LINEAR INEQUALITIES OVER COMPLEX CONES

BY
ABRAHAM BERMAN

Introduction. The basic solvability theorems of Farkas [2] and Levinson [4] were recently extended in different directions by Ben-Israel [1] and Kaul [3].

The theorem stated in this note generalizes both results of Ben-Israel and Kaul and is applicable to nonlinear programming over complex cones.

Notation and preliminaries.
$C^{n}\left[R^{n}\right]$ the n dimensional complex [real] space.
R_{+}^{n} the nonnegative orthant in R^{n}.
For $\alpha=\left(\alpha_{i}\right) \in R^{n}$ satisfying $0 \leq \alpha_{i} \leq \pi / 2$:

$$
T_{\alpha}=\left\{z \in C^{n} ;\left|\arg z_{i}\right| \leq \alpha_{i}\right\}
$$

$C^{m \times n}\left[R^{m \times n}\right]$ the $m \times n$ complex [real] matrices.
For $A \in C^{m \times n}$:
A^{*} the conjugate transpose of A.
$N(A)$ the null space of A.
A nonempty set S in C^{n} is a convex cone if $0 \leq \lambda \Rightarrow \lambda S \subset S$ and $S+S \subset S . S$ is a polyhedral (convex) cone if for some positive integer k there is a $B \subset C^{n \times k}$ such that $S=B R_{+}^{k}$. The polar of a nonempty set S, denoted by S^{*}, is the closed convex cone ([1, Theorem 1.3.a.])

$$
S^{*}=\left\{y \in C^{n} ; \operatorname{Re}(y, S) \geq 0\right\} .
$$

Let $A \in C^{{ }^{\times} \times n}$ and let S be a polyhedral cone in C^{n}. Then $N(A)+S$ is closed (or equivalently $A S$ is closed), e.g. [1, Theorem 3.5].
For more properties and examples of cones consult [1] and the references there.
We mention here that R_{+}^{n} and T_{α} are polyhedral convex cones, R_{+}^{n} is self polar and

$$
\mathrm{T}_{\alpha}^{*}=\left\{\omega \in C^{n},\left|\arg \omega_{i}\right| \leq \frac{\pi}{2}-\alpha_{i}\right\}
$$

Theorem. Let $A \in C^{m \times_{n}}, b \in C^{m}$ and let C be an Hermitian positive semi definite matrix of order m and S a closed convex cone in C^{n} such that $N(A)+S$ is closed.

Then the following are equivalent:
(a) The system
(1) $A x-C y=b$
(2) $x \in S$

Received by the editors April 19, 1971 and, in revised form, July 20, 1971.
(3) $A^{*} y \in S^{*}$
(4) $y^{*} C y \leq 1$
is consistent.
(b) $A^{*} z \in S^{*} \Rightarrow \operatorname{Re}(b, z)+\left(z^{*} C z\right)^{1 / 2} \geq 0$.

Remarks. (1) Choosing C to be the zero matrix the theorem reduces to the solvability theorem of Ben-Israel ([1, Theorem 3.5]).
(2) Choosing $S=T_{\alpha}$, the theorem reduces after a slight change of notation, to the solvability theorem of Kaul [3], since $N(A)+T_{\alpha}$ is closed by the polyhedrality of T_{α}.
(3) The proof is a modification of the one in [3], where the theorem of BenIsrael replaces the theorem of Levinson, and is sketched below.

Proof.

$$
(a) \Rightarrow(b)
$$

(5) $\overline{\operatorname{Re}(A x, z)}=\operatorname{Re}(b, z)+\operatorname{Re}(C y, z)$
by (1)
(6) $\operatorname{Re}(C y, z) \leq\left(z^{*} C z\right)^{1 / 2}\left(y^{*} C y\right)^{1 / 2} \quad$ by the Cauchy-Schwartz inequality. $\leq\left(z^{*} C z\right)^{1 / 2}$
$(5)+(6) \Rightarrow$
$\operatorname{Re}(b, z)+\left(z^{*} C z\right)^{1 / 2} \geq \operatorname{Re}(A x, z)$
$=\operatorname{Re}\left(x, A^{*} z\right) \geq 0 \quad$ if $A^{*} z \in S^{*}$
$\Rightarrow(b)$.
(b) $\Rightarrow(a)$.

Let $\overline{\mathrm{W} \text { denote the set }}$

$$
W=\left\{A x-C y, x \in S, A^{*} y \in S^{*}, y^{*} C y \leq 1\right\}
$$

For the second part of the proof it is crucial to show that W is closed.
Let u be in the closure of W . Then there exist sequences $\left\{x_{k}\right\},\left\{y_{k}\right\}$ and $\left\{u_{k}\right\}$ such that x_{k} satisfies (2), y_{k} satisfies (3) and (4) and $u_{k}=A x_{k}-C y_{k} \rightarrow u$. $\left\{y_{k}\right\}$ can be chosen so that it has a limit point e.g. [3]. Let y be a limit point of $\left\{y_{k}\right\}$. Then $A^{*} y \in S^{*}$, $y^{*} C y \leq 1$ and one has to show that there exists $x \in S$ such that $u=A x-C y$. Since $x_{k i} \in S, A^{*} z \in S^{*} \Rightarrow \operatorname{Re}\left(A^{*} z, x_{k}\right) \geq 0$,

$$
\Rightarrow \operatorname{Re}\left(A x_{k}, z\right) \geq 0 \Rightarrow \operatorname{Re}\left(u_{k}+C y_{k}, z\right) \geq 0 \Rightarrow \operatorname{Re}(u+C y, z) \Rightarrow 0 .
$$

By theorem 3.5 of $[1]\left({ }^{1}\right)$, this is equivalent to the consistency of $A x=u+C y$, $x \in S$ and thus $u \in W$.

Suppose now that (a) is false. Then b is separated from W; and since W is closed, there exist a vector $y_{0} \neq 0$ and a scalar k such that
(7) $\operatorname{Re}\left(A x-C y, y_{0}\right) \geq k>\operatorname{Re}\left(b, y_{0}\right)$
for every x, y satisfying (2), (3), and (4). Substituting $y=0$ in (5) gives

[^0]$\operatorname{Re}\left(x, A^{*} y_{0}\right) \geq k$ for every $x \in S$ and since S is a cone this implies that y_{0} satisfies (3). Thus by (b):
(8) $k>\operatorname{Re}\left(b, y_{0}\right) \geq-\left(y_{0}^{*} C y_{0}\right)^{1 / 2}$. Substituting $x=y=0$ in (7) implies $k \leq 0$ and thus $\left(y_{0}^{*} C y_{0}\right)^{1 / 2}>0$.
Now (7) $+(8) \Rightarrow$
(9) $\operatorname{Re}\left(A x-C y, y_{0}\right)>-\left(y_{0}^{*} C y_{0}\right)^{1 / 2}$
for every x, y satisfying (2), (3), and (4). Let $y_{1}=\left(y_{0}^{*} C y_{0}\right)^{-1 / 2} y_{0}$. Then $y_{1}^{*} C y_{1}=1$ and so y_{1} satisfies (3) and (4), $x=0$ and $y=y_{1}$ satisfy (2), (3), and (4) and substituting them in (9) gives:
$$
-y_{0}^{*} C\left(y_{0}^{*} C y_{0}\right)^{-1 / 2} y_{0}>-\left(y_{0}^{*} C y_{0}\right)^{1 / 2}
$$

Contradiction.

References

1. A. Ben-Israel, Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory, J. Math. Anal. Appl. 27 (1969), 367-389.
2. J. Farkas, Uber die Theorie des einfachen Ungleichungen, J. Reine Angew. Math. 124 (1902), 1-24.
3. R. N. Kaul, On linear inequalities in complex space, Amer. Math. Monthly 77 (1970), 955960.
4. N. Levinson, Linear programming in complex space, J. Math. Anal. Appl. 14 (1966), 44-62.

Université de Montréal, Montréal, Québec

[^0]: ${ }^{(1)}$ The assumption that $N(A)+S$ is closed is needed here. Example 2.5 in [1] shows that it is essential.

