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1. Introduction and statement of r e su l t s . Given an 
integer k > 2 and a finite set M of rat ional in tegers . Let 
v. (i = 1, 2, . . . ,n) be m-dimensional (column-)vectors with al l 

l 

components from M and such that the k sums 

n 
(1.1) 2 e.v. (£. = 0 , 1 , 2 , . . . , k - l ) 

i = l x x 

are all different. Then we shall say that{v , v , . . . , v } is a 
1 2 n 

detecting set of vec to r s . 

Let a be the maximum of absolute values of the e lements 
in M. Then the components of the sums (1.1) lie between 
-akn and akn. The number of m-dimensional vectors with 
all components in this interval is less than (2akn) m . Hence 

(1.2) k n " m < ( 2 a n ) m . 

For m fixed n is bounded above. Let F, (m) be the max imal 
k 

number of m-dimensional vec tors forming a detecting set . 
Similar ly, m is bounded below for n fixed. Let f, (n) be 

the minimal m. 

In the special case k = 2, M = { 0, 1} the problem of 
determining f (n) is equivalent to the following weighing 

problem: what is the minimal number of weighings on an 
accurate scale to determine all false coins in a set of n coins , 
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if false coins weigh a and correct ones b (a ^ b)? The 

choice of coins for a weighing must not depend on results of 

previous weighings. 

This weighing problem was first proposed by H. S. Shapiro 
in [8] for n = 5. N.J. Fine [6] proved that f (5) = 4. For 

large n, f (n) is estimated in [2], [5], [7], [9]. If M = {0,1} 

or {-1,1}, then 

f (n)log n 
lim = log 4 . 

n 

This was proved in [7]. For k> Z the problem to estimate 
f, (n) was first studied in [2] by D. G. Cantor. 
k 

The purpose of this note is to introduce a new method to 
construct detecting sets of vectors. The method is of more 
general scope than that used in [7]. A feature of the construction 
is the use of sets of integers d (i = 1, 2, . . . , h), 1 < d < x, 

i — i — 
such that the sums 

(1. 3) 2 e.d (e = 0, 1,2,. . . ,k-l) 
i = l X i l 

are all different (i.e. detecting sets of integers). A simple 

example is d. =k . Let h (x) be the maximum of h. 
i k 

h (x) was studied by P. Erdos and L,. Moser in [4]. It is 

easy to see that 

/* AX , , -k
n"*l* , ^^^"lv n - 1 

( 1 . 4) h (2 ) > n , h (2 ) > 2V ' - ' k x ' log.k 

Professor R. K. Guy, Delhi, has kindly sent me a 
detecting set of 23 integers < 2 , i. e. 

(1.5) h 2 ( 2 2 l ) > 2 3 . 
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The s m a l l e s t number in P r o f e s s o r Guy' s set i s 1042698, and 
the l arges t 2094203. 

By the aid of (1. 4) we shall prove the fol lowing 

T H E O R E M ! . If M = { 0 , 1 } then F (m) > A(m) and 

F, (m) > - , where A(m) i s the number of 1' s in the 
k l o § 2 k 

binary representat ion of the f irst m posit ive i n t e g e r s . 

I conjecture that F ( m ) = A ( m ) for m = 1 , 2 , . . . , 1 5 

at l eas t . It would follow that f (A(m)) = m for m = 1, 2 , . . . , 15. 

On the other hand one can prove , by the aid of (1 . 5) , that 

(1 .6 ) F ( m ) > A ( m ) for m > 2 

The fol lowing asymptot ic formula was f i rs t proved by 
R. Be l lman and H . N . Shapiro in [1] (for another proof s e e [3]) , 

(1 .7 ) A ( m ) ^ - m l o g m , as m-* « . 

By the aid of (1. 7) and T h e o r e m 1 we shal l prove 

THEOREM 2. For any finite se t of in t egers M with 
| M | > 2 and any integer k_> 2, 

f k ( n ) 1 ° g k n 

Iim = 2 . 
n n-**oo 

For the proof of T h e o r e m 2 we shal l a l s o need the fact 
that 

. «» , n - m t %m m / 2 
(1 .8 ) k < (ca) n 

(c i s an absolute constant < 4e ) , 

if there i s a detect ing set of n m - d i m e n s i o n a l v e c t o r s with 
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all components in M. In the special case k = 2, m = 1, 
M = 1 ,2 , . . . , x, we get by (1. 8) 

(1.9) 2n~ / \ T n < c x for n = h (x) . 

The inequality ( i . 9) was proved by P. Erdôs and L,. Moser in 
[4]. (1. 8) has been proved by L. Moser in the case k = 2, 
a = 1 (unpublished). 

There is a c lass of detecting sets of vec to r s , which 
could be charac ter ized a s r e s idue -c l a s s represent ing. A set 
in this c lass is obtained as follows. Let v , v , . . . , v be 

1 2 m 
m-dimensional independent vec to rs with ail components from M. 
They generate a sublattice A in the lattice M of all m-dimensional 
vec tors with integral components. Assume that v , . . . , v 

m+1 n 
have all components in M, and that the sums 

n 
2 E.v. (e. = 0 , 1 , . . . , k - l ) 

i i i i=m+l 

a re incongruent modulo A . Then {v , v , . . . , v } is a 
1 2 n 

detecting set. For example, it is easy to see that the detecting 
sets in [7] and [9] a re of the r e s idue -c l a s s represent ing type. 

By a lemma in geometr ic number theory, the number of 
r e s idue -c l a s ses in /C' modulo A is jdet(v ,v . . . . , v ) j . 

1 2 m 
It follows that 

(1.10) k n " m < |det(v ,v . . . . ,v ) | 
— 1 Z m 

and, by an application of Ha dama rd* s inequality, 

/, , ., , n - m m m / 2 
(1.11) k < a m 

If k = 2 and M = { 0, 1} one can prove the existence of 
detecting sets of the r e s idue -c l a s s represent ing type for every 
integer m > 3 and with n = A(m) for which equality holds in 
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(1 . 10). Below will be given a table with re fe rences to previous 
detecting sets of this type. 

One possible method to find detecting sets with n > A(m) 
is to choose v , v . . . . , v such that det(v , v . . . . , v ) 

1 2 m 1 2 m 
is as large as possible and then t ry to find v , . . . , v . 

m+1 n 

This method will be i l lustrated by an example in section 3. 

Table of the function A(m) with references to detecting se t s . 

m 3 4 5 6 7 8 9 10 11 12 13 14 15 

A(m) 4 5 7 9 12 13 15 17 20 22 25 28 32 

Ref. 9 6 9 7 9 7 

2. Proof of Theorem 1. Any positive integer s can be 
uniquely writ ten in the form 

n n n 
(2. 1) s = 2 + 2 + . . . + 2 V , 

where n < n < . . . < n a re non-negative in tegers . We put 

S = {n . n _ , . . . ,n } 
1 2 v 

and write s = (S) . We then put 0 = (j0) , where 0 is the 

empty set. Let a{s) = v for s > 0 and a(0) = 0. For any 
two non-negative in tegers s = (S) and t = (T) we define 

s n t = (Sfl T) and write s C t if S C T . Now we prove the 

LEMMA. Let b„ , b . . . . , b be a sequence of 
0 1 n 

numbers and r an integer > 0 such that b _ =b for 
& — sOr s 

s = 0f 1 , 2 , . . . , n . Then 

2 ( « D ^ - b = 0 if t ( t r , l < t < n . 
s C t 
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Proof of the l e m m a . Since t <£. r there are in tegers u 
v J 

and v , u = 2 , such that u C t but u f r . If s Q t - u then 
(s+u) 0 r = s 0 r and so b = b by the condit ion b = b . 

s+u s sr\r s 
Since a(s+u) = o ( s ) + i we get 

a(s) als) 
Z (-1) l 'b = 2 (-1) l '(b - b ) = 0 , 
_ s s s+u 

s C t s d t - u 
and the l e m m a i s proved. 

We shal l define a c l a s s of m a t r i c e s D with m rows 
m 

(m = 1 , 2 , . . . ) » such that if v . (i = 1, 2 , . . . ,n) are the co lumns 

in D then {v , v , . . . , v } i s a detect ing se t , (M = { 0, 1 } ) . 
m 1 2 n 

For any r in 1 < r < m let d , d , . . . , d be a 
— — 1 2 h 

(r) c*(r)-l 
detect ing set of i n t e g e r s with 1 < d. < 2 , j = 1, 2, . . . , h, 

and h = h < h (2 ). Since a(i) i s an odd integer for 

a ( r ) - l (r) 
2 i n t e g e r s i , i C r , we can determine d.. = 0 or 1 

y 
for i C r such that 

(2 .2 ) S ( - l ) a ( i ) + 1 d ( r ) = d ! r ) , d<r ) = 0 
i d r 1J 3 °J 

(r) 
for j = 1, 2 , . . . , h 

For i t r we then define d.. = d. . and find by the L e m m a 
^ IJ i O r , j 

( 2 .3 ) 2 ( - l ) f f ( i ) + 1 d { r ) = 0 for r < t < n . 
i C t 1J 

Define a m a t r i x D = ( d . . ) , i = l , 2 , . . . , m ; j = l , 2 , . . . , h , 
m ij 

and put D == (D^ , D , . . . , D ). We shal l prove that the 
m m m m 
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c Uimn vectors in D are a detecting set. 
m 

L,et x and y (t = i , 2, . . . , m) be column vectors of 

dimension h , with all components from the set 
{ 0 , 1 , 2 , . . . , k - i } . Suppose that 

m m 
(2.4) S D(t)x = S D(t,y . 

m t m t 
t=l t=l 

We shall prove x = y for t = 1, 2, . . . , m. If this is not true 

let r be the largest t for which x £y . If r < m we sub-& t 7t 
tract the terms with t > r from both members of (2. 4). This 
is allowed since x =y for t > r. Then we multiply the 

i components in both members by (-1) and add for all 
i with i d r . By (2.2) and (2. 3), with t and r interchanged, 
we get 

(2.5) (d , d , . . . , d )x = (d , d , . . . , d )y . 
l à a r i d n r 

The d. (j = 1, 2, . . . ,h ) form a detecting set, hence 

x =y . But this contradicts the assumption, and we have 
r r 

proved that the column vectors in D form a detecting set. 
m 

(r) <*(r)-l 
If we choose h = h (2 ), we find by (1. 4) for the 

number n of columns in D 
m 

v i, t-?a^'i\^ v "(J) - 1 A(m) - m n = Za h (d ) > Z/ — — = — : — . 

i=l k i=l l 0 g 2 k l 0 g 2 k 

The second inequality in Theorem 1 is proved. The first is 
proved similarly. 
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If we take d. = k we get a detecting set of the residue-

c lass represent ing type. For in this case (2. 5) implies x =y 

even if the h components a r e allowed to take any in te re r value. 
It follows that the sums ( i . i) of column vec tors in D take 

m 
different values even if m of the e. a re allowed to take any 

integer value. This implies that the column vectors form a 
detecting set of the r e s idue -c l a s s represent ing type. 

Consider the case k =2 . The number of columns in D 
m 

is A(m). Those columns in D which generate A form a 
m 

matrix B =(b..), where b.. i s given by the formula 
m ij i j 

(2 .6 ) b.. = ! ( ( - l ) a { i n j ) + 1 + 1), i , j = l , 2 , . . . , m . 

We can prove that 

#~ —» I , ~ I _ A ( m ) - m 
(2.7 det B =2 v 

1 m 
Hence equality holds in (1. 10). 

In order to prove (2. 7), we note that 

0 for j < m , 

(2.8) 

by (2. 6) and our Lemma. Multiply the last row in B by 
m 

(-1) and add to this the i multiplied by (-1) , if 
i CZ m. We get 

(-l)a(m)(detB ) = - Z ^ - V e t B J . 
m m-1 

and then (2.7) easily follows. 
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3. Two examples . 

Example 1. We shall i l lustrate the method in section 2 
by proving that the columns in the ma t r i x D below form a 

6 
detecting set, (k = 2). 

r: 1 2 1+2 4 1+4 2+4 i: (-1) 

/ 0 

1 

1 

0 

0 

1 

1 1 

0 1 

0 0 

0 0 

1 1 

0 1 

0 

0 

0 

1 

1 

1 

1+4 2+4 

1 1 0 0 

0 0 1 1 

1 1 1 1 

0 1 0 1 

0 0 0 1 

0 1 0 0 

1 

2 

1+2 

4 

1+4 

2+4 

a(i)+l 

+ 1 

+ 1 

-1 

+ 1 

- 1 

- 1 

The columns in D, are denoted v , v , 
6 1 2 We shall 

prove that the sums S c.v., e. = 0 or 1, are a l l different. 
i = l 

Let x . x_, 
1 ù 

Suppose that 

x 9 and y 4 , y 2 , . y be 0 or 1. 

2 x.v. = 2 y.v. 
i = l i i 

i = l 
i l 

Take the "sum11 of rows with i CL 2+4: row 2 + row 4 - row(2+4). 
We get 

xrt + 2x^ = y^ + 2y^ 
8 9 8 79 

and conclude that x 0 =y„ and xrt =yrt. Next take the "sum11 

8 7 8 9 9 
of rows with i C 1+4: row 1 + row 4 - row (1+4). We get 
x + 2x_ = y , + 2y and conclude that x =y and x = y_. 

6 7 6 7 6 6 7 7 

Now we prove x = y . The 4th row is 
5 5 
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x + x_ + x =y + y_ + y . 
5 7 9 5 y7 J 9 

and x = y . 
9 y9 

It follows x = y 
5 5 

We have already proved x = y 

Etc. 

Example 2. k = 2, m = 6, M = { 0, 1} . The maximum 
value of determinants of order 6 with all en t r ies 0 or 1 is 9. 
The following ma t r i x with determinant = 9 can be found ' 

D = 

1 

1 

1 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

1 

1 

0 

0 

1 

i 

1 

0 

1 

0 

1 

1 

i 

0 

0 

1 

1 

0 

1 

1 

1 

1 

0 

We triangulate D by the operations: (i) add a multiple of one 
column to another column, (ii) two columns change places , 
(iii) the e lements in a column a re multiplied by - 1. Then we 
get the following mat r ix : 

D.f 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

- 2 

0 

0 

1 

0 

0 

•6 

0 

0 

0 

1 

0 

- 5 

0 

0 

0 

0 

1 

- 5 

0 

0 

0 

0 

0 

9 

The columns in D and D1 generate the same sublattice A 
in M . Observe that the sums e + 2e + 5e , e. = 0 or 1, 

1 2 3 l 
a re incongruent modulo 9- Then the following column vectors 
a re incongruent modulo A : 

1) 
cf. J. Williamson, Determinants whose e lements are 0 and 
1, Amer,. Math. Monthly 53 (1946), 427-434. 
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' ° 1 
0 

0 

0 

0 

, * J » 

f ° ] 
1 

0 

0 

0 

l°J 9 

f° 
0 

0 

1 

0 

I o 
These vectors and those in D form a detecting set of the 
residue-class representing type. 

4. Proof of Theorem 2. First assume that M = { 0,1} . 
Put f (n) = m. Then n > F (m-1) > (A(m-l) - m + l ) / log k 

by Theorem 1. The function log x /x is decreasing for x > e. 
Then we find for n sufficiently large 

(4.1) 
f (n)Iog n mlog A(m-l ) 

< 
A(m-l ) -m+l 

Let n-*x>. Then, by (1.2), m-*oo. It follows by (4. 1) and 
(1-7) 

(4.2) lim sup 
n-*co 

f k ( n ) 1 ° g k n 

< 2 . 

In order to prove (4. 2) for an arbitrary M, we observe 
that if {v - v . . . . , v } , v. = (a., ,a . . . . . , a. ), is detecting, 

1 2 n l i l i2 im 
then also (v* , v' , . . . , v' } , v; = (ca. +b, ca +b, . . . , ca. +b, b), 

1 2 n l i l i2 un 
c ^0 , is detecting. Let a, b € M, a i b. Put c =a-b. If 
the vectors v have all components in { 0 , 1 } , then the 

i 
vectors v1 have all components from M. The immediate 

i 
conclusion is that f,(n) cannot increase by more than 1 

(the vectors v! are (m+1)-dimensional) at the transition from 

{ 0, 1} to M. Thus (4. 2) holds in the general case. 

Next we want to prove 
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fk(n)logkn 
(4. 3) l im inf > 2 

n — 

The inequality (1 . 8) implies 

f (n)log n 
> 

n - i + 0{ i / log n) 

Now we shall prove (1.8) by the method of L. Moser. 

Lret {v , v , . . . , v } be a detecting set with 
1 2 n 

v = ( a ,a . . . . . ,a ) and all components from the set M. 
l i l i2 im 

Let a denote the maximum of absolute values of the elements 
in M. 

Put 
n 
2 a £ = x for j = l , 2 , . . . , m . 

i = i i j i j 

The k v e c t o r s 

n 
( x . x _ , . . . , x ) = S e.v. , (e. = 0, 1 ,2 , . . . , k - l ) , 

1 2 m . , 1 1 i 
i = l 

a r e a l l d i s t i n c t . Now we define the m e a n v a l u e o p e r a t o r E by 

k - 1 k - 1 k - 1 
E = k" S 2 . . . S , and put V a r x = E(x- Ex) . 

E =0 £ =0 £ =0 
1 2 n 

By s i m p l e c a l c u l a t i o n s one can p r o v e 

E £ = ~ ( k - l ) and V a r £. = ( k 2 - l ) / 1 2 
i 2 l 

If we o b s e r v e t h a t 
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n 2 2 2 
Var x. = 2 a . .Var c. < k a n /12 , 

we find 

m 2 2 2 
S E(2x. - 2Ex.) < ( l /3 )k a mn . 

j = l J J 

Hence, there a r e at leas t —k vectors ( x . x - . . . , x ) for 
2 1 2 m 

which 

2 (2x. - 2Ex.) 2 < (2/3)k 2aZmn . 
j = l J J 

Since x. and 2Ex. are in tegers , we conclude that the 
J J 

inequality 

m 2 2 2 2 
2 y. < (2/3)k a mn =R 

has at leas t -rk integer solutions. We can find an upper bound 

for the number of solutions, if we calculate the volume of an 
? rrt / ? m m I "? 

m-dimensional sphere with radius R: (C R / m ) =(C ka) n 

for suitable constants C and C . (1.8) follows immediately . 
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