m.

In the special case k = 2, $M = \{0,1\}$ the problem of determining $f_2(n)$ is equivalent to the following weighing problem: what is the minimal number of weighings on an accurate scale to determine all false coins in a set of n coins,

Canad. Math. Bull. vol. 8, no. 4, June 1965

if false coins weigh a and correct ones b $(a \neq b)$? The choice of coins for a weighing must not depend on results of previous weighings.

This weighing problem was first proposed by H.S. Shapiro in [8] for n = 5. N.J. Fine [6] proved that $f_2(5) = 4$. For large n, $f_2(n)$ is estimated in [2], [5], [7], [9]. If $M = \{0, 1\}$ or $\{-1, 1\}$, then

$$\lim_{n \to \infty} \frac{f_2(n)\log n}{n} = \log 4 .$$

This was proved in [7]. For k > 2 the problem to estimate $f_k(n)$ was first studied in [2] by D.G. Cantor.

The purpose of this note is to introduce a new method to construct detecting sets of vectors. The method is of more general scope than that used in [7]. A feature of the construction is the use of sets of integers d_i (i = 1, 2, ..., h), $1 \le d_i \le x$, such that the sums

(1.3)
$$\sum_{i=1}^{n} \varepsilon_{i} d_{i} (\varepsilon_{i} = 0, 1, 2, ..., k-1)$$

are all different (i.e. detecting sets of integers). A simple example is $d_i = k^{i-1}$. Let $h_k(x)$ be the maximum of h. $h_2(x)$ was studied by P. Erdős and L. Moser in [4]. It is easy to see that

(1.4)
$$h_2(2^{n-1}) \ge n$$
, $h_k(2^{n-1}) > \frac{n-1}{\log_2 k}$.

Professor R.K. Guy, Delhi, has kindly sent me a detecting set of 23 integers $< 2^{21}$, i.e.

(1.5)
$$h_2(2^{21}) \ge 23$$
.

The smallest number in Professor Guy's set is 1042698, and the largest 2094203.

By the aid of (1.4) we shall prove the following

THEOREM 1. If $M = \{0,1\}$ then $F_2(m) \ge A(m)$ and $F_k(m) > \frac{A(m) - m}{\log_2 k}$, where A(m) is the number of 1's in the binary representation of the first m positive integers.

I conjecture that $F_2(m) = A(m)$ for m = 1, 2, ..., 15at least. It would follow that $f_2(A(m)) = m$ for m = 1, 2, ..., 15. On the other hand one can prove, by the aid of (1.5), that

(1.6) $F_2(m) > A(m)$ for $m \ge 2^{22}$.

The following asymptotic formula was first proved by R. Bellman and H. N. Shapiro in [1] (for another proof see [3]),

(1.7)
$$A(m) \sim \frac{1}{2} m \log_2 m$$
, as $m \to \infty$.

By the aid of (1.7) and Theorem 1 we shall prove

THEOREM 2. For any finite set of integers M with $|M| \ge 2$ and any integer $k \ge 2$,

$$\lim_{n \to \infty} \frac{f_k(n)\log_k n}{n} = 2$$

For the proof of Theorem 2 we shall also need the fact that

$$(1.8) kn-m \le (ca)m nm/2$$

(c is an absolute constant < 4e),

if there is a detecting set of n m-dimensional vectors with

all components in M. In the special case k = 2, m = 1, M = 1, 2, ..., x, we get by (1.8)

(1.9)
$$2^{n-1}/\sqrt{n} \le cx \text{ for } n = h_2(x)$$
.

The inequality (1.9) was proved by P. Erdős and L. Moser in [4]. (1.8) has been proved by L. Moser in the case k = 2, a = 1 (unpublished).

There is a class of detecting sets of vectors, which could be characterized as residue-class representing. A set in this class is obtained as follows. Let v_1, v_2, \ldots, v_m be m-dimensional independent vectors with all components from M. They generate a sublattice \wedge in the lattice \mathcal{K} of all m-dimensional vectors with integral components. Assume that v_{m+1}, \ldots, v_n have all components in M, and that the sums

$$\sum_{i=m+1}^{n} \varepsilon_{i} v_{i} (\varepsilon_{i} = 0, 1, \dots, k-1)$$

are incongruent modulo Λ . Then $\{v_1, v_2, \ldots, v_n\}$ is a detecting set. For example, it is easy to see that the detecting sets in [7] and [9] are of the residue-class representing type.

By a lemma in geometric number theory, the number of residue-classes in \mathcal{K} modulo Λ is $|\det(v_1, v_2, \dots, v_m)|$. It follows that

$$(1.10) kn-m \leq |det(v_1, v_2, \dots, v_m)|$$

and, by an application of Hadamard's inequality,

(1.11)
$$k^{n-m} \le a^m m^{m/2}$$

If k=2 and $M = \{0,1\}$ one can prove the existence of detecting sets of the residue-class representing type for every integer m > 3 and with n = A(m) for which equality holds in

(1.10). Below will be given a table with references to previous detecting sets of this type.

One possible method to find detecting sets with $n \ge A(m)$ is to choose v_1, v_2, \ldots, v_m such that $det(v_1, v_2, \ldots, v_m)$ is as large as possible and then try to find v_{m+1}, \ldots, v_n This method will be illustrated by an example in section 3. Table of the function A(m) with references to detecting sets. m 3 4 5 6 7 8 9 10 11 12 13 14 15 A(m) 4 5 7 9 12 13 15 17 20 22 25 28 32 7

2. Proof of Theorem 1. Any positive integer s can be uniquely written in the form

9

(2.1)
$$s = 2^{n_1} + 2^{n_2} + \ldots + 2^{n_{\nu}},$$

7

Ref.

9

69

where $n_1 < n_2 < \ldots < n_n$ are non-negative integers. We put

$$S = \{n_1, n_2, ..., n_{\nu}\}$$

and write $s = (S)_2$. We then put $0 = (\emptyset)_2$, where \emptyset is the empty set. Let $\alpha(s) = \nu$ for s > 0 and $\alpha(0) = 0$. For any two non-negative integers $s = (S)_2$ and $t = (T)_2$ we define $s \cap t = (S \cap T)_2$ and write $s \subset t$ if $S \subset T$. Now we prove the

LEMMA. Let b_0, b_1, \ldots, b_n be a sequence of numbers and r an integer ≥ 0 such that b = b for sor s s = 0, 1, 2, ..., n. Then

$$\Sigma (-1)^{\alpha(s)} b_s = 0 \text{ if } t \not\subset r, \ 1 \leq t \leq n.$$

<u>Proof of the lemma.</u> Since $t \notin r$ there are integers u and v, $u = 2^{v}$, such that $u \subset t$ but $u \notin r$. If $s \subset t - u$ then $(s+u) \cap r = s \cap r$ and so $b_{s+u} = b_s$ by the condition $b_{s \cap r} = b_s$. Since $\alpha(s+u) = \alpha(s) + 1$ we get

$$\sum_{s \subset t} (-1)^{\alpha(s)} b_s = \sum_{s \subset t-u} (-1)^{\alpha(s)} (b_s - b_{s+u}) = 0,$$

and the lemma is proved.

We shall define a class of matrices D_m with m rows (m = 1, 2, ...), such that if v_i (i = 1, 2, ..., n) are the columns in D_m then $\{v_1, v_2, ..., v_n\}$ is a detecting set, (M = {0, 1}).

For any r in $1 \le r \le m$ let $d_1^{(r)}, d_2^{(r)}, \ldots, d_h^{(r)}$ be a detecting set of integers with $1 \le d_j^{(r)} \le 2^{\alpha(r)-1}$, $j = 1, 2, \ldots, h$, and $h = h^{(r)} \le h_k(2^{\alpha(r)-1})$. Since $\alpha(i)$ is an odd integer for $2^{\alpha(r)-1}$ integers i, $i \subset r$, we can determine $d_{ij}^{(r)} = 0$ or 1 for $i \subset r$ such that

(2.2)
$$\sum_{i \subset r} (-1)^{\alpha(i)+1} d_{ij}^{(r)} = d_{j}^{(r)}, \ d_{0j}^{(r)} = 0$$
for $j = 1, 2, ..., h^{(r)}$.

For $i \not\subset r$ we then define $d_{ij}^{(r)} = d_{i\cap r,j}^{(r)}$ and find by the Lemma

(2.3)
$$\sum_{i \subset t} (-1)^{\alpha(i)+1} d_{ij}^{(r)} = 0 \text{ for } r < t \le n.$$

Define a matrix $D_m^{(r)} = (d_{ij}^{(r)})$, i = 1, 2, ..., m; $j = 1, 2, ..., h^{(r)}$, and put $D_m = (D_m^{(1)}, D_m^{(2)}, ..., D_m^{(m)})$. We shall prove that the column vectors in D_m are a detecting set.

Let x and y (t = 1, 2, ..., m) be column vectors of dimension $h^{(t)}$, with all components from the set $\{0, 1, 2, ..., k-1\}$. Suppose that

(2.4)
$$\sum_{t=1}^{m} D_{m}^{(t)} x_{t} = \sum_{t=1}^{m} D_{m}^{(t)} y_{t}.$$

We shall prove $x_t = y_t$ for t = 1, 2, ..., m. If this is not true let r be the largest t for which $x_t \neq y_t$. If r < m we subtract the terms with t > r from both members of (2.4). This is allowed since $x_t = y_t$ for t > r. Then we multiply the t^{th} components in both members by $(-1)^{\alpha(i)+1}$ and add for all i with $i \subset r$. By (2.2) and (2.3), with t and r interchanged, we get

(2.5)
$$(d_1^{(r)}, d_2^{(r)}, \ldots, d_h^{(r)}) \mathbf{x}_r = (d_1^{(r)}, d_2^{(r)}, \ldots, d_h^{(r)}) \mathbf{y}_r$$
.

The $d_j^{(r)}$ $(j = 1, 2, ..., h^{(r)})$ form a detecting set, hence $x_r = y_r$. But this contradicts the assumption, and we have proved that the column vectors in D_m form a detecting set.

If we choose $h^{(r)} = h_k(2^{\alpha(r)-1})$, we find by (1.4) for the number n of columns in D_m

$$n = \sum_{i=1}^{m} h_{k}(2^{\alpha(i)-1}) > \sum_{i=1}^{m} \frac{\alpha(i)-1}{\log_{2} k} = \frac{A(m)-m}{\log_{2} k}$$

The second inequality in Theorem 1 is proved. The first is proved similarly.

If we take $d_j^{(r)} = k^{j-1}$ we get a detecting set of the residueclass representing type. For in this case (2.5) implies $x_r = y_r$ even if the hth components are allowed to take any integer value. It follows that the sums (1.1) of column vectors in D take different values even if m of the ε_i are allowed to take any integer value. This implies that the column vectors form a detecting set of the residue-class representing type.

Consider the case k = 2. The number of columns in D_m is A(m). Those columns in D_m which generate Λ form a matrix $B_m = (b_{ij})$, where b_i is given by the formula

(2.6)
$$b_{ij} = \frac{1}{2}((-1)^{\alpha(i \cap j)+1} + 1), i, j = 1, 2, ..., m$$

We can prove that

(2.7)
$$|\det B_m| = 2^{A(m)-m}$$

Hence equality holds in (1.10).

In order to prove (2.7), we note that

(2.8)
$$\sum_{i \subset m} (-1)^{\alpha(i)} b_{ij} = \begin{cases} 0 \text{ for } j < m, \\ -2^{\alpha(m)-1} \text{ for } j = m, \end{cases}$$

by (2.6) and our Lemma. Multiply the last row in $\underset{m}{\text{B}}$ by (-1)^{$\alpha(m)$} and add to this the ith multiplied by (-1)^{$\alpha(i)$}, if i \subset m. We get

$$(-1)^{\alpha(m)}(\det B_m) = -2^{\alpha(m)-1}(\det B_{m-1}),$$

and then (2.7) easily follows.

3. Two examples.

Example 1. We shall illustrate the method in section 2 by proving that the columns in the matrix D_6 below form a detecting set, (k = 2).

$$\mathbf{r}: \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{1}+\mathbf{2} \quad \mathbf{4} \quad \mathbf{1}+\mathbf{4} \quad \mathbf{2}+\mathbf{4} \quad \mathbf{i}: \quad (-\mathbf{1})^{\alpha(\mathbf{i})+\mathbf{1}}$$

$$D_{6} = \begin{pmatrix} \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \\ \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \\ \mathbf{1} + \mathbf{4} \quad \mathbf{1} \\ \mathbf{1} + \mathbf{4} \quad \mathbf{1} \\ \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{1} \quad \mathbf{1} + \mathbf{4} \quad \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} + \mathbf{4} \quad \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} + \mathbf{4} \quad \mathbf{1} \\ \mathbf{1}$$

The columns in D_6 are denoted v_1, v_2, \ldots, v_9 . We shall prove that the sums $\sum_{i=1}^{9} \varepsilon_i v_i, \varepsilon_i = 0 \text{ or } 1$, are all different. Let x_1, x_2, \ldots, x_9 and y_1, y_2, \ldots, y_9 be 0 or 1. Suppose that

Take the "sum" of rows with $i \subset 2+4$: row 2 + row 4 - row(2+4). We get

$$x_8 + 2x_9 = y_8 + 2y_9$$

and conclude that $x_8 = y_8$ and $x_9 = y_9$. Next take the "sum" of rows with $i \subset 1+4$: row 1 + row 4 - row (1+4). We get $x_6 + 2x_7 = y_6 + 2y_7$ and conclude that $x_6 = y_6$ and $x_7 = y_7$.

Now we prove $x_5 = y_5$. The 4th row is

 $x_5 + x_7 + x_9 = y_5 + y_7 + y_9$. We have already proved $x_7 = y_7$ and $x_9 = y_9$. It follows $x_5 = y_5$. Etc.

Example 2. k = 2, m = 6, $M = \{0, 1\}$. The maximum value of determinants of order 6 with all entries 0 or 1 is 9. The following matrix with determinant = 9 can be found¹

D =	(1	1	0 1 1 0 0	1	1	0	
	1	0	1	1	1	1	
	1	1	1	0	0	1	
	0	1	0	1	0	1	
	0	1	0	0	1	1	
	0	1	1	1	1	0	

We triangulate D by the operations: (i) add a multiple of one column to another column, (ii) two columns change places, (iii) the elements in a column are multiplied by -1. Then we get the following matrix:

Di		1	0	0	0	0	0)
	=	0	1	0	0	0	0
		0	0	1	0	0	0
		0	0	0	1	0	0
		0	0	0	0	1	0
		(-1	-2	- 6	- 5	- 5	9)

The columns in D and D' generate the same sublattice Λ in \mathcal{K} . Observe that the sums $\varepsilon_1 + 2\varepsilon_2 + 5\varepsilon_3$, $\varepsilon_i = 0$ or 1, are incongruent modulo 9. Then the following column vectors are incongruent modulo Λ :

cf. J. Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946), 427-434.

(0)		(0)		(0)	
0		1		0	
0		0		0	
0		0		1	
0		0		0	
1	,	0)	,	(0)	

These vectors and those in D form a detecting set of the residue-class representing type.

4. <u>Proof of Theorem 2</u>. First assume that $M = \{0, 1\}$. Put $f_k(n) = m$. Then $n > F_k(m-1) > (A(m-1) - m + 1)/\log_2 k$ by Theorem 1. The function $\log x/x$ is decreasing for x > e. Then we find for n sufficiently large

(4.1)
$$\frac{f_k(n)\log_k n}{n} < \frac{m\log_2 A(m-1)}{A(m-1)-m+1}.$$

Let $n \rightarrow \infty$. Then, by (1.2), $m \rightarrow \infty$. It follows by (4.1) and (1.7)

(4.2)
$$\limsup_{n \to \infty} \frac{f_k(n) \log_k n}{n} \le 2.$$

In order to prove (4.2) for an arbitrary M, we observe that if $\{v_1, v_2, \ldots, v_n\}, v_i = (a_{i1}, a_{i2}, \ldots, a_{im})$, is detecting, then also $\{v'_1, v'_2, \ldots, v'_n\}, v'_i = (ca_{i1}+b, ca_{i2}+b, \ldots, ca_{im}+b, b),$ $c \neq 0$, is detecting. Let a, $b \in M$, $a \neq b$. Put c = a-b. If the vectors v_i have all components in $\{0,1\}$, then the vectors v'_i have all components from M. The immediate conclusion is that $f_k(n)$ cannot increase by more than 1 (the vectors v'_i are (m+1)-dimensional) at the transition from $\{0,1\}$ to M. Thus (4.2) holds in the general case.

Next we want to prove

(4.3)
$$\lim_{n \to \infty} \inf \frac{f_k(n) \log_k n}{n} \ge 2.$$

The inequality (1.8) implies

$$\frac{f_{k}(n)\log_{k} n}{n} \ge \frac{2}{1 + O(1/\log n)}$$

Now we shall prove (1.8) by the method of L. Moser.

Let $\{v_1, v_2, \dots, v_n\}$ be a detecting set with $v_i = (a_{i1}, a_{i2}, \dots, a_{im})$ and all components from the set M. Let a denote the maximum of absolute values of the elements in M.

n

$$\Sigma = a_{ij} \epsilon = x_{j}$$
 for $j = 1, 2, ..., m$.
 $i = 1$

The k^n vectors

Put

$$(x_1, x_2, ..., x_m) = \sum_{i=1}^{n} \varepsilon_i v_i, \quad (\varepsilon_i = 0, 1, 2, ..., k-1),$$

are all distinct. Now we define the mean value operator E by

$$E = k^{-n} \sum_{\substack{k=1 \\ \Sigma \\ \epsilon_1 = 0 \\ \epsilon_2 = 0 \\ \epsilon_1 = 0 \\ \epsilon_2 = 0 \\ \epsilon_1 = 0$$

By simple calculations one can prove

$$E \varepsilon_i = \frac{1}{2}(k-1)$$
 and $Var \varepsilon_i = (k^2-1)/12$.

If we observe that

$$\operatorname{Var} x_{j} = \sum_{i=1}^{n} a_{ij}^{2} \operatorname{Var} \epsilon_{i} < k_{a}^{2} n/12,$$

we find

$$\sum_{j=1}^{m} E(2x_{j} - 2Ex_{j})^{2} < (1/3)k^{2}a^{2}mn$$

Hence, there are at least $\frac{1}{2}k^n$ vectors (x_1, x_2, \dots, x_m) for which

$$\sum_{j=1}^{m} (2x_j - 2Ex_j)^2 < (2/3)k^2 a^2 mn.$$

Since x and 2Ex are integers, we conclude that the inequality

$$\sum_{j=1}^{m} y_{j}^{2} < (2/3)k^{2}a^{2}mn = R^{2}$$

has at least $\frac{1}{2}k^n$ integer solutions. We can find an upper bound for the number of solutions, if we calculate the volume of an m-dimensional sphere with radius R: $(C_1 R^2/m)^{m/2} = (C_2 ka)^m n^{m/2}$ for suitable constants C_1 and C_2 . (1.8) follows immediately.

REFERENCES

- 1. R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340.
- D. G. Cantor, Determining a set from the cardinalities of its intersections with other sets, Canad. J. Math. 16 (1964), 94-97.

- G. F. Clements and B. Lindström, A sequence of (⁺1)determinants with large values, Proc. Amer. Math. Soc. June 1965.
- P. Erdös, Problems and results in additive number theory, Colloque sur la théorie des nombres, Bruxelles (1955), 127-137.
- 5. P. Erdös and A. Rényi, On two problems of information theory, Publ. Hung. Acad. Sci. 8 (1963), 241-254.
- N.J. Fine, Solution El 399, Amer. Math. Monthly 67 (1960), 697.
- B. Lindström, On a combinatory detection problem, Publ. Hung. Acad. Sci. 9 (1964), 195-207.
- H.S. Shapiro, Problem El 399, Amer. Math. Monthly 67 (1960) 82.
- 9. S. Söderberg and H.S. Shapiro, A combinatory detection problem, Amer. Math. Monthly 70 (1963), 1066-1070.

University of Stockholm