
Canad. Math. Bull. Vol. 16 (1), 1973 

LINEAR INEQUALITIES OVER COMPLEX CONES 

BY 

ABRAHAM BERMAN 

Introduction. The basic solvability theorems of Farkas [2] and Levinson [4] 
were recently extended in different directions by Ben-Israel [1] and Kaul [3]. 

The theorem stated in this note generalizes both results of Ben-Israel and Kaul 
and is applicable to nonlinear programming over complex cones. 

Notation and preliminaries. 
Cn[Rn] the n dimensional complex [real] space. 

R+ the nonnegative orthant in Rn. 
For a=(a , ) e Rn satisfying 0 ^ a , < > / 2 : 

ra = {zGC n ; | a rgz i | ^ a j . 

CmXn[RmXn] the mxn complex [real] matrices. 
For AeCmXn: 

A* the conjugate transpose of A. 
N(A) the null space of A. 

A nonempty set S in Cn is a convex cone ifO<A=>AS <= S and S+S <= S. Sis a 
polyhedral (convex) cone if for some positive integer k there is a B c CnXk such 
that S=BR+. The polar of a nonempty set S, denoted by £*, is the closed convex 
cone ([1, Theorem 1.3.a.]) 

S* = {yeCn;Re(y,S)>0}. 

Let A E CmXn and let S be a polyhedral cone in Cn. Then N(A)+S is closed (or 
equivalently AS is closed), e.g. [1, Theorem 3.5]. 

For more properties and examples of cones consult [1] and the references there. 
We mention here that i?" and Ta are polyhedral convex cones, R+ is self polar 

and 

Ta* = { c o e C M a r g c y i | ^ j - a i } . 

THEOREM. Let A e CmXn, beCm and let C be an Hermitian positive semi definite 
matrix of order m and S a closed convex cone in Cn such that N(A)+S is closed. 

Then the following are equivalent: 
(a) The system 
(1) Ax-Cy=b 
(2) x e S 
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(3) A*yeS* 
(4)y*Cy£l 

is consistent. 
(b) A*z 6 S*=>Re(b, z)+(z*Cz)1 / a^0. 

REMARKS. (1) Choosing C to be the zero matrix the theorem reduces to the 
solvability theorem of Ben-Israel ([1, Theorem 3.5]). 

(2) Choosing S=Ta9 the theorem reduces after a slight change of notation, to 
the solvability theorem of Kaul [3], since N(A) + Ta is closed by the polyhedrality 
ofTa. 

(3) The proof is a modification of the one in [3], where the theorem of Ben-
Israel replaces the theorem of Levinson, and is sketched below. 

Proof. 
(a)=>(b). 

(5) Re(Ax, z) = Re(6, z)+Re(Cy, z) by (1) 
(6) Re(Cy, z) < (z*Cz)1/2(7*Çy)1/2 by the Cauchy-Schwartz inequality. 

< (z^Cz)1/2 by (4) 
(5)+(6)=> 
Re(6, z) + (z*Cz)1/2 > Rc(Ax9 z) 

= Re(x, A*z)^0 iîA*z e S* by (2) 

(b)=>(a). 

Let W denote the set 

W = {Ax-Cy, xeS, A*y e S*9 y*Cy ^ 1} 

For the second part of the proof it is crucial to show that Wis closed. 
Let u be in the closure of W. Then there exist sequences {xk}, {yk} and {uk} such 

that xk satisfies (2), yk satisfies (3) and (4) and uk—Axk—Cyk-+u.{yk} can be chosen 
so that it has a limit point e.g. [3]. Let y be a limit point of {yk}. Then A*y e S*9 

y*Cy<\ and one has to show that there exists x e S such that u=Ax—Cy. Since 
xk G S, A*z G S*=>Re(A*z, xk)>0, 

=> Re(Axk, z)>:0=> Re(uk+Cyk9 z) > 0 ==> Re(u+Cy, z) => 0. 

By theorem 3.5 of [IK1), this is equivalent to the consistency of Ax=u+Cy9 

x G S and thus ueW. 
Suppose now that (a) is false. Then b is separated from W\ and since W is 

closed, there exist a vector y0 =£0 and a scalar k such that 

(7) Rc(Ax-Cy9y0) >k> Re(b9y0) 
for every x9 y satisfying (2), (3), and (4). Substituting j = 0 in (5) gives 

C1) The assumption that N(A)+S is closed is needed here. Example 2.5 in [1] shows that it 
is essential. 
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Re(x, A*y0)^k for every x e S and since S is a cone this implies that y0 satisfies 
(3). Thus by (b): 

(8) k>Re(b,y0)^-(yoCyoy^. Substituting x=y=0 in (7) implies k<>0 and 
thus (j*Cjo)1/2>0. 

Now(7)+(8)=> 

(9) Rc(Ax-Cy,y0) > -(y0*^0)1/2 

for every x, y satisfying (2), (3), and (4). Lety! = (y*Cy0)-
1/2y0. Then ytCyx=\ and 

so j x satisfies (3) and (4), x=0 and y=yx satisfy (2), (3), and (4) and substituting 
them in (9) gives: 

-yïC{y*CyQTwyQ > -(yîCytf*. 
Contradiction. 
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