ON A COMBINATORIAL PROBLEM IN NUMBER THEORY

Bernt Lindstrőm

(received October 17, 1964)

1. Introduction and statement of results. Given an integer $k \geq 2$ and a finite set M of rational integers. Let $v_{i}(i=1,2, \ldots, n)$ be m-dimensional (column-)vectors with all components from M and such that the k^{n} sums

$$
\sum_{i=1}^{n} \varepsilon_{i} v_{i} \quad\left(\varepsilon_{i}=0,1,2, \ldots, k-1\right)
$$

are all different. Then we shall say that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a detecting set of vectors.

Let a be the maximum of absolute values of the eiements in M. Then the components of the sums (1.1) lie between -akn and akn. The number of m-dimensional vectors with all components in this interval is less than (2akn) ${ }^{m}$. Hence

$$
\begin{equation*}
k^{n-m}<(2 a n)^{m} \tag{1.2}
\end{equation*}
$$

For m fixed n is bounded above. Let $F_{k}(m)$ be the maximal number of m-dimensional vectors forming a detecting set. Similarly, m is bounded below for n fixed. Let $f_{k}(n)$ be the minimal m .

In the special case $k=2, M=\{0,1\}$ the problem of determining $f_{2}(n)$ is equivalent to the following weighing problem: what is the minimal number of weighings on an accurate scale to determine all false coins in a set of n coins,

Canad. Math. Bull. vol. 8, no. 4, June 1965
if false coins weigh a and correct ones $b(a \neq b)$? The choice of coins for a weighing must not depend on results of previous weighings.

This weighing problem was first proposed by H.S. Shapiro in [8] for $n=5$. N.J. Fine [6] proved that $f_{2}(5)=4$. For large $n, f_{2}(n)$ is estimated in [2], [5], [7], [9]. If $M=\{0,1\}$ or $\{-1,1\}$, then

$$
\lim _{n \rightarrow \infty} \frac{f_{2}(n) \log n}{n}=\log 4
$$

This was proved in [7]. For $k>2$ the problem to estimate $\mathrm{f}_{\mathrm{k}}(\mathrm{n})$ was first studied in [2] by D. G. Cantor.

The purpose of this note is to introduce a new method to construct detecting sets of vectors. The method is of more general scope than that used in [7]. A feature of the construction is the use of sets of integers $d_{i}(i=1,2, \ldots, h), 1 \leq d_{i} \leq x$, such that the sums

$$
\sum_{i=1}^{h} \varepsilon_{i: i}^{d} \quad\left(\varepsilon_{i}=0,1,2, \ldots, k-1\right)
$$

are all different (i.e. detecting sets of integers). A simple example is $d_{i}=k^{i-1}$. Let $h_{k}(x)$ be the maximum of h. $h_{2}(x)$ was studied by P. Erdös and L. Moser in [4]. It is easy to see that

$$
\begin{equation*}
h_{2}\left(2^{n-1}\right) \geq n, \quad h_{k}\left(2^{n-1}\right)>\frac{n-1}{\log _{2} k} \tag{1.4}
\end{equation*}
$$

Professor R. K. Guy, Delhi, has kindly sent me a detecting set of 23 integers $<2^{21}$, i.e.

$$
\begin{equation*}
h_{2}\left(2^{21}\right) \geq 23 \tag{1.5}
\end{equation*}
$$

The smallest number in Professor Guy's set is 1042698, and the largest 2094203.

By the aid of (1.4) we shall prove the following
THEOREM 1. If $M=\{0,1\}$ then $F_{2}(m) \geq A(m)$ and $F_{k}(m)>\frac{A(m)-m}{\log _{2} k}$, where $A(m)$ is the number of $1^{\prime} s$ in the binary representation of the first m positive integers.

I conjecture that $F_{2}(m)=A(m)$ for $m=1,2, \ldots, 15$ at least. It would follow that $f_{2}(A(m))=m$ for $m=1,2, \ldots, 15$. On the other hand one can prove, by the aid of (1.5), that

$$
\begin{equation*}
F_{2}(m)>A(m) \text { for } m \geq 2^{22} \tag{1.6}
\end{equation*}
$$

The following asymptotic formula was first proved by R. Bellman and H. N. Shapiro in [1] (for another proof see [3]),

$$
\begin{equation*}
A(m) \sim \frac{1}{2} \mathrm{mlog}_{2} m, \text { as } m \rightarrow \infty \tag{1.7}
\end{equation*}
$$

By the aid of (1.7) and Theorem 1 we shall prove

THEOREM 2. For any finite set of integers M with $|M| \geq 2$ and any integer $k \geq 2$,

$$
\lim _{n \rightarrow \infty} \frac{f_{k}(n) \log _{k} n}{n}=2 .
$$

For the proof of Theorem 2 we shall also need the fact that

$$
\begin{align*}
& \mathrm{k}^{\mathrm{n}-\mathrm{m} \leq} \leq(c a)^{m_{n} m / 2} \tag{1.8}\\
& \quad(\mathrm{c} \text { is an absolute constant < 4e), }
\end{align*}
$$

if there is a detecting set of n - dimensional vectors with
all components in M. In the special case $k=2, m=1$, $M=1,2, \ldots, x$, we get by (1.8)

$$
\begin{equation*}
2^{n-1} / \sqrt{n} \leq c x \text { for } n=h_{2}(x) \tag{1.9}
\end{equation*}
$$

The inequality (1.9) was proved by P. Erdös and L. Moser in [4]. (1.8) has been proved by L. Moser in the case $k=2$, $a=1$ (unpublished).

There is a class of detecting sets of vectors, which could be characterized as residue-class representing. A set in this class is obtained as follows. Let $v_{1}, v_{2}, \ldots, v_{m}$ be m -dimensional independent vectors with all components from M . They generate a sublattice Λ in the lattice K of all m-dimensional vectors with integral components. Assume that v_{m+1}, \cdots, v_{n} have all components in M, and that the sums

$$
\sum_{i=m+1}^{n} \varepsilon_{i} v_{i}\left(\varepsilon_{i}=0,1, \ldots, k-1\right)
$$

are incongruent modulo Λ. Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a detecting set. For example, it is easy to see that the detecting sets in [7] and [9] are of the residue-class representing type.

By a lemma in geometric number theory, the number of residue-classes in K modulo Λ is $\left|\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{m}\right)\right|$. It follows that

$$
\begin{equation*}
k^{n-m} \leq\left|\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{m}\right)\right| \tag{1.10}
\end{equation*}
$$

and, by an application of Hadamard's inequality,

$$
\begin{equation*}
k^{n-m} \leq a^{m} m^{m / 2} . \tag{1.11}
\end{equation*}
$$

If $k=2$ and $M=\{0,1\}$ one can prove the existence of detecting sets of the residue-class representing type for every integer $m \geq 3$ and with $n=A(m)$ for which equality holds in
(1.10). Below will be given a table with references to previous detecting sets of this type.

One possible method to find detecting sets with $n \geq A(m)$ is to choose $v_{1}, v_{2}, \ldots, v_{m}$ such that $\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is as large as possible and then try to find v_{m+1}, \cdots, v_{n}. This method will be illustrated by an example in section 3 .

Table of the function $A(m)$ with references to detecting sets.

m	3	4	5	6	7	8	9	10	11	12	13	14	15
A(m)	4	5	7	9	12	13	15	17	20	22	25	28	32
Ref.	9	6	9		7		9						7

2. Proof of Theorem 1. Any positive integer s can be uniquely written in the form

$$
\begin{equation*}
s=2^{n_{1}}+2^{n}+\ldots+2^{n} \tag{2.1}
\end{equation*}
$$

where $n_{1}<n_{2}<\ldots<n_{v}$ are non-negative integers. We put

$$
S=\left\{n_{1}, n_{2}, \ldots, n_{v}\right\}
$$

and write $s=\langle S)_{2}$. We then put $0=(\emptyset\rangle_{2}$, where \emptyset is the empty set. Let $\alpha(s)=\nu$ for $s>0$ and $\alpha(0)=0$. For any two non-negative integers $s=(S)_{2}$ and $t=(T)_{2}$ we define $s \cap t=(S \cap T)_{2}$ and write $s \subset t$ if $S \subset T$. Now we prove the

LEMMA. Let $b_{0}, b_{1}, \ldots, b_{n}$ be a sequence of numbers and r an integer ≥ 0 such that $b_{s \cap r}=b_{s}$ for $s=0,1,2, \ldots, n$. Then

$$
\sum_{s \subset t}(-1)^{\alpha(s)} b_{s}=0 \text { if } t \not \subset r, 1 \leq t \leq n
$$

Proof of the lemma. Since $t \not \subset r$ there are integers u and $v, u=2^{v}$, such that $u \subset t$ but $u \not \subset r$. If $s \subset t-u$ then $(s+u) \cap r=s \cap r$ and so $b_{s+u}=b_{s}$ by the condition $b_{s \cap r}=b_{s}$. Since $\alpha(s+u)=\alpha(s)+1$ we get

$$
\sum_{s \subset t}(-1)^{\alpha(s)_{b}}=\sum_{s \subset t-u}(-1)^{\alpha(s)}\left(b_{s}-b_{s+u}\right)=0
$$

and the lemma is proved.
We shall define a class of matrices D_{m} with m rows ($m=1,2, \ldots$), such that if $v_{i}(i=1,2, \ldots, n)$ are the columns in D_{m} then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a detecting set, $\quad(M=\{0,1\})$.

For any r in $1 \leq r \leq m$ let $d_{1}^{(r)}, d_{2}^{(r)}, \ldots, d_{h}^{(r)}$ be a detecting set of integers with $1 \leq d_{j}^{(r)} \leq 2^{\alpha(r)-1}, j=1,2, \ldots, h$, and $h=h^{(r)} \leq h_{k}\left(2^{\alpha(r)-1}\right)$. Since $\alpha(i)$ is an odd integer for $2^{\alpha(r)-1}$ integers $i, i \subset r$, we can determine $d_{i j}^{(r)}=0$ or 1 for $i \subset r$ such that

$$
\begin{array}{r}
\sum_{i \subset r}(-1)^{\alpha(i)+1} d_{i j}^{(r)}=d_{j}^{(r)}, d_{0 j}^{(r)}=0 \tag{2.2}\\
\text { for } j=1,2, \ldots, h^{(r)} .
\end{array}
$$

For $i \not \subset r$ we then define $d_{i j}^{(r)}=d_{i \cap r, j}^{(r)}$ and find by the Lemma

$$
\begin{equation*}
\sum_{i \subset t}(-1)^{\alpha(i)+1} d_{i j}^{(r)}=0 \text { for } r<t \leq n \tag{2.3}
\end{equation*}
$$

Define a matrix $D_{m}^{(r)}=\left(d_{i j}^{(r)}\right), i=1,2, \ldots, m ; j=1,2, \ldots, h^{(r)}$, and put $D_{m}=\left(D_{m}^{(1)}, D_{m}^{(2)}, \ldots, D_{m}^{(m)}\right)$. We shall prove that the
cumn vectors in D_{m} are a detecting set.

Let x_{t} and $y_{t}(t=1,2, \ldots, m)$ be column vectors of dimension $h^{(t)}$, with all components from the set $\{0,1,2, \ldots, k-1\}$. Suppose that

$$
\begin{equation*}
\sum_{t=1}^{m} D_{m}^{(t)} x_{t}=\sum_{t=1}^{m} D_{m}^{(t)} y_{t} \tag{2.4}
\end{equation*}
$$

We shall prove $x_{t}=y_{t}$ for $t=1,2, \ldots, m$. If this is not true let r be the largest t for which $x_{t} \neq y_{t}$. If $r<m$ we subtract the terms with $t>r$ from both members of (2.4). This is allowed since $x_{t}=y_{t}$ for $t>r$. Then we multiply the $i^{\text {th }}$ components in both members by $(-1)^{\alpha(i)+1}$ and add for all i with $i \subset r . B y(2.2)$ and (2.3), with t and r interchanged, we get
(2.5) $\left(d_{1}^{(r)}, d_{2}^{(r)}, \ldots, d_{h}^{(r)}\right) x_{r}=\left(d_{1}^{(r)}, d_{2}^{(r)}, \ldots, d_{h}^{(r)}\right) y_{r}$.

The $d_{j}^{(r)}\left(j=1,2, \ldots, h^{(r)}\right)$ form a detecting set, hence $\mathrm{x}_{\mathrm{r}}=\mathrm{y}_{\mathrm{r}}$. But this contradicts the assumption, and we have proved that the column vectors in D_{m} form a detecting set.

If we choose $h^{(r)}=h_{k}\left(2^{\alpha(r)-1}\right)$, we find by (1.4) for the number n of columns in D_{m}

$$
n=\sum_{i=1}^{m} h_{k}\left(2^{\alpha(i)-1}\right)>\sum_{i=1}^{m} \frac{\alpha(i)-1}{\log _{2} k}=\frac{A(m)-m}{\log _{2} k} .
$$

The second inequality in Theorem 1 is proved. The first is proved similarly.

If we take $d_{j}^{(r)}=k^{j-1}$ we get a detecting set of the residueclass representing type. For in this case (2.5) implies $X_{r}=y_{r}$ even if the $h^{\text {th }}$ components are allowed to take any intefer value. It follows that the sums (1.1) of column vectors in D_{m} take different values even if m of the ε_{i} are allowed to take any integer value. This implies that the column vectors form a detecting set of the residue-class representing type.

Consider the case $k=2$. The number of columns in D_{m} is $A(m)$. Those columns in D_{m} which generate Λ form a matrix $B_{m}=\left(b_{i j}\right)$, where $b_{i j}$ is given by the formula (2.6) $\quad b_{i j}=\frac{1}{2}\left((-1)^{\alpha(i n j)+1}+1\right), \quad i, j=1,2, \ldots, m$.

We can prove that

$$
\begin{equation*}
\left|\operatorname{det} B_{m}\right|=2^{A(m)-m} \tag{2.7}
\end{equation*}
$$

Hence equality holds in (1.10).
In order to prove (2.7), we note that

$$
\sum_{i \subset m}(-1)^{\alpha(i)_{b}}{ }_{i j}=\left\{\begin{array}{l}
0 \text { for } j<m \tag{2.8}\\
-2^{\alpha(m)-1} \text { for } j=m
\end{array}\right.
$$

by (2.6) and our Lemma. Multiply the last row in B_{m} by $(-1)^{\alpha(\mathrm{m})}$ and add to this the $\mathrm{i}^{\text {th }}$ multiplied by $(-1)^{\alpha(\mathrm{i})}$, if $i \subset m$. We get

$$
(-1)^{\alpha(m)}\left(\operatorname{det} B_{m}\right)=-2^{\alpha(m)-1}\left(\operatorname{det} B_{m-1}\right)
$$

and then (2.7) easily follows.

3. Two examples.

Example 1. We shall illustrate the method in section 2 by proving that the columns in the matrix D_{6} below form a detecting set, $(k=2)$.

	r:	1	2	1+		4	$1+$		$2+$	+	i:	$(-1)^{\alpha(i)+1}$
D_{6}		${ }_{1} 1$	0	1	1	0	1	1	0	0	1	+1
		0	1	0	1	0	0	0		1	2	+1
		1	1	0	0	0	1	1		1	$1+2$	-1
		0	0	0	0	1		1		1	4	+1
		1	0	1	1	1	0	0	0	1	$1+4$	-1
		0	1							0	$2+4$	-1

The columns in D_{6} are denoted $v_{1}, v_{2}, \ldots, v_{9}$. We shall prove that the sums $\sum_{i=1}^{9} \varepsilon_{i} v_{i}, \varepsilon_{i}=0$ or 1 , are all different.
Let $x_{1}, x_{2}, \ldots, x_{9}$ and $y_{1}, y_{2}, \ldots, y_{9}$ be 0 or 1 .
Suppose that

$$
\sum_{i=1}^{9} x_{i} v_{i}=\sum_{i=1}^{9} y_{i} v_{i}
$$

Take the "sum" of rows with iC $2+4$: row $2+$ row 4 - row $(2+4)$. We get

$$
x_{8}+2 x_{9}=y_{8}+2 y_{9}
$$

and conclude that $x_{8}=y_{8}$ and $x_{9}=y_{9}$. Next take the "sum" of rows with i $\subset 1+4$: row $1+$ row 4 - row ($1+4$). We get $x_{6}+2 x_{7}=y_{6}+2 y_{7}$ and conclude that $x_{6}=y_{6}$ and $x_{7}=y_{7}$.

Now we prove $x_{5}=y_{5}$. The 4 th row is
$x_{5}+x_{7}+x_{9}=y_{5}+y_{7}+y_{9}$. We have already proved $x_{7}=y_{7}$ and $x_{9}=y_{9}$. It follows $x_{5}=y_{5}$. Etc.

Example 2. $k=2, m=6, M=\{0,1\}$. The maximum value of determinants of order 6 with all entries 0 or 1 is 9 . The following matrix with determinant $=9$ can be found ${ }^{1)}$

$$
D=\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

We triangulate D by the operations: (i) add a multiple of one column to another column, (ii) two columns change places, (iii) the elements in a column are multiplied by -1 . Then we get the following matrix:

$$
\mathrm{D}!=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -2 & -6 & -5 & -5 & 9
\end{array}\right)
$$

The columns in D and D^{\prime} generate the same sublattice Λ in K. Observe that the sums $\varepsilon_{1}+2 \varepsilon_{2}+5 \varepsilon_{3}, \varepsilon_{i}=0$ or 1 , are incongruent modulo 9 . Then the following column vectors are incongruent modulo Λ :

[^0]\[

\left($$
\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}
$$\right),\left($$
\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}
$$\right),\left($$
\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}
$$\right) .
\]

These vectors and those in D form a detecting set of the residue-class representing type.
4. Proof of Theorem 2. First assume that $M=\{0,1\}$.

Put $f_{k}(n)=m$. Then $n>F_{k}(m-1)>(A(m-1)-m+1) / \log _{2} k$ by Theorem 1. The function $\log \mathbf{x} / \mathrm{x}$ is decreasing for $\mathrm{x}>\mathrm{e}$. Then we find for n sufficiently large

$$
\begin{equation*}
\frac{f_{k}(n) \log _{k} n}{n}<\frac{\operatorname{mlog}_{2} A(m-1)}{A(m-1)-m+1} . \tag{4.1}
\end{equation*}
$$

Let $n \rightarrow \infty$. Then, by (1.2), $m \rightarrow \infty$. It follows by (4.1) and (1.7)
(4. 2)

$$
\lim _{n \rightarrow \infty} \sup \frac{f_{k}(n) \log _{k} n}{n} \leq 2 .
$$

In order to prove (4.2) for an arbitrary M, we observe that if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, v_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right)$, is detecting, then also $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}, v_{i}^{\prime}=\left(c a_{i 1}+b, c a_{i 2}+b, \ldots, c a{ }_{i m}+b, b\right)$, $c \neq 0$, is detecting. Let $a, b \in M, a \neq b$. Put $c=a-b$. If the vectors v_{i} have all components in $\{0,1\}$, then the vectors v_{i}^{\prime} have all components from M. The immediate conclusion is that $f_{k}(n)$ cannot increase by more than 1 (the vectors v_{i}^{\prime} are $(m+1)$-dimensional) at the transition from $\{0,1\}$ to M. Thus (4.2) holds in the general case.

Next we want to prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f_{k}(n) \log _{k} n}{n} \geq 2 \tag{4.3}
\end{equation*}
$$

The inequality (1.8) implies

$$
\frac{f_{k}(n) \log _{k} n}{n} \geq \frac{2}{1+O(1 / \log n)}
$$

Now we shall prove (1.8) by the method of L. Moser.
Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a detecting set with $v_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right)$ and all components from the set M.
Let a denote the maximum of absolute values of the elements in M.

Put

$$
\sum_{i=1}^{n} a_{i j} \varepsilon_{i}=x_{j} \text { for } j=1,2, \ldots, m
$$

The k^{n} vectors

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{i=1}^{n} \varepsilon_{i} v_{i}, \quad\left(\varepsilon_{i}=0,1,2, \ldots, k-1\right),
$$

are all distinct. Now we define the mean value operator E by

$$
E=k^{-n} \sum_{\varepsilon_{1}=0}^{k-1} \sum_{2}^{k-1} \cdots \sum_{n}^{k}=0, \text { and put } \operatorname{Var} x=E(x-E x)^{2}
$$

By simple calculations one can prove

$$
E \varepsilon_{i}=\frac{1}{2}(k-1) \text { and } \operatorname{Var} \varepsilon_{i}=\left(k^{2}-1\right) / 12 .
$$

If we observe that

$$
\operatorname{Var} x_{j}=\sum_{i=1}^{n} a_{i j}^{2} \operatorname{Var} \varepsilon_{i}<k_{a}^{2}{ }_{n / 12}^{2},
$$

we find

$$
\sum_{j=1}^{m} E\left(2 x_{j}-2 E x_{j}\right)^{2}<(1 / 3) k_{a}^{2} m n
$$

Hence, there are at least $\frac{1}{2} k^{n}$ vectors $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ for which

$$
\sum_{j=1}^{m}\left(2 x_{j}-2 E x_{j}\right)^{2}<(2 / 3) k_{a}^{2} m n
$$

Since x_{j} and $2 E x_{j}$ are integers, we conclude that the inequality

$$
\sum_{j=1}^{m} y_{j}^{2}<(2 / 3) k_{a}^{2} m n=R^{2}
$$

has at least $\frac{1}{2} k^{n}$ integer solutions. We can find an upper bound for the number of solutions, if we calculate the volume of an m-dimensional sphere with radius $R:\left(C_{1} R^{2} / m\right)^{m / 2}=\left(C_{2} k\right)^{m} m_{n} m^{2}$ for suitable constants C_{1} and C_{2} (1.8) follows immediately.

REFERENCES

1. R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340.
2. D. G. Cantor, Determining a set from the cardinalities of its intersections with other sets, Canad. J. Math. 16 (1964), 94-97.
3. G. F. Clements and B. Lindström, A sequence of ($\ddagger 1$)determinants with large values, Proc. Amer. Math. Soc. June 1965.
4. P. Erdös, Problems and results in additive number theory, Colloque sur la théorie des nombres, Bruxelles (1955), 127-137.
5. P. Erdös and A. Rényi, On two problems of information theory, Publ. Hung. Acad. Sci. 8 (1963), 241-254.
6. N.J. Fine, Solution El 399, Amer. Math. Monthly 67 (1960), 697.
7. B. Lindström, On a combinatory detection problem, Publ. Hung. Acad. Sci. 9 (1964), 195-207.
8. H.S. Shapiro, Problem El 399, Amer. Math. Monthly 67 (1960) 82.
9. S. Söderberg and H.S. Shapiro, A combinatory detection problem, Amer. Math. Monthly 70 (1963), 1066-1070.

University of Stockholm

[^0]: 1)

 cf. J. Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly 53 (1946), 427-434.

