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ULTRA-SMALL SCALE-FREE
GEOMETRIC NETWORKS
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Abstract

We consider a family of long-range percolation models (Gp)p>0 on Z
d that allow

dependence between edges and have the following connectivity properties for p ∈
(1/d, ∞): (i) the degree distribution of vertices inGp has a power-law distribution; (ii) the
graph distance between points x and y is bounded by a multiple of logpd logpd |x − y|
with probability 1 − o(1); and (iii) an adversary can delete a relatively small number of
nodes from Gp(Zd ∩ [0, n]d), resulting in two large, disconnected subgraphs.
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1. Introduction

The statistical properties of large networks have received considerable attention in the recent
scientific literature [2], [14], [21], [25]. Of special interest are the power-law random networks
in which the fraction of vertices of degree k is proportional to k−q for some q > 0. Such
networks lack an inherent scale and have been termed ‘scale free’. Scale-free graphs are
ubiquitous in random network theory and have been proposed as a way to model the behavior
of technological, social, and biological networks [1], [21].

Networks often have a geometric component to them where the vertices have positions in
space and geographic proximity plays a role in deciding which vertices get connected. In
this context, random geometric graphs are a natural alternative to the classical Erdős–Rényi
random graph models. Random connection models [20] provide one way to describe networks
with spatial content. In these models the event, Ex,y , of a connection between points x and
y has probability px,y := P[Ex,y] = g(|x − y|), where g : R

+ → [0, 1] is a connection
function and |x| denotes the Euclidean norm of x. The standard long-range percolation model
assumes independence of Ex,y and Ex,u, y �= u, which may not be the case in networked
systems. Moreover, the degree distribution in this connection model generally does not follow
a power law.

Allowing dependency between edges will in general result in technically more complicated
models. In this note we show that a natural edge dependency gives rise to a family of long-
range percolation models, (Gp)p>0, which is technically tractable and which exhibits three
connectivity properties for p ∈ (1/d, ∞). First, Gp has a power-law distribution. Second, Gp

is ultra-small, in the sense that the graph distance between lattice points x and y is bounded
by a multiple of logpd logpd |x − y| with probability 1 − o(1), where o(1) denotes a quantity
tending to 0 as |x − y| → ∞. Ultra-small graph distances imply efficiency, are consistent
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with the ‘small-world phenomenon’ [2], [14], [24], [25], and are relevant in the context of
routeing, searching, and transport of information. Third, an adversary can delete a relatively
small number of nodes from Gp(Zd∩[0, n]d), after which there are two disconnected subgraphs,
each containing nearly one-half of the total number of network nodes.

1.1. A general dependent random connection model

Let {Uz}z∈Zd be independent, identically distributed uniform[0, 1] random variables indexed
by Z

d . Let p > 0 and δ ∈ (0, 1]. For each z ∈ Z
d , we take δU

−p
z to represent a weight at node

z defining the radius of the ‘ball of influence’at z. Consider the graph Gp,δ := Gp,δ(Z
d) which

puts an edge between nodes x, y ∈ Z
d whenever each node is contained in the other’s ball of

influence. Thus, this connection rule says that the edge (x, y) appears in Gp,δ(Z
d) whenever

|x − y| ≤ δ min(U
−p
x , U

−p
y ). (1.1)

Let δ = 1. By the independence of the Uz, we have px,y := P[Ex,y] = |x − y|−2/p,
showing that the probability of (there being) long edges in Gp := Gp,1 increases with p. Edges
in Gp have dependent probabilities: if |y| < |x| then the probability of the edge (0, y) given
the edge (0, x) is |y|−1/p instead of |y|−2/p.

The family of random connection models Gp,δ is disconnected for general p and δ, but
not for δ = 1, since having U

−p
z ≥ 1 for all z ∈ Z

d implies that adjacent lattice points are
connected in Gp. The main results below show, for all p ∈ (1/d, ∞), that the components of
Gp are of arbitrarily large diameter with arbitrarily large probability. Moreover, in accordance
with their Poisson Boolean model counterparts (cf. [20]), it is easy to check, for all δ ∈ (0, 1]
and large p, that the expected number of nodes in the component of Gp,δ containing 0 is infinite,
whereas, for p and δ both small, the expected number of such nodes is finite. Our purpose here
is to explore the connectivity properties of Gp, p ∈ (1/d, ∞).

1.2. Main results

Let Dp(0) denote the degree of the origin in Gp(Zd), let ωd denote the volume of the unit-
radius ball in R

d , and let α := pd − 1. Our first result shows that if p ∈ (1/d, ∞) then the
degree of a typical vertex follows a power law, i.e. Gp is scale free.

Theorem 1.1. (Gp(Zd) has a power-law degree distribution.) For all d = 1, 2, . . . and all
p ∈ (1/d, ∞),

lim
t→∞ t1/α P[Dp(0) > t] = (pdωd/α)1/α.

For all x, y ∈ Z
d , dp(x, y) denotes the Gp graph distance (‘chemical distance’) between

x and y. Our next result says that Gp is ultra-small (cf. [12]), in that dp(x, y) is bounded by
4(2 + log log |x − y|) with probability 1 − o(1), where throughout, for all s > 0, log s is short
for logpd s. We expect that the upper bound in this result can be improved but have not tried to
obtain the sharpest bound.

Theorem 1.2. (Gp(Zd) has small graph distance.) For all d = 1, 2, . . . and all p ∈ (1/d, ∞),

dp(0, x)

2 + log log |x| ≤ 4

with probability 1 − o(1), where o(1) tends to 0 as |x| → ∞.
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The network failure of Gp(Zd) is easily quantified, as follows.

Theorem 1.3. (Network failure.) For all d = 1, 2, . . . and all p ∈ (1/d, ∞), an adversary
can delete N nodes from Gp(Zd ∩ [0, n]d), where E[N ] = O(nd−1[n1−1/p ∨ 1]), resulting in
two disconnected subgraphs on vertex sets of cardinality at least nd/2 − N .

Theorem 1.3 implies, in particular, that if p ∈ (1/d, 1) then removing roughly O(nd−1)

nodes may reduce Gp(Zd ∩ [0, n]d) to two large, disconnected subgraphs.

Remarks. 1. Standard long-range percolation models. Assume that px,y := P[Ex,y] =
|x −y|−s+o(1) as |x −y| → ∞, for some constant s ∈ (0, ∞); Ex,y and Ex,u are independent
for all x, y, u ∈ Z

d . For s ∈ (0, d), Benjamini et al. [4] showed that the graph distance d(0, x)

behaves like the constant 
s/(d − s)� as |x| → ∞. Here, 
x� denotes the greatest integer less
than x. For s = d , Coppersmith et al. [13] showed that d(0, x) scales as log |x|/log log |x|,
whereas, for s ∈ (d, 2d), Biskup [7], [8] showed that d(0, x) scales as (log |x|)�+o(1), where
� := �(s, d) := log 2/log(2d/s). The case s = 2d is open and, for s ∈ (2d, ∞), d(0, x)

scales at least linearly in |x|, as shown by Berger [5]. The different scalings for the standard
long-range percolation model suggest that Gp also has different scalings for p ∈ (0, 1/d),
but we have not determined them. Kleinberg [19] proposed a lattice model where long-range
contacts are added in a biased way, there being, however, a uniform bound on the number of
such contacts.

2. Geometric networks in R
d . We expect that Theorems 1.1–1.3 extend to analogously defined

continuum models on Poisson point sets in R
d . This would add to the following related

results.

(a) Let f : R
d → R

+ and let Pf be a Poisson point process on R
d with intensity f . The

geometric graph, described in depth by Penrose [23], joins two nodes in Pf whenever
their Euclidean distance is less than a specified cutoff. Hermann et al. [18, Section II.B]
showed that if

∫
Rd f r (x) dx = ∞ for all r > r0, then the degree distribution is effectively

a power law.

(b) The on-line nearest-neighbors graph is defined on randomly ordered point sets in R
d , and

places an edge between each point and its nearest neighbor amongst the points preceding
it in the ordering. Such graphs have scale-free properties over certain degree domains [6],
[16].

(c) Franceschetti and Meester [17] developed a scale-free continuum model but did not obtain
iterated log bounds on interpoint graph distances.

(d) The standard Boolean connection model puts an edge between x and y whenever the
respective balls of influence overlap. In the context of (1.1), (x, y) is an edge whenever
|x − y| ≤ δ(U

−p
x + U

−p
y ). These models are not in general scale free.

3. Power exponents q ∈ (2, 3). Consider a random graph on n nodes v1, v2, . . . , vn with weight
(expected degree) wi at node vi . Nodes vi and vj are connected with probability ρwiwj , where
ρ = (

∑n
i=1 wi)

−1. Chung and Lu [10], [11] provided conditions on the weights under which
the degree distribution is proportional to k−q, q ∈ (2, 3), k ∈ Z, the average distance between
nodes is almost surely O(log log n), and the diameter is O(log n). In unrelated work, Cohen
and Havlin [12] argued that whenever the degree distribution of a random graph on n vertices is
proportional to k−q , where q ∈ (2, 3), k is restricted to (m, K), and where m and K := K(n)

are well-defined ‘cutoffs’, then the diameter behaves like log log n.
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4. Preferential attachment models. These dynamic graphs evolve with time in such a way that
a newly arriving vertex connects to an existing vertex with a probability proportional to the
degree of the (latter) vertex. Thus, nodes of high degree tend to acquire more new links than
do nodes of low degree. Albert and Barabási [1] showed that such models follow a power law,
are not geometry dependent, and, as shown by Bollabás and Riordan [9], are not ultra-small in
general.

5. Degree dependence on p. Theorem 1.1 tells us that P[Dp(0) = k] ∼ Ck−q , where
q := pd/(pd − 1). Thus, as p increases on (1/d, ∞), the exponent of the degree distribution,
q, decreases to 1.

6. Further connectivity results. Theorems 1.1–1.3 describe the connectivity of Gp(Zd). Further
analysis of the connectivity of Gp(Zd), such as thermodynamic and Gaussian limits for the
number of three cycles (or other clustering coefficients) on Gp(Zd ∩ [0, n]d), is simplified by
appealing to the stabilization properties of Gp (see especially [22]). Gp(Zd) is assortative in
that high-degree nodes tend to link to high-degree nodes and low-degree nodes tend to link to
low-degree nodes.

7. The case p ∈ (0, 1/d). If p ∈ (0, 1/d) then Gp has few long edges and the proofs of the
scale-free and ultra-small properties break down. The scalar 1/d thus represents the boundary
between graphs that are ultra-small scale free and those which are not.

2. Proof of Theorem 1.1

Throughout, we adopt the following notation: Br(x) denotes the Euclidean ball of radius r

centered at x ∈ R
d , Lr(x) := Br(x) ∩ Z

d \ {x} denotes the lattice points a distant at most r

from x, and C denotes a generic positive constant whose value may change from line to line.
The underlying probability space is � := [0, 1]Zd

and is equipped with the product probability
measure P := µZ

d
, where µ is the uniform probability measure on [0, 1]. Conditional on

U0 = u, Dp(0) is the number of points y in Lu−p (0) with weight, U
−p
y , exceeding |y|; hence,

Uy ∈ [0, |y|−1/p]. Writing D(u−p) for the value of Dp(0) conditioned on 0 having weight
u−p, we have

D(u−p) =
∑

y∈Lu−p (0)

1{Uy≤|y|−1/p}.

Thus, to prove Theorem 1.1 we condition on U0 and show that

lim
t→∞ t1/α

∫ 1

0
P[D(u−p) > t] du =

(
pdωd

α

)1/α

, (2.1)

where, recall, α := pd − 1. The next lemma will be useful in establishing (2.1). Let β :=
pdωd/α.

Lemma 2.1. For all p ∈ (1/d, ∞), we have

E[D(u−p)] = βu−α + O(max(1, u−pd+p+1)), (2.2)

where the error on the right-hand side of (2.2) holds as u → 0+.

Proof. Note that E[D(u−p)] is approximated by
∫

|x|≤u−p

|x|−1/p dx = dωd

∫ u−p

0
td−1−1/p dt = βu−α.
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Let R := R(u) be the maximal collection of grid cubes (cubes centered at points in Z
d with

edge length 1) contained within Bu−p (0). The approximation error
∣∣∣∣E[D(u−p)] −

∫
|x|≤u−p

|x|−1/p dx

∣∣∣∣
is bounded by the sum of the following three errors:

E1 :=
∣∣∣∣E[D(u−p)] −

∑
y∈R(u)∩Zd , y �=0

|y|−1/p

∣∣∣∣,

E2 :=
∣∣∣∣

∑
y∈R(u)∩Zd , y �=0

|y|−1/p −
∫

R(u)

|x|−1/p dx

∣∣∣∣,

E3 :=
∣∣∣∣
∫

R(u)

|x|−1/p dx −
∫

|x|≤u−p

|x|−1/p dx

∣∣∣∣.
Now,

E1 =
∑

y∈(Bu−p(0)\R(u))∩Zd , y �=0

|y|−1/p

and, so, is bounded by the product of

card{(Bu−p (0) \ R(u)) ∩ Z
d} and sup{y ∈ (Bu−p (0) \ R(u)) ∩ Z

d : |y|−1/p}.
Since the first factor is bounded by Cu−p(d−1) and the second by Cu, it follows that E1 ≤
Cu−pd+p+1. A similar method shows that E3 ≤ Cu−pd+p+1.

We estimate E2 as follows. For all y ∈ Z
d , let Qy denote the grid cube with center y. For

all s = 1, 2, . . . , let M(s) := card{y ∈ Z
d : |y| ∈ [s, s + 1)}. Since there is a constant C > 0

such that, for all x ∈ Qy and all y ∈ Z
d ,

||y|−1/p − |x|−1/p| ≤ C|y|−1/p−1,

it follows that

E2 ≤ C

u−p∑
s=1

s−1/p−1M(s) ≤ C

u−p∑
s=1

s−1/p+d−2 ≤ C max(1, u−pd+p+1),

since M(s) ≤ Csd−1. Combining the bounds for E1, E2, and E3 yields Lemma 2.1.

Letting s := u−p in (2.1), note that, to prove Theorem 1.1, it suffices to show that

lim
t→∞ t1/α

∫ ∞

1
P[D(s) > t] 1

p
s−1/p−1 ds = β1/α. (2.3)

We observe that (2.3) is plausible because Lemma 2.1 suggests that P[D(s) > t] is close to 1
for t 
 βsα/p and close to 0 for t � βsα/p, indicating that the left-hand side of (2.3) behaves
like

lim
t→∞ t1/α

∫ ∞

(t/β)p/α

1

p
s−1/p−1 ds = β1/α.
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To put this heuristic argument on a rigorous footing, we rewrite the integral in (2.3) as a sum
of two integrals. The first integral is estimated via Bernstein’s inequality and the second is
handled using Poisson approximation arguments. We do this as follows.

For all v > 0, let m(v) := sup{s : E[D(s)] ≤ v}. Recalling that α := pd − 1, from
Lemma 2.1 we obtain

E[D(s)] = βsα/p + O(max(1, sd−1−1/p)) = βsα/p(1 + max(O(s1/p−d), O(s−1))). (2.4)

It follows, for large v and p ∈ (1/d, ∞), that

m(v) =
(

v

(1 + o(1))β

)p/α

,

where o(1) tends to 0 as v → ∞. Given fixed t ≥ β and ε ∈ (0, 1
2 ), define the following two

integration domains:

I1 := [1, m(t − t1/2+ε)), I2 := [m(t − t1/2+ε), ∞).

Rewrite the left-hand side of (2.3) as

lim
t→∞ t1/α

∫
I1

P[D(s) > t] 1

p
s−1/p−1 ds + lim

t→∞ t1/α

∫
I2

P[D(s) > t] 1

p
s−1/p−1 ds =: S1 + S2,

provided that both limits exist.
To prove Theorem 1.1 it suffices to show that S1 = 0 and S2 = β1/α . We first show that

S1 = 0. Bernstein’s inequality [15, p. 12] for sums of independent, bounded random variables
yields, for all s ∈ I1,

P[D(s) > t] ≤ exp

( −(t − E[D(s)])2

2 E[D(s)] + 4t/3

)
.

Using the bounds infs∈I1(t − E[D(s)]) ≥ t1/2+ε and sups∈I1
E[D(s)] ≤ t − t1/2+ε < t , for all

s ∈ I1 we thus obtain

P[D(s) > t] ≤ exp

(−(t1/2+ε)2

10t/3

)
= exp

(
−3t2ε

10

)
.

It follows that

S1 ≤ lim sup
t→∞

t1/α exp

(
−3t2ε

10

) ∫ ∞

1

1

p
s−1/p−1 ds = 0.

We next show that S2 = β1/α . By approximating D(s) with a Poisson random variable
we establish the following simplified expression for S2. Here and elsewhere, Po(λ) denotes a
Poisson random variable with mean λ.

Lemma 2.2. For all p ∈ (1/d, ∞), we have

S2 = lim
t→∞ t1/α

∫ ∞

m(t−t1/2+ε)

P[Po(E[D(s)]) > t] 1

p
s−1/p−1 ds.

Proof. For all y ∈ Z
d , let py := E[1{Uy≤|y|−1/p}] = |y|−1/p. Letting dTV be the total varia-

tion distance, it follows from well-known Poisson approximation bounds (e.g. Equation (1.23)
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of [3]) that

dTV(D(s), Po(E[D(s)])) ≤
( ∑

y∈Ls(0)

py

)−1 ∑
y∈Ls(0)

p2
y .

By an analysis similar to that in the proof of Lemma 2.1 and (2.4), for d > 2/p we obtain

∑
y∈Ls(0)

p2
y = pdωd

pd − 2
sd−2/p(1 + o(1)),

whereas, for 1/p < d ≤ 2/p, we have
∑

y∈Ls(0)

p2
y = O(1).

It follows from Lemma 2.1 that, for d > 2/p, we obtain

dTV(D(s), Po(E[D(s)])) ≤ (βsd−1/p(1 + o(1)))−1β

(
pd − 1

pd − 2

)
sd−2/p(1 + o(1))

= O(s−1/p),

whereas, for 1/p < d ≤ 2/p, we have

dTV(D(s), Po(E[D(s)])) = O(s−d+1/p).

Letting
e(s, t) := P[D(s) > t] − P[Po(E[D(s)]) > t],

it follows that, uniformly in t ∈ (0, ∞), we have |e(s, t)| = O(s−ξ ), where ξ = 1/p for
d > 2/p and ξ = d − 1/p for 1/p < d ≤ 2/p. We now rewrite S2 as

S2 = lim
t→∞ t1/α

∫ ∞

m(t−t1/2+ε)

(P[Po(E[D(s)]) > t] + e(s, t))
1

p
s−1/p−1 ds

and show that the term containing e(s, t) is negligible.
Recall that

m(t − t1/2+ε) =
(

t − t1/2+ε

(1 + o(1))β

)p/α

,

where, here and in the remainder of this section, o(1) tends to 0 as t → ∞. It follows that∫ ∞

m(t−t1/2+ε)

e(s, t)s−1/p−1 ds = O

(∫ ∞

m(t−t1/2+ε)

s−ξ−1/p−1 ds

)
= O(t−p/α(ξ+1/p))

and, therefore, that

lim
t→∞ t1/α

∫ ∞

m(t−t1/2+ε)

e(s, t)s−1/p−1 ds = 0.

We thus obtain Lemma 2.2.

It is now straightforward to show that S2 = β1/α . Letting z := βsd−1/p/t , whence s =
(tz/β)p/α and E[D(s)] = tz(1+O((tz)−ρ)) with ρ := ρ(p, d) > 0, we obtain, via Lemma 2.2,

S2 = lim
t→∞

β1/α

α

∫ ∞

1+o(1)

P[Po(tz(1 + O((tz)−ρ))) > t]z−1/α−1 dz.
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The integrability of the integrand on [1 + o(1), ∞) gives, for all γ > 0,

S2 = lim
t→∞

β1/α

α

∫ ∞

1+γ

P[Po(tz(1 + O((tz)−ρ))) > t]z−1/α−1 dz + γ · O(1).

For all z ∈ [1+γ, ∞), we have P[Po(tz(1+O((tz)−ρ))) > t] → 1 as t → ∞. The dominated
convergence theorem yields

S2 = β1/α

α

∫ ∞

1
z−1/α−1 dz + γO(1) = β1/α + γ · O(1).

Now let γ → 0 to obtain S2 = β1/α , as desired.

3. Proof of Theorem 1.2

We prove Theorem 1.2 by showing, for all x ∈ Z
d , the existence of an event E := E(x) ⊂ �,

with P[E] = 1−o(1), such that on E there is a path π consisting of N edges in Gp(Zd) joining
0 to x, where N ≤ 4(2 + log log |x|). Here and in the sequel, o(1) denotes a quantity tending
to 0 as |x| → ∞.

Constructing the path π would be easy if the balls of influence at 0 and x both had radius
at least |x|, for then π would consist merely of the single edge (0, x). In general, the balls of
influence at 0 and x have much smaller radii and the path π thus needs to join a sequence of
balls such that consecutive balls contain each other’s centers.

The heart of the proof will consist of constructing a sequence of nodes of cardinality roughly
2 log log |x| with these properties: the first node, 0′, is at distance at most 1

2 log log |x| from 0;
the last node, x′, is at distance at most 1

2 log log |x| from x; and the edges defined by consecutive
nodes are in Gp, i.e. the balls of influence at consecutive nodes contain each other’s centers.
Since 0 and 0′ can be joined with a path of at most log log |x| edges, and likewise for x and
x′, we can obtain a path π consisting of roughly 4 log log |x| edges. The construction of this
sequence of nodes depends critically on an intermediate node, denoted here by P0, that has an
unusually large ball of influence. Before defining 0′, P0, and x′, we need some terminology.

For all x ∈ R
d and r > 0, let L+

r (x) and L−
r (x) denote the lattice points in the upper and

lower hemispheres of radius r centered at x. That is, L+
r (x) := Br(x) ∩ (Zd−1 × Z

+) and,
similarly, L−

r (x) := Br(x) ∩ (Zd−1 × Z
−). Here Z

+ := {1, 2, . . . } and Z
− := {−1, −2, . . . }.

3.1. Definition of 0′, P0, and x′

Throughout, we appeal to the following elementary fact. Recall that log s is short for logpd s.

Lemma 3.1. Let U1, . . . , Un be independent and identically uniformly distributed on [0, 1].
Then, for all n > pd, we have

min
i≤n

Ui ≤ K log n

n

with probability at least 1 − n−K .

In the sequel, we fix K to be large, with a value to be determined later.

3.1.1. Definition of 0′. Let E0 := E0(x) be the event that there is a node z ∈ L−
(1/2) log log |x|(0)

such that

Uz ≤ K log(log log |x|)d
(log log |x|)d .
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Clearly, E0 depends only on Uz, z ∈ L−
(1/2) log log |x|(0). In case more than one node in

L−
(1/2) log log |x|(0) satisfies the last bound, we choose z to be that node with smallest lexico-

graphical order.
By Lemma 3.1, P[E0] ≥ 1 − C(log log |x|)−dK . Given E0 we let 0′ := z. Note that 0′ is

random and that, since pd > 1, for all large |x| we have

U
−p

0′ ≥ 2 log log |x|. (3.1)

Inequality (3.1) will be important in the sequel. For now note that, since Gp(Zd) connects
adjacent lattice points, it follows that dp(y, x) ≤ 2|y − x| for all x, y ∈ Z

d , i.e. that

dp(0, 0′) ≤ log log |x|. (3.2)

3.1.2. Definition of x′. Similarly, given x, with probability at least 1 − C(log log |x|)−dK there
is an event Ex such that there is a node x′ ∈ L−

(1/2) log log |x|(x) on Ex with weight

U
−p

x′ ≥ 2 log log |x|.
Clearly dp(x, x′) ≤ log log |x| and Ex depends only on Uz, z ∈ L−

(1/2) log log |x|(x).

3.1.3. Definition of P0. Assume without loss of generality that the components of x have even
parity, meaning that x/2 ∈ Z

d . Consider the event, Ex/2, that there is a node P0 ∈ L|x|/10(x/2)

with

UP0 ≤ K log(|x|)d
|x|d .

Lemma 3.1 implies that P[Ex/2] ≥ 1 − C(|x|−dK ). We note that, for large |x|,
U

−p
P0

≥ 2|x| (3.3)

since pd > 1.

3.2. Construction of the path π via 0′, P0, and x′

It will suffice to show that there is an event E := E(x), with P[E(x)] = 1 − o(1), such that
on E there are two paths, each having at most 2 + 2
log log |x|� edges, with one path joining
P0 to 0 and the other joining P0 to x. It will be enough to show the existence of a path between
P0 and 0, for the method can be repeated verbatim to yield the path between P0 and x. We first
introduce some additional terminology.

We abbreviate our notation by letting b := pd. Note that b > 1 by assumption. Fix ε ∈ (0, 1)

and x ∈ Z
d with |x| large. For all j = 1, 2, . . . , let

rj := rj (x, ε) := |x|b−j (1−ε)

and note that rj ↓ 1 and 1 < rj < |x| for all j = 1, 2, . . . . We record an elementary fact.

Lemma 3.2. rj+1 = r
β(p,d,ε)
j , where β(p, d, ε) := b−1+ε.

For all j = 1, 2, . . . , consider the following disjoint ‘semi-annular’ regions of lattice points:

Aj := [(L+
rj

(0′) − L+
rj+1

(0′)) \ L+
|x|/10(x/2)].

The construction of the path joining P0 to 0 is facilitated by the following four lemmas.
The first three lemmas show that, for all j, 1 ≤ j ≤ 
log log |x|� + 1, there are points
Pj ∈ Aj such that (Pj , Pj−1) and (P
log log |x|�+1, 0′) belong to Gp(Zd). The fourth lemma
shows that this happens on an event with probability 1 − o(1). By consecutively linking
Pj , 0 ≤ j ≤ 
log log |x|�+1, and 0′, we construct a path joining P0 to 0′ with 
log log |x|�+2

https://doi.org/10.1239/jap/1158784937 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784937


674 J. E. YUKICH

edges. Since 0′ is within 1
2 log log |x| of 0, we need at most 
log log |x|� edges to join 0′ to 0

(recall (3.2)). This gives a path joining P0 to 0 with at most 2
log log |x|� + 2 edges. Since
2 + 2
log log |x|� ≤ 4 + 2 log log |x|, we obtain Theorem 1.2, as desired. We now turn to our
four lemmas.

Lemma 3.3. There exists an event E1, with P[E1] = 1 − O(r−dK
1 ), such that on E1 there is a

node P1 ∈ A1 which is linked to P0, i.e. the edge (P0, P1) is in Gp(Zd).

Proof. The number of lattice points in A1 is 
(|x|db−1+ε
), i.e. there is a constant C > 0

such that the number of lattice points is bounded from above by C(|x|db−1+ε
) and bounded

from below by C−1(|x|db−1+ε
). Lemma 3.1 implies that there is an event E1, depending only

on {Uz}z∈A1 and with

P[E1] = 1 − O(|x|−dKb−1+ε

),

such that, for large |x|, E1 implies the existence of P1 ∈ A1 with

UP1 ≤ K log(|x|db−1+ε
)

|x|db−1+ε
.

Again, if there is more than one node in A1 satisfying this inequality, we choose the one with
smallest lexicographical order. Since b := pd it follows for large |x| that P1 has weight

U
−p
P1

≥ |x|bε

(K log(|x|db−1+ε
))p

≥ 2|x|. (3.4)

We now show that P1 is linked to P0. It suffices to show that

|P0 − P1| ≤ min(U
−p
P0

, U
−p
P1

).

However, |P0 − P1| ≤ |P0| + |P1| ≤ 2|x|, so Lemma 3.3 follows from (3.3) and (3.4).

Given x, let m := m(x) denote the largest integer such that rm ≥ log log |x|; m is well
defined since rj ↓ 1. If t := [1/(1 − ε)] log log |x| then

|x|b−t (1−ε) = |x|1/log|x| = b,

showing that m is bounded by t . The next lemma extends the arguments of Lemma 3.3 and
builds a path of m edges from P0 to a node Pm ∈ Am.

Lemma 3.4. For all j, 1 ≤ j ≤ m, there is an event Ej , depending only on {Uz}z∈Aj
, such

that

(i) P[Ej ] = 1 − O(r−dK
j ), and

(ii) on each Ej there is a node Pj ∈ Aj such that, on Ej−1 ∩ Ej , the edge (Pj−1, Pj ) is
in Gp.

Proof. Since card{Aj } = 
(rd
j ), Lemma 3.1 implies that for large |x| there is an event Ej ,

with P[Ej ] = 1 − O(r−dK
j ), which depends only on {Uz}z∈Aj

and which implies the existence
of a Pj ∈ Aj satisfying

UPj
≤ K log(rd

j )

rd
j

=: Wj .
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It remains to show that

|Pj − Pj−1| ≤ min(U
−p
Pj

, U
−p
Pj−1

) (3.5)

for all j, 1 ≤ j ≤ m. Lemma 3.3 shows (3.5) for j = 1. The maximal distance between points
in Aj and Aj−1 is at most twice rj−1, i.e. |Pj − Pj−1| ≤ 2rj−1. It thus suffices to show that

2rj−1 ≤ min(W
−p
j , W

−p
j−1) = W

−p
j , (3.6)

which holds since W
−p
j−1 ≥ W

−p
j for all j, 1 ≤ j ≤ m.

However, by Lemma 3.2,

W
−p
j = r

pd
j

(Kd log rj )p
= ((rj−1)

b−1+ε
)pd

(Kdb−1+ε log(rj−1))p
.

Thus, for all j, 1 ≤ j ≤ m,

W
−p
j

rj−1
= (rj−1)

bε−1

(Kdb−1+ε log(rj−1))p
≥ (rm)b

ε−1

(Kdb−1+ε log(rm))p
,

since the rj are decreasing. By definition of rm and since bε − 1 > 0, the last ratio clearly
exceeds 2 for large |x|, showing (3.6) and completing the proof of Lemma 3.4.

The next lemma shows that we may link Pm and 0′ via a node Pm+1 ∈ Am+1. Combined
with Lemmas 3.2 and 3.3, this builds a path between P0 and 0′ which contains m + 2 edges.

Lemma 3.5. There is an event Em+1, depending only on {Uz}z∈Am+1 , such that P[Em+1] =
1 − O(r−dK

m+1 ), and on E0 ∩ Em ∩ Em+1 there is a point Pm+1 ∈ Am+1 such that the edges
(Pm, Pm+1) and (Pm+1, 0′) both belong to Gp(Zd).

Proof. First, by definition of m and by Lemma 3.2 we have

(log log |x|)β ≤ rβ
m = rm+1 < log log |x|.

By Lemma 3.1, for large |x| there is an event Em+1, with P[Em+1] = 1 − O(r−dK
m+1 ), which

depends only on {Uz}z∈Am+1 and which implies the existence of a point Pm+1 ∈ Am+1 with

UPm+1 ≤ K log(rd
m+1)

rd
m+1

≤ K log(log log |x|)d
(log log |x|)βd

≤ K log(log log |x|)d
(log log |x|)(pd)ε/p

since βd = (pd)ε/p. Since (pd)ε > 1, it follows that, for large |x|, on Em+1 we have

U
−p
Pm+1

≥ 2 log log |x|. (3.7)

Following the arguments in the proof of Lemma 3.4 (with j equal to m + 1 there), we find
that, on Em ∩Em+1, (Pm, Pm+1) is an edge in Gp(Zd). Furthermore, on E0 ∩Em ∩Em+1, the
edge (Pm+1, 0′) belongs to Gp(Zd) if and only if

|0′ − Pm+1| ≤ min(U
−p

0′ , U
−p
Pm+1

). (3.8)

However,

|0′ − Pm+1| ≤ |0′ − 0| + |0 − Pm+1| ≤ log log |x| + rm+1 ≤ 2 log log |x|,
showing that (3.8) follows, using (3.7) and (3.1).
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The last lemma completes the proof of Theorem 1.2.

Lemma 3.6. For all x ∈ Z
d , there is an event E(x), with P[E(x)] = 1 − o(1), such that on

E(x) there exists a path joining P0 to 0 with 4 + 2 log log |x| edges.

Proof. Let E(x) := E0 ∩ Ex/2 ∩ (
⋂m+1

j=1 Ej). On E(x) we have shown that there is a path,
π , joining P0 to 0 via the successive nodes P1, P2, . . . ,Pm, Pm+1, 0′, 0. The number of edges
in π is bounded by m + 2 + 
log log |x|�, where 
log log |x|� denotes an upper bound on the
number of edges between 0′ and 0. Since ε is arbitrary in the definition of t , it follows that
m ≤ 
log log |x|�. Thus, card{π} ≤ 4 + 2 log log |x|.

Finally, we show that P[E(x)] = 1 − o(1). For all j, 1 ≤ j ≤ m + 1, Ej depends only
on {Uz}z∈Aj

and, since the Aj are disjoint, the {Ej }1≤j≤m+1 are independent. Clearly, since
E0 depends on {Uz}z∈Zd−1×Z− , we have independence of E0, E1, E2, . . . , Em+1. Similarly,
Ex/2, E0, E1, E2, . . . , Em+1 are independent.

By independence, we have

P[E(x)] = P

[m+1⋂
j=1

Ej

]
P[E0] P[Ex] P[Ex/2] = (1 − o(1))3

m+1∏
j=1

P[Ej ].

Now, m is bounded by C log log |x| and the definition of rm shows, for large K , that
mr−dK

m+1 → 0 as |x| → ∞. Since 1 − 2s ≤ exp(−s) ≤ 1 − s/2 for small, positive s, it
follows that

m+1∏
j=1

P[Ej ] =
m+1∏
j=1

(1 − O(r−dK
j ))

≥ exp

(
−C

m+1∑
j=1

r−dK
j

)

≥ 1 − C

m+1∑
j=1

r−dK
j

≥ 1 − C

m+1∑
j=1

r−dK
m+1 .

This yields P[E(x)] = 1 − o(1), as desired, completing the proof of Lemma 3.6.

4. Proof of Theorem 1.3

Assume without loss of generality that n has even parity. Partition [0, n]d ∩ Z
d into Q1 :=

[0, 1
2n] × [0, n]d−1 ∩ Z

d and Q2 := ( 1
2n, n] × [0, n]d−1 ∩ Z

d . For all k = 0, 1, 2, . . . , n/2,

write Q1,k := {n/2 − k} × [0, n]d−1 ∩ Z
d and note that Q1 = ⋃n/2

k=0 Q1,k .
The number of nodes in Q1 whose balls of influence have nonempty intersection with Q2 is

N :=
n∑

k=0

∑
i∈Q1,k

1{U−p
i ≥k+1}.
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If we remove these N nodes from Q1 then Gp(Q1) and Gp(Q2) are disconnected, i.e. the graphs
have no edges joining them. Moreover, as the number of nodes in Q1,k equals nd−1, we obtain

E[N ] =
n∑

k=0

nd−1 P[U−p

0 ≥ k + 1] = nd−1
n∑

k=0

(k + 1)−1/p ≤ Cnd−1[n1−1/p ∨ 1],

which is exactly the desired upper bound.
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