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Abstract

Data mining and knowledge discovery (DMKD) focuses on extracting useful information from data. In the
chemical process industry, tasks such as process monitoring, fault detection, process control, optimization, etc.,
can be achieved using DMKD. However, the selection of the appropriate method for each step in the DMKD
process, namely data cleaning, sampling, scaling, dimensionality reduction (DR), clustering, clustering analysis
and data visualization to obtain meaningful insights is far from trivial. In this contribution, a computational
environment (FASTMAN) is introduced and used to illustrate how method selection affects DMKD in chemical
process data. Two case studies, using data from a simulated natural gas liquid plant and real data from an industrial
pyrolysis unit, were conducted to demonstrate the applicability of these methodologies in real-life scenarios.
Sampling and normalization methods were found to have a great impact on the quality of the DMKD results. Also,
a neighbor graphs method for DR, t-distributed stochastic neighbor embedding, outperformed principal component
analysis, a matrix factorizationmethod frequently used in the chemical process industry for identifying both local and
global changes.

Impact Statement

Data mining and knowledge discovery (DMKD) can be a powerful tool in the analysis of chemical plant data.
However, method selection and implementation can be a difficult task. In this contribution, all stages of the
DMKD process are considered in detail, examining the fundamentals of various methods as well as practical
insights on how to select and tune these methods. Both simulated and real plant data are analyzed to showcase
the properties of data cleaning, sampling, scaling, dimensionality reduction, clustering, and cluster analysis,
and their applicability in real-life scenarios. Also, a friendly graphic user interface to implement DMKD is
presented.

1. Introduction

The increasing complexity of chemical processes along with the requirements for safety, efficiency, and
environmental responsibility makes it essential to have agile and fast methods to visualize and interpret
plant data. Activities such as product scheduling, fault detection, root cause analysis, and maintenance
rely on an accurate representation of the often large and multidimensional datasets generated by plant
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instrumentation. In addition to the individual instruments and their historic behavior, the interactions
between different components of the process can provide vital information about the dynamic behavior
of the plant. However, the interpretation of the complete dataset in order to capture the overall state of a
given process in a concise way, so that an operator can readily understand it, is not a trivial task. This is
especially complex due to the size of the datasets being generated in by the process and the velocity at
which more data is added (Ge et al., 2017). In this context, computational developments in data science
and artificial intelligence (AI) have gained great interest in recent years as means to overcome these
challenges.

A computational advancement of special interest for chemical process industrial application is data
mining and knowledge discovery (DMKD). A typical flowchart for the implementation of DMKD is
shown in Figure 1. The goal of DMKD is to train a learning agent (i.e., a model) to find patterns previously
unknown in a given data set. The learning agent can recognize such patterns in the data and provide an
interpretable representation by performing twomain tasks: dimensionality reduction (DR) and clustering.
In the former, the high-dimensional space defined by the different variables involved in the system is
reduced to a low-dimensional representation (typically 2-D or 3-D) (Tan et al., 2016). In the latter, a
measure of similarity is used to find relationships among the low-dimensional embedded datapoints. The
result is a visually accessible and quick to understand description of the system in which relevant patterns
have emerged (Joswiak et al., 2019). A human agent (i.e., a plant operator) can then interpret those
patterns to assign them physical meaning according to the nature of the domain and previous knowledge
of the system. In this sense, DMKD helps process the data in such a way that a human agent can
understand it andmake decisions based on this understanding. Since the human agent relies on the simple
low-dimensional representation of the complex high-dimensional original data, the capabilities and
limitations of the methods being used must be well understood to ensure the correspondence between
the data representation and the actual physical phenomena. Furthermore, although DR and clustering are
the main tasks to be performed in DMKD, the previous steps shown in Figure 1, namely data cleaning,
sampling, and normalization, play a major role in both the quality and the interpretation of the end result,
and therefore should be considered an integral part of the analysis.

DMKD methods have been deployed in the context of chemical processing and manufacturing for a
variety of applications. For industrial applications, machine learning (ML) methods are mainly used for
information extraction, data visualization, density estimation, outlier detection, and other tasks that are
instrumental for process monitoring and visualization (MacGregor and Cinar, 2012; Zhu et al., 2018;
Joswiak et al., 2019), root cause analysis of faults (Yu and Qin, 2008; Qin, 2012; Han et al., 2018),
maintenance scheduling (Wocker et al., 2020), decision support, life cycle management, product quality
assurance, and defect prognosis (Sharp et al., 2018; Tao et al., 2018; Zhao et al., 2020). All these
applications are closely related to the concept of smart manufacturing (Christofides et al., 2007) and the
effective use of digital technologies for the improvement of chemical plants. Conventionally applied

Figure 1. Typical flow of a data mining and knowledge discovery methodology.
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DMKDmethods in the process industry include principal component analysis and its variations, K-Means
clustering, kernel density estimation, self-organizing maps, Gaussian mixture models, manifold learning,
and support vector data description (Qin, 2012; Ge et al., 2017). In addition to these methods, a variety of
new DMKD implementations are being continuously developed and as the number of options available
increases, so does the need for an understanding of their applicability in industrial settings.

While an increasing amount of industries start to incorporate both classical and new DMKD
methodologies, there are still some challenges limiting more widespread usage of these new methods
(Chiang et al., 2017). One challenge is that of navigating the variety ofmethods available and selecting the
1 best suited for a given application, while considering the benefits, risks, and ease of implementation.
Furthermore, the tuning of the DR and clustering algorithms’ hyperparameters might have a great impact
on performance and reproducibility (Wuest et al., 2016). Also, and no less important, is the challenge of
data preprocessing and data preparation which has shown to be highly time consuming in real-life
applications (Chiang et al., 2017; Dogan and Birant, 2021). The path to overcome these challenges would
include the development of algorithms with few hyperparameters oriented to mitigate these problems and
able to deal with imperfect datasets. Furthermore, and perhaps more immediate, a sound working
knowledge of the foundations of these methods so that an informed decision can be made for their
selection, and their implementation can be streamlined. This work focuses on the latter, aiming to provide
some practical insights for the deployment of DMKD methods in the process industries.

In this contribution, DMKD was implemented using a variety of data preprocessing, DR, clustering,
cluster analysis, and visualization methods to examine the behavior of 2 different chemical plants: a
simulated natural gas liquid plant and a real pyrolysis reactor. By producing simulated data that included
both global (e.g., general plant behavior) and local (e.g., controller dynamics) changes, the ability of
different DMKD ensembles to effectively detect useful patterns in these 2 scenarios is demonstrated. The
effect of data preprocessing methods is also reported. The use of simulated data allows for verification of
findings (since the actual causes of the systems’ behavior are known) while the use of real data shows the
applicability of these methods in real-life scenarios. Furthermore, the use of self-organized maps as a
visualization method for both the verification of the clustering results and the tracking of plant drift
through an operation cycle for unsteady-state processes is demonstrated. Additionally, a user-friendly
graphical user interface (GUI) called FASTMAN (FAST MANual data classification) was developed that
conveniently allows for the analysis of datasets not limited to the methods described here, with no
programming knowledge required, is presented. This framework could help extend the use of DMKD
methods in real plant settings and provide a starting point for future developments in automated ML
applications in chemical processes.

The rest of this article is structured as follows: first, an overview of the relevant theoretical aspects is
presented. Second, the computational tools used in this investigation are described, including the GUI
developed. Third, two case studies are used to illustrate the DMKDworkflow and the insights that can be
obtained from these analyses. For each case study, a description of the process and the way the methods
were implemented is presented. Finally, a number of conclusions derived from the 2 case studies are
proposed.

2. Theoretical Background

2.1. Data preprocessing

Data preprocessing is essential to improve data quality, which in turn might have a dramatic effect on the
subsequent steps in the DMKD implementation. For instance, outliers and gross errors represent extreme
values far outside the statistical distribution of practical measurements and, if not purged from the
physically relevant data, could affect the estimates, confidence regions, and other tests performed on the
data. Because of the effect outliers can have on the integrity of a dataset, their detection and removal are
crucial before further analysis (Pearson, 2002; Liu et al., 2004; Corona et al., 2012; Wang et al., 2018).
Also, missing data may arise in process databases from instrument or software errors, and must be
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addressed (e.g., deletion of the sample, missing value estimation) to ensure the integrity of the data
analyses (Imtiaz and Shah, 2008; Xu et al., 2015; Ge et al., 2017). Another issue to consider is the scale of
different variables. In order to prevent the model from relying more heavily on a single variable just
because of its relative magnitude with respect to other variables, a proper scaling must be performed
(Ge et al., 2017). However, this data preprocessing step needs to be considered carefully, since some
models or learning tasks may have requirements on different scales for different variables (García et al.,
2015).

2.1.1. Data cleaning and outlier removal
An outlier is an anomaly that does not follow the statistical distribution of the bulk of the data and can be
heavily influential on the data analysis. On smaller data sets, outliers can be removed simply through
visual inspection. For larger data sets, however, this approach would be extremely inefficient so an
algorithmic method should be used.

Two methods used for outlier detection are z-score and k-nearest neighbor (kNN). The z-score is a
simplemethod for outlier detection on each individual variable of the dataset. The z-score indicates how far
the value of the data point or sample is from its mean for a specific variable. For example, a z-score of
1means the sample point is 1 standard deviation away from its mean. Typically, z-score values greater than
or less than þ3 or �3, respectively, are considered outliers. The z-score is expressed mathematically as

z‐score=
xi� x
σ

, (1)

where σ and x are the standard deviation and mean of the distribution of variable x, respectively, and xi is
the value of the variable x for the i-th sample. It should be noted, however, that outlier detection methods
based on simple statistical tools, like z-score, generally assume that the variables have normal distribu-
tions while neglecting the correlation between variables in a multivariate case.

The kNN is a 1050 algorithm for identifying anomalies in a dataset. The kNN method detects outliers
by exploiting the relationship among neighborhoods in data points (Hautamaki et al., 2004). The farther a
data point is beyond its neighbors, the higher chance the data is an outlier. From a 1050 point of view, kNN
is a supervised 1050 algorithm. However, when applied to outlier’s detection it takes an unsupervised
approach, since the labeling of “outlier” or “not-outlier” in the dataset is entirely based upon threshold
values. The k number of neighbors to be considered is a parameter that needs to be specified.

2.1.2. Sampling
ML applications require datasets to be not only large but also balanced. This means that the number of
instances (i.e., data points) for each class (e.g., a particular plant state) must be well distributed across
classes (Ling and Li, 1998; Mohammed et al., 2020). When this requirement is not met, two approaches
can be taken: oversampling and undersampling. In oversampling, data augmentation methods are used to
generate new datapoints, thus increasing the number of instances for a given class (Chawla et al., 2002). In
undersampling, not all the available instances for a given class are used to bring the number of instances of
all classes to a similar level. In this work, we will focus on applications where large datasets are available
and no oversampling is needed. Therefore, attention will be given to the effects of undersampling on data
analysis and will be referred to as sampling hereafter.When sampling is needed, the ability of the sampled
data to accurately represent the original data is of paramount importance. With this consideration in mind,
we can identify three sampling procedures that aim, in some way or another, to provide a useful
representation of the original data, but with fewer data points. The first approach is random sampling
in which, after segmenting the complete dataset into intervals of equal size, a point is sampled at random
from within each interval. The segmentation of the original dataset prevents regions of data from being
overrepresented as each segment will have 1 representative point. Taking this idea further, the sampling
and averagemethod take the average of all points within each interval, thus including information from all
points in each interval. These 2 methods sample equally along the dataset, which is acceptable if the data
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does not show rapid changes, or all the classes have approximately the same number of datapoints. In
some applications, however, a method capable of identifying regions in the dataset where less data are
needed (i.e., monotone regions) and regions where more data are needed (i.e., rapidly variable regions)
might be preferred. Amethod based on the condensedNearest Neighbor (cNN) algorithm is an example of
such approach (Hart, 1968). In cNN, data points that are similar are identified and classified. Using this
information, the algorithm produces a reduced dataset in which the highly variable regions (that contain
more classes) are more densely sampled.

2.1.3. Scaling
Most dimensionality reduction and clustering methods are sensitive to the relative magnitude of the
variables included in the dataset. For example, in a chemical reactor 1 could have the vessel temperature
being measured on the order of 1�102 while the exit concentration is being measured on the order of
1�10�1. Such a difference in themagnitudes of themeasured variableswill cause the vessel temperature to
overpower any appreciable observations associated with the exit concentrations, thus inducing errors in the
data analysis. Among scaling methods, two main activities are defined: standardization and normalization.
In standardization, a known probability distribution (e.g., a Gaussian distribution) is assumed for the data.
The z-score method, previously discussed for outlier detection, falls into this category, as it is based on the
probability of a score occurring within the normal distribution of the data.When applied for scaling, z-score
enables us to compare two different scores that are from different normal distributions of the data.

In normalization, the assumption of a known probability distribution is removed, and the scaling is
performed using estimators from the dataset itself. Methods such as over range, over min, and over mean
are included in this category (García et al., 2015). Over range, normalization is used to scale the data from
0 to 1. Over max or over min normalization is done by dividing the raw data by themaximum orminimum
(minimum value must not be 0) values (Pedregosa et al., 2011). Over the mean normalization scales each
variable on a 0 to 1 scale by dividing each value by the mean value of the variable. Finally, over min–max
normalization performs a linear transformation on the original data (Han et al., 2011). For a point x the
scaled value xscaled using a min–max scaler is given by

xscaled =
x� xmin

xmax� xmin
, (2)

where xmin and xmax are the minimum and maximum values of x in the dataset.

2.2. Dimensionality reduction

Dimensionality reduction is the process of reducing the number of variables or attributes under consid-
eration. Generally, there are two major groups of dimensionality reduction methods: matrix factorization
and neighbor graphs. In matrix factorization, the original high-dimensional space is decomposed as the
product of two lower dimensional matrices and then an optimization algorithm is implemented to
minimize the reconstruction error, obtained from the difference between the actual values in the original
space and those computed from the product of the twomatrices (Chiang et al., 2000). In neighbor graphs, a
mathematical graph is built in the high-dimensional space, that is, including all the variables, and then
embedded in a lower dimensional space using a topological manifold (McInnes et al., 2018).

2.2.1. Matrix factorization
Among matrix factorization methods, one of the most widely used approaches is Principal Component
Analysis (PCA). PCA focuses on models with latent variables based on linear-Gaussian distributions in
which a set of orthogonal and uncorrelated vectors are foundandordered by the amount of variance explained
in their directions (Chiang et al., 2000). The latter is determined by solving the eigenvalue problem given as

S=
1

n�1
XTX =VΛVT , (3)
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where X∈Rn�m is the matrix containing the observations in the original high-dimensional space, S is the
sample covariance matrix, n is the number of observations,m is the number of variables, V∈Rm�m is the
matrix of loading vectors and Λ∈Rm�m is the diagonal matrix containing the ordered non-negative real
eigenvalues. The vectors corresponding to the largest singular values (the square of the eigenvalues) are
typically retained and form a loading matrix, P∈Rm�a, where a is the number of singular values to be
retained. The projection in the low-dimensional space is obtained as T =XP (Chiang et al., 2000).
Because of the covariance analysis implicit in PCA, the method is limited to use only second-order
information from the observed space and cannot incorporate prior knowledge. Several algorithms (kernel
PCA (Lee et al., 2004), probabilistic PCA (Kim and Lee, 2003), multilinear PCA (Lu et al., 2006)) based
on PCA have been developed to address these issues. Independent component analysis (ICA) is another
matrix factorization technique in which the latent variables are assumed non-Gaussian and mutually
independent. The components obtained are not orthogonal, and the observed variables (i.e., the original
space) can be obtained as linear combinations of the latent space (i.e., the lower dimensional space). Thus,
it requires higher order statistics to recover statistically independent signals from the observation of an
unknown linear mixture. Due to these characteristics, ICA becomes useful for cases where PCA
applicability is limited and higher order information must be included (Hyvärinen and Oja, 2000; Cao
et al., 2003). Additional discussions on PCA variants can be found elsewhere (Gajjar et al., 2018; Lu et al.,
2018; Sundaramoorthy et al., 2021).

2.2.2. Neighbor graphs
Neighbor graphsmethods for dimensionality reduction generate a connected graph between the variables in
the original high-dimensional space. Then, the algorithm looks for the topological manifold that minimizes
the reconstruction error while preserving the relationship among the variables from the high-dimensional
space to the low-dimensional embedding (McInnes et al., 2018). Two representative methods for the
neighbor graphs approach are t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton,
2008) and uniformmanifold approximation and projection (UMAP) (McInnes et al., 2018). t-SNEworks by
converting the Euclidean distance between data points into conditional probabilities and tries to minimize
theKullback–Leibler (KL) divergence (Hershey andOlsen, 2007) between the joint probabilities of the low-
dimensional embedding and high-dimensional data (Joswiak et al., 2019). The algorithm starts by
computing the conditional probabilities Pij of xi “being a good neighbor” of xj, these are all the points
from the original dataset x1,…,xn∈Rn. The mathematical quantification of this idea is the probability:

pj∣i =
exp � xi� xj

�� ���� ��2=2σ2� �
P

k 6¼i exp � xi� xj
�� ���� ��2� �

=2σ2
, (4)

where σ2 is the variance that represents the variability of the data with respect to its mean. Next, using a
student t-distribution with 1 degree of freedom, a second set of probabilities (Qij) in the low-dimensional
space is determined and given as

qij =
1þ yi� yj

�� ���� ��2� ��1

P
k 6¼i 1þ yi� yj

�� ���� ��2� ��1 : (5)

Finally, t-SNE optimizes over a set number of iterations, using gradient descent with Kullback–Leibler
divergence as the cost function. The algorithm is stochastic, therefore, multiple executions with different
random seeds will yield different results. It is acceptable to run the algorithm several times and pick the
embedding with the lowest KL divergence. The KL divergence is defined as

KL P∥Qð Þ=
X
i

X
j 6¼i

pij log
pij

qij
: (6)
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t-SNE is more accurate in preserving the local structure because the cost function is proportional to the
joint probability in the high-dimensional space, hence, points that are relatively distant have amuch lower
impact on the cost function.

UMAP aims to find a transformation function for mapping high-dimensional data onto a low-
dimensional plane. This is a clear distinction between t-SNE and UMAP as t-SNE directly optimizes
an embedding. The steps for finding the transformation function are as followed: First, a weighted graph is
computed for the high-dimensional data WH that models the local relationship of neighboring points.
Second, a weighted graph is computed for a low-dimensional representation WL, similarly to the high-
dimensional neighborhood. The low-dimensional representation is then determined by minimizing the
cross entropy (McInnes et al., 2018), given by:

C WH ,WL
� �

=
X
i 6¼j

WH
ij log

WH
ij

WL
ij

 !
þ 1�Wh

ij

� �
log

1�WH
ij

1�Wl
ij

 !
: (7)

By incorporating the second term in Eq. 7, the local relationships are also considered and preserved, in
addition to the global relationships represented by the first term, which is also present in t-SNE(Eq. 6
above). As implemented by McInnes et al. (2018), the most important hyperparameter for UMAP is the
number of neighbors that are considered when constructing the weighted graph. Having a larger number
of neighbors produces more global views of the structure, which preserves a more global structure of the
data. Another important hyperparameter is the minimum distance between datapoints. A lower (or zero)
minimum distance relaxes the constraints on the placement of the points in terms of the distance between
neighbors. This typically leads to dense clumps of data. A large minimum distance typically leads to the
datapoints being sparser in the low-dimensional plane.

2.3. Clustering

Clustering algorithms divide or partition data into natural groups. In our context, the notion of “natural”
implies that the objects in a cluster should be internally similar to each other; but differ significantly from
the objects in the other clusters (Tan et al., 2018).

One way of classifying clusters is as flat or hierarchical, based on the sequence the algorithm follows
when forming the clusters. Flat clustering creates all clusters at the same time. Hierarchical clustering
algorithms, on the other hand, find clusters one by one (Jain and Dubes, 1988). The hierarchical methods
can be further divided into agglomerative and divisive algorithms, corresponding to bottom-up and top-
down strategies. Agglomerative clustering algorithms merge clusters together one at a time to form a
clustering tree which finally consists of a single cluster, the whole dataset. Divisive algorithms are similar
but work in the opposite direction starting from a single cluster and dividing each cluster to sub-clusters
until all vectors are in a cluster of their own (Jain and Dubes, 1988).

Clustering methods can also be classified as centroid-based or density-based, depending on how each
cluster is built. Centroid-based clustering methods assumed a certain distribution within the clusters, and
create new clusters around a point (i.e., a centroid) following this distribution. The number of clusters
(centroids) is usually predefined, but it can also be part of an energy function (Buhmann and Kühnel,
1993). In density-based clustering, no centroids are defined and no distribution of the data within the
clusters is assumed. Density-based clusters are more versatile and powerful but require larger datasets to
perform well (McInnes et al., 2017). In this discussion, focus will be made on two large groups of cluster
methods: flat centroid-based, and hierarchical density-based.

2.3.1. Flat centroid-based clustering
Flat centroid-based clustering algorithms find the splitting of the dataset that minimizes the sum of the
distance between the members of a cluster and the centroid of said cluster. In K-Means for example, K
initial centroids are chosen corresponding to the number of clusters desired (the only hyperparameter for
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this method). Each point in the dataset is assigned to the closest centroid, and the centroid of each cluster is
updated with each iteration based on the points assigned to the cluster (Thomas et al., 2018).

K-Means not only seeks spherical clusters in data (Tan et al., 2016), but it also clusters with roughly
equal number of samples. Therefore, K-Means should never be blindly used to cluster any data without
careful verification of the results. It should also be noted that as the number of clusters is increased, the
number of samples in clusters decreases, which makes this algorithm more sensitive to outliers (Vesanto
and Alhoniemi, 2000).

Another flat centroid-based clustering method called Gaussian Mixture Models (GMM) treats the
dataset as a combination of subsets, each of which is described by a gaussian distribution (Bishop, 2006).
This provides a more flexible approach than that of K-means by assigning a measure of uncertainty to the
assignment of a point to a particular cluster. However, the disadvantages of flat clustering, as will be
described in the next section, are still present.

2.3.2. Hierarchical density-based clustering
Given a measure of proximity, density-based clustering looks for clusters of any shape and without
need of initial centroids or the assumption of equal variables around a point (Gaussian sphere
assumption). Furthermore, density-based clustering does not require every data point to be assigned
to a cluster, allowing for data in sparse regions to be identified as noise. These features provide an
advantage over partitional clustering, since fewer assumptions are made regarding the distribution of
the data, which can become important when dealing with high-dimensional data (McInnes et al.,
2017). A representative example of density-based clustering algorithms is density-based spatial
clustering of applications with noise (DBSCAN) (Ester et al., 1996). To deploy DBSCAN, two
hyperparameters are needed: epsilon (eps), the radius of a neighborhood; and min_samples, the
minimum number of points within the neighborhood radius of a point for such point to be considered
a density point.

Defining the number of clusters to be obtained (a prerequisite for K-Means, for example) can be
difficult when little is known about the real distribution of the data in the high-dimensional space. In this
scenario, the notion of further divided clusters preserving the hierarchical relationship among them has
proved to be useful. Such is the case of clustering algorithms such as hierarchical density-based spatial
clustering of applications with noise (HDBSCAN), which uses hierarchical clustering to improve the
density-based approach provided by DBSCAN (McInnes et al., 2017). In terms of implementation, this
means that the eps hyperparameter for DBSCAN is no longer required to be input manually; but is rather
learned from the clustering algorithm. This allows for clusters with different densities, which could be
desired for higher resolution.

2.3.3. Clustering analysis: subspace greedy search
Once the dimensionality reduction and clustering procedures are performed, further analysis of the
resulting clusters could be needed to extract meaningful conclusions. Subspace greedy search (SGS) is
an algorithm that allows for the identification of the variables responsible for the separation between
2 given clusters. To do this, SGS starts by analyzing the lowest dimension, then moves to higher
dimensions until no possible subspaces are left. The k-nearest neighbor distance (k-distance) between
the clusters for each subspace is used as a score to compare the different subspaces that contain the same
dimension. The lower scores are discarded and the highest move on to further analysis. The basic idea is
inspired by Micenkova’s concept of explanatory subspace (Micenková et al., 2013), which character-
izes differences between clusters by greedy searching for the most contributing combination of
variables. The implementation of a greedy algorithm dramatically reduces the computational cost for
searching the target combination of variables, which allows such algorithm to be implemented in real-
time scenarios for fault diagnosis. A detailed description and implementation of SGS can be found
elsewhere (Zhu et al., 2018).

e18-8 Luis A. Briceno-Mena et al.

https://doi.org/10.1017/dce.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.21


2.4. Data visualization: self-organizing maps

Parallel to dimensionality reduction and clustering, other 1050 tools could be implemented for pattern
recognition and data visualization. A self-organizing map (SOM), also known as a Kohonen network, is a
neural network used to visualize complicated, high-dimensional data (Kohonen and Somervuo, 2002). A
SOM is described formally as a nonlinear, ordered, smooth mapping of high-dimensional input data
manifolds onto the elements of a regular, low-dimensional array, and is therefore a method to do
dimensionality reduction. It simultaneously performs vector quantization and topographical preservation
while representing complex multivariate data on a two-dimensional grid (Kohonen, 1995).

The visualization abilities of SOM are extremely helpful for the preprocessing of unlabeled plant data
and viewing the clustering structure of a dataset. A SOM consists of components called nodes or neurons.
Each node is associated with a weight vector of the same dimension as the input data vectors, and a
position in the map space. From the weight vector, a corresponding map for each of the variables can be
extracted (component maps), which allows the identification of correlations between the components and
the overall distribution of the data. The nature of the SOM makes it possible to be utilized for various
industrial applications, such as data visualization, process monitoring, etc. (Ge et al., 2017). Since SOM
can cluster data without knowing the class memberships of the input data, features inherent to the problem
can be detected (Alhoniemi et al., 1999). Because the SOM algorithm performs a topology-preserving
mapping from high-dimensional space onto map units, relative distances between data points are
preserved. This latter characteristic enables generalization, that is, the network can interpolate between
previously encountered inputs (Kohonen, 2012).

As described in Section 2, the DMKDworkflow involves making a number of decisions regarding the
methods to be used and the corresponding hyperparameters. In the following sections, an exploration of
how these decisions influence the overall analysis is presented. First, a user-friendly graphic interface for
easy DMKD analysis is described. Then, different methods are implemented on simulated data, where the
actual patterns in the plant are known, to investigate the methods’ ability to detect such patterns. Lastly,
real industrial data is used to showcase the intricacies of implementing DMKD in real life settings.

3. Materials and Methods

3.1. Data analysis environment

A Python-based data analysis graphical user interface, called FASTMAN (FASTMANual data classification),
was developed using Python libraries (NumPy, pandas, sci-kit learn, etc.) to facilitate the use and
manipulation of different methods for data preprocessing, dimensionality reduction, clustering, and
cluster analysis. The data analysis methods available in FASTMAN are summarized in Table 1. FASTMAN

asks the user to select a method for each step of the DMKD methodology, moving from left to right in
Table 1. The user interface also allows to go back at any point and change the method selection. It is worth
noting that although not all the methods available in FASTMAN are demonstrated in this work, a brief
review of their main characteristics is provided for the reader to have a context of the different ways data
mining for chemical process applications could be conducted.

Figure 2 shows an example of a typical view of FASTMAN. Line plots of the process variables are shown
in the top-center panel of thewindow,wheremultiple plots can be extracted for a better visualization using
a contextual menu on the bottom-center panel. The top-left panel allows selection of the data analysis
methods as the user navigates the typical data mining process (cleaning-sampling-normalization-
dimensionality reduction-clustering) using the arrows over the panel. The bottom-left panel prints out
information about the state of the current operation. The top-right panel shows the data visualization
output using dimensionality reduction and clustering or SOM. On the bottom-right, the user can select
which clusters to visualize as well as perform operations for clustering analysis such as cluster merging
and comparison using a contextual menu. In addition to the visualization of data mining results, FASTMAN

enables saving the results as single or multiple files for further analysis and use in a supervised learning
environment.
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Table 1. Data preprocessing and analysis methods available in FASTMAN.

Cleaning Sampling Normalization
Dimensionality
reduction Clustering

Clustering
analysis

Data
visualization

Clean non-numeric
(NaN)

Random sampling z-score PCA K-means SGS cluster
comparison

SOM

cNN-based outlier
removal

Sampling and average Over max ICAa Mean shift PCA cluster
comparison

Clusters
projections

Interpolation for
missing data

kNN Over mean Spectral embeddingb BIRCHc Cluster merging

Over range t-SNE DBSCAN
UMAP HDBSCAN

Import custom clusters
aIndependent component analysis (Hyvärinen and Oja, 2000).
bLaplacian eigenmaps (Belkin and Niyogi, 2003).
cBalanced iterative reducing and clustering using hierarchies (Zhang et al., 1996).
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3.2. Simulation and data collection

When simulated data was used, the overall process model was implemented in the Aspen HYSYS®
simulation environment and data from the simulations were extracted using an in-house Python-based
tool to create scenarios and collect data.

4. Results and Discussion

Results are presented for two case studies: a simulation example and an industrial case study. As stated
before, the use of simulated data allows for verification of findings while the use of real data shows the
applicability of these methods in real-life scenarios. Figures have been converted to grayscale format for
purpose of editorial printing. However, color images will be available in the additional material and will
allow the reader a clearer visualization of the concepts discussed in the paper.

4.1. Case study 1: Natural gas liquids (NGL) simulated plant

4.1.1. Process description
Figure 3 shows a schematic representation of the Natural gas liquids (NGL) process. The recovered raw
gas feed is cooled to �4.8 °C by a gas–gas heat-exchanger (E-100) and then further cooled by a chiller
(E-101) to reach an appropriate temperature for the separation of condensates in a flash separator
(TK-100). The gas stream leaving the separator (TK-100) is further cooled by the gas–gas heat-exchanger
(E-102). Both the cooled gas and condensates are fed to the demethanizer column (T-100) at different feed
locations. More details of the process are given by Zhu et al. (2020). Three types of scenarios were used to
generate datasets. At t=1200 a step change in the feed composition was introduced to generate a global
disturbance and at t=3,500 and t=5,500 two additional steps changes in the pressure setpoint (PIC-100)
and bottoms’ composition setpoint (XIC-100) were introduced to generate local disturbances. The total
dataset included 7,726 points for 62 process variables.

Figure 2. FASTMAN typical view.
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4.1.2. Data preprocessing
Since the data used in this case study comes from a simulation, no outliers or measurement noise is
expected. Therefore, the data cleaning step only included a screening for non-numerical values and
missing data. In this application, the focus of the preprocessing will be on analyzing the effect of scaling/
normalization of the original data set. Two scaling methods (over max, over mean) and one normalization
method (z-score) were compared and visualized using SOM to quantify the effect on final data
classification.

Figure 4 (left) shows the temporal variations of XIC-100.PV process variable (chosen as indicator)
through the different scenarios discussed before. It can be observed that from an undisturbed initial
condition the plant evolves through different changes and operational statuses. Overall, we can identify
four operational conditions including the starting point. Figure 4 (right) illustrates the characterized
process conditions within the SOM plot using z-scores as normalization approach.

4.1.2.1. Effect of sampling. The effect of sampling was investigated using random sampling and cNN.
Data were normalized using z-score in all cases. Figure 5 illustrates the sampling effect visualized as
SOM, 3D projection (using PCA-DBSCAN), and time evolution of XIC 100.PV. Using random sampling
(first row) the data size is reduced by approximately six fold, from 7700 to1400 data points, however, this
reduction does not affect the quality of the dataset and the analysis since the main events are still captured
as indicated by the corresponding SOM, 3D projection and temporal variation of XIC 100.PV. Four main
clusters are identified and properly classified using PCA-DBSCAN. In the case of cNN approach, the
same reduction is obtained, however, clearly some of the events captured in the original data set are lost, as
indicated by the corresponding plot. The SOM features are completely modified and only two main
clusters are identified by the PCA-DBSCANcombination. Some of themain dynamics of theXIC 100.PV
variable, including the stability reached after the changes by action of the controllers, are lost. This
observation is consistent with the main feature of cNN which is to reduce the amount of data points in
monotone regions (stability) and to keep more data points in highly variable regions.

Figure 3. Simulated NGL plant schematic (Chebeir et al., 2019).
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4.1.2.2. Scaling/normalization. Figure 6 illustrates the results comparing alternative scaling/normaliza-
tion approaches: z-scores (first row) and over mean (second row). From these results, it is evident that the
scaling/normalization method has a strong influence on the visualization of the process conditions
through the SOM. Furthermore, the use of SOMwith z-scores is able to characterize the process operating
conditions (brighter separation among operating status). When using over mean, on the other hand, the
separation between the clusters becomes less clear (darker boundaries between the clusters).

Figure 5. Effect of sampling on the visualization and classification for the NGL plant via SOM, 3D
projection, and time evolution of XIC 100.PV process variable. First row shows random sampling and

second row shows cNN sampling.

Figure 4.NGL time evolution of XIC 100.PV variable and partition of operational conditions. (Left) Line
plot. (Right) SOM (Darker regions represent high similarity (clusters) between datapoints, and brighter

regions represent low similarity (separation between clusters)).
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Since the SOM visualization is just one component of the data mining tools, the implications of the
scaling/normalization on the data classification are also analyzed. Figure 6b,c,e,f shows the projection of
one of the operating conditions (pressure change) as identified by the DR-Clustering into the SOM and
into the time evolution for the two approaches. In this case, the combination of PCA-DBSCAN
(min_sample = 60) as DR and clustering tools is utilized. As shown in the figure, the z-score normal-
ization in combination with the PCA-DBSCAN perfectly captures the operating condition identified
previously both in the SOM representation and the time projection. Meanwhile, using over mean scaling,
the PCA-DBSCAN combination characterizes an additional operating status of the plant subdividing the
pressure change into two separate clusters.

From the previous discussion, it becomes clear that the scaling/normalization approach used has strong
implications for the data visualization as well as classification. It should be noted that some of the results
provided above for classification can be shaped accordingly using alternative DR/clustering tools as well
as proper adjustment of the hyperparameters involved. However, in the case of industrial data where no
previous knowledge of the operating status of the plant is known, this is not possible without a proper
visualization approach as provided by SOM as will be discussed later in the industrial application case
study.

4.1.3. Data analysis and classification
After the analysis of preprocessing techniques, focus shifted to extracting information from the given data
set. As illustrated in Figure 4, the data set for the NGL plant contains information on four main operating
conditions due to effect of disturbances and set-point changes. Consequently, one of the tasks of data
mining is to be able to characterize the different plant statuses and classify the data accordingly.

4.1.3.1. Effect of DR techniques. Figure 7 shows the comparisons using PCA, t-SNE, and UMAP in
terms of the 3D clusters plot, SOM projection and time evolution of the XIC 100.PV with data projected
according to region 2. In this analysis a reduced set data was used (random sampling, sampling = 5) and

Figure 6.Effect of scaling over the visualization and projections of process data from theNGLplant: (first
row) z-score and (second row) over mean.

e18-14 Luis A. Briceno-Mena et al.

https://doi.org/10.1017/dce.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.21


DBSCAN as clustering technique. PCA-DBSCAN (min_samples = 20); t-SNE-DBSCAN and UMAP-
DBSCAN (min_samples = 50) were used respectively.

The PC-DBSCAN combination can identify the four regions, leading to a perfect classification of the
data according to themain operating conditions of the plant. The use of t-SNE orUMAP asDR techniques
leads to an increased number of clusters in the final classification since they tend to capture not just the
main operating conditions but also to capture the transient states dynamics due to the control actions. In
the case of t-SNE for region 2, part of the transition data is added to the specific cluster and in the case of
UMAP the region is further decomposed as shown in Figure 7h. This means both t-SNE or UMAP as DR
techniques provide more resolution when analyzing the data and are able to capture not just the global
effects (main changes in operating conditions where most variables are involved) but also local effects
(few variables are involved). This main difference between PCA and the neighbors graph approaches (t-
SNE and UMAP) has important implications in real operations where those changes may last for several
hours which in a large dataset may represent just a local effect. Furthermore, it is important to note the
separability properties of the neighbor’s graph approaches. Projections of the regions are farther distanced
as compared to the PCA projection. The effect of min_sample parameter will be discussed separately.

4.1.3.2. Effect of clustering techniques. Figure 8 shows the application of PCA as DR with alternative
clustering techniques, DBSCAN, HDBSCAN (min_samples= 50 for both), and K-Means (k = 4) to the
data set. In general, HDBSCAN adds an additional level of resolution to the analysis as compared to
DBSCAN. The combination PCA-DBSCAN strictly captures the new state, and the transient is added to
the noise component (cluster). PCA-HDBSCAN on the other hand reduces the level of noise and captures
part of the transient into the main cluster. That is, the level of noise captured by HDBSCAN is reduced
significantly since other transitionswere classified as part of themain clusters. This is 1 of the nice features

Figure 7. Effect of DR techniques: (first row) PCA; (second row) t-SNE; and (third row) UMAP.
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of density-based clustering as it can classify some of the data points as noise. Typically, most transitions
between operations are classified as noise when the PCA-DBSCAN combination is used and the size of
the noise cluster is reduced in the case t-SNE and UMAP, since some of the transitions are captured as
main clusters.

The use of K-Means in this application does not produce a good separation since it lumps conditions
3 and 4 into a single cluster, and an additional cluster is created representing the dynamic between
conditions 1 and 2.

4.1.3.3. Effect of min_sample. The final number of clusters, and therefore the resolution of the pattern,
also depends on the selection of the hyperparameters for the clustering algorithm. Although the selection
of the right hyperparameters will depend on each specific application and any domain knowledge the
analyst may have, an overview of their effect on the result is provided here as a general guide. In our
analysis, the parameter used to “adjust” the number of clusters in each approach was min_samples in the
clustering methods. The default values in FASTMAN for the eps (epsilon radius parameter) are calculated
from the data structure using K-Nearest Neighbors algorithm. As a basic simple rule, increasing the
min_samples decreases the number of clusters and some of the clusters are merged. For example, part of
the transient operation may be added to the new state cluster. Default value for min-samples parameter in
FASTMAN is 10.

Figure 9 illustrates the results when min_samples in a PCA-DBSCAN combination is decreased to
10 and then to 5, and its effect on classifying region 2. First, decreasing from 50, as used before
(Figure 8b,c), to 10 maintains the same number of clusters but the cluster representing region 2 is now
capturing part of the transient state (Figure 9a,b). Furthermore, reducing themin_samples to 5 increases

Figure 8. Effect of alternative clustering techniques: (a-c) DBSCAN; (d-f) HDBSCAN; and
(g-i) K-Means.
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the number of clusters subdividing the original region. The new cluster captures part of the transient
component between the two regions and consequently, the size of the noise cluster is reduced by
lowering the min_samples parameter. An interesting feature of FASTMAN is the possibility of merging
clusters manually. This is a very important feature, especially when dealing with industrial data and if the
goal is to classify the data for future supervised learning approaches for pattern recognition. One can use
the powerful visualization features of SOM to manually adjust the clusters to reduce the number of
clusters to match the operating regimes characterized by SOM without the need to tune the hyperpara-
meters.

4.1.3.4. Cluster analysis. Using the clustering results from t-SNE and DBSCAN, a subspace greedy
search analysis was conducted to assess the DMKD implementation’s ability to correctly identify the
variables responsible for the patterns observed in the data. Figure 10(left) shows the results from the SGS
analyses between clusters 3 and 4 (XIC 100 set-point change). The SGS analysis was able to find the
correct variables associated with the changes. In addition to the distance matrix visualization of the SOM
already shown in our discussions, a component analysis was conducted. In the component analysis using
SOM, the contributions of each variable to the clustering results are projected in individual maps. This
information complements and verifies the results from the SGS analysis. Figure 10(right) shows the SOM
component projections for the most contributing variable to the cluster distributions by the SGS.
Accordingly, the SOM component projection for each of the most influential variables (in this case the
XIC 100.PV) matches perfectly the shape of the corresponding region in the overall SOM (right upper
corner).

Figure 9. Effect of min_samples parameter: (a, b) min_samples = 10 and (c-f) min_samples = 5.
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4.2. Case study 2: Industrial pyrolysis reactor

4.2.1. Process description
The pyrolysis reactor is an important unit in the chemical industry used to crack heavier hydrocarbons to
lower molecular weight hydrocarbons. The entire reactor is placed in a fired furnace, where the energy
required for the reaction is generated from fuel gas combustion. In this study, the data come from an
industrial scale furnace reactor, in which naphtha is cracked to ethylene. As shown in Figure 11, six coils
of naphtha are mixed with steam before cracking in the furnace. The ethylene product is generated by
cracking the mixture through the furnace at a high temperature (around 1000 °C). 27 variables are utilized
for process monitoring, involving mainly hydrocarbon and steam process flows and fluid temperatures
entering and leaving the combustion chamber. A more detailed description of the system be found in Zhu
et al. (2019).

4.2.2. Data preprocessing
4.2.2.1. Data cleaning and outlier removal. Real plant data often contains outliers and erroneous data,
and it is of interest to have a method to detect and remove such data points to minimize the effect on the
overall analysis. However, caution is required when dealing with outliers. As shown in Figure 12, what at
first glance might be considered an outlier, actually represents a large variation of the total hydrocarbon
flow for about 5 hr of operation. This period represents a small portion of the data thus the corresponding
set of data is categorized as outliers (does not conform to the main data distribution) and adjusted
accordingly. Therefore, an outlier detection and removal method that can distinguish between rare
operation states and true outliers is desired. In FASTMAN, outliers are detected using the kNN algorithm.
However, to prevent the loss of meaningful information, the outliers are not deleted but rather labeled.

Figure 13 illustrates the case of the same situation now in the measurements of hydrocarbon flows in
coils 2 and 6. In Figure 13d, a projection of the data is also given using the projection tools discussed
before to illustrate the effect of the outliers in data analytics. The encircled region in Figure 13d
corresponds to the outliers which are clearly well separated from the main data distribution. A combin-
ation of PCA and DBSCAN for dimensionality reduction and clustering were used, respectively. In this
case, it is not a single outlier but several points that create a new cluster. The number of k-neighbors, the
single parameter required for kNN, strongly influences the amount of data being classified as outliers. By
increasing the number of neighbors, more data points are designated as anomalies, leaving only important
features in the final dataset. However, for a given dataset, the point of diminishing returns will be reached
at some value of k. As shown in Figure 14, for this specific example increasing the number of neighbors
beyond k= 50 does not improve the data substantially.

Figure 10. Cluster analysis results: (left) SGS analysis of the clusters produced with PCA-DBSCAN
combination. (right) Cluster projections over the components SOM for most influential variable.
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Figure 11. Schematic representation of the industrial pyrolysis reactor.

Figure 12. Rare operation states in the pyrolisis reactor dataset. (a) raw data; (b) zoom around apparent
outlier; and (c) further zoom showing a 5 hr operation region.
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Figure 14. Effect of number of neighbors, k, over the data makeup for the pyrolysis reactor.

Figure 13.Hydrocarbon flows for coils 2 and 6 for pyrolysis reactor: (a) raw data; (b) data after outliers’
detection/elimination; (c) zoomed view of the section within the circle; and (d) data projected in a 3D

space using PCA-DBSCAN.
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4.2.2.2. Sampling. The effect of sampling real plant data was investigated using random sampling and
cNN with different values of k. Data were normalized using z-score in all cases. Figures 15 and 16
illustrate the sampling effect on 2 of the process variables (steam flow in coils 2 and 5). Figure 15 shows
the results for the cNN sampling approach with k number of neighbors 5 and 50. Both the time evolution
of the variables and the associated 3D projection (using PCA-DBSCAN combination) are given. For the
cNN approach the data size is reduced sixfold, from7800 to 1400 data points, however, this reduction does
not affect the quality of the dataset since the main events are still captured in any of the 3 conditions
investigated. This is shown with the help of 3D projection plots which clearly illustrate 3 main events
captured by the data. The number of neighbors slightly changes the size of the data but does not have
further influence on the analytics. This agrees which the idea that in this approach the highly variable
regions (more classes) are more densely sampled. Furthermore, since no steady state is actually reached
(real plant conditions and the drifting nature of the pyrolysis reactor) the effect of cNN is different from
that observed with simulated data.

Figure 16 shows the results for the random sampling strategy with interval values of 2 and 10. Data
have been reduced from 7800 data points to 3500 and 1400 respectively. In this case, some of the events
captured in the original data set are lost to some degree, depending on the size of the interval. The event
occurring at the start of the operation is lost (for n = 10) or not captured completely (n = 2). In the latter
cases, the original region is subdivided into two smaller regions, according to the 3D projection.

4.2.3. Data analysis and classification
Figure 17 illustrates the time evolution of the steam flows for coils 2 and 5 and hydrocarbon flows for coils
1 and 5, respectively. The analysis was done on the total set of measurements but for simplicity, we will

Figure 15. Effect of sampling on the process variables. cNN sampling: (a) k = 5 and (c) k = 50. (b) and
(d) corresponding projection to 3D space.
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focus our discussion on these four flowrates. The projection plots and the SOM are illustrated in Figure 18
(the line arrow indicates time direction of the batch).

Figure 19 illustrates the projection of the main cluster identified by PCA-DBSCAN into the time
evolution and the SOM. Using this combination, most of the operating cycle is characterized as a single

Figure 16. Effect of sampling on the process variables. Random sampling: (a) n = 2 and (c) n = 10;
(b) and (d) corresponding projection to 3D space.

Figure 17. Process variables time evolution: (a) coils 2 and 4 steam flow rates and (b) coils 1 and
5 hydrocarbon flowrates.
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cluster. However, as observed in the SOM, a number of subregions are present (light colors separations)
throughout the cycle.

Figure 20 shows the results when themin_samples parameter in DBSCAN is reduced from 10 to 5. In
this case, the methodology identifies an additional region in the top right corner of the SOM as well some
additional regions in the startup and shut down conditions. The figure illustrates the projections of these
two main clusters on the time evolution plot and the SOM (Figure 20a,b,d,e). Next, the analysis of
formation of these two clusters is performed and illustrated in Figure 20c,f in terms of the component map
and SGS contributions plot, respectively. As shown in Figure 20c, the component map for coil 5 steam
flowrate is the main contributor to the cluster formation since the component map perfectly matches the
overall SOM features. This is corroborated through the contributions plot, where themain contributors are
the steam flowrates and in particular steam flowrates of coils 1 and 5. This can also be inferred from the
time evolution plot in Figure 20d where a sharp increase/decrease in these flowrates can be observed.

Similar analysis was performed using a neighbor’s graph approach and clustering (in this case the
t-SNE-DBSCAN eps 6; min_samples = 80) to compare the results of feature extraction. Figure 21a
illustrates the time evolution of the hydrocarbon flows of coils 1 and 5. Dotted boxes identify the operating
regions identified by the DR and clustering combination of t-SNE-DBSCAN. The clustering results are
given in Figure 21b. In this case, t-SNE projects the data into a 2D space. Five main clusters are clearly
identified and also indicated in the time evolution plots. As can be seen, the large cluster identified
previously using PCA is now subdivided into four subregions showcasing the better resolution of t-SNE.

Figure 18. Process variables time evolution:(a) 3D projection plots and (b) the SOM for the PCA-
DBSCAN.

Figure 19.Projection of the main cluster as predicted by PCS-DBSCAN into SOM: (a) time evolution plot
and (b) SOM.
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These subregions were also present in the SOM plot as discussed before (although not identified using
PCA projection) and correspond to local system behavior (a small number of variables change signifi-
cantly), as compared to the global changes discussed previously, for sharp changes in the steam flows.
Figure 22 illustrates the cluster (corresponding to 2 subregions) projected into the time evolution aswell as
into the SOM and component plots. In this specific case, the most contributing variables are coils 1 and
5 hydrocarbon flow rates (Figure 23).

Figure 20. Projection of clusters when min_sample in DBSCAN is reduced from 10 to 5: (a, d) time
evolution plot; (b, c, e) cluster projection over the SOM; and (c) subspace greedy search results.

Figure 21. (a) Time evolution of the hydrocarbon flows of coils 1 and 5. Circles identify the operating
regions identified by the DR and clustering combination of t-SNE-DBSCAN; (b) clustering results in

3D plot.
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5. Conclusions and Recommendations

A computational environment was used for data mining and knowledge discovery with both simulated
and real plant data to demonstrate the applicability of DMKD for chemical processes analysis, as well as
how the result is affected by the method selection and hyperparameters used.

Figure 22.Cluster (corresponding to two subregions) projected into the time evolution as well as into the
SOM and component plots.

Figure 23.Contributing variables as identified by the subspace greedy search. Variables with the highest
scores have a greater influence on the distribution of the data (i.e., cluster separation).

Data-Centric Engineering e18-25

https://doi.org/10.1017/dce.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.21


For the preprocessing stage of DMKD, outlier detection and removal, scaling and sampling greatly
affect the subsequent analysis and could dramatically change the interpretation of the results. For outlier
removal, the effect of the number of neighbors used with kNNwas shown. Also, the special consideration
of rare operation states was illustrated. For sampling, it was demonstrated that cNN outperforms random
sampling for real plant data but might cause loss of information when long periods of steady-state
operation are present. Finally, for scaling, standardization using z-score was demonstrated to outperform
normalization strategies.

Dimensionality reduction and clustering algorithms successfully identified changes and different
operation states in both real and simulated data. However, neighbor graphs dimensionality reduction
methods such as t-SNE and UMAP were shown to better identify global and local changes in the process
than matrix factorization methods like PCA. Comparing t-SNE and UMAP, we can conclude from our
analysis that both techniques are similar in their visualization capabilities, however, UMAP has a clear
advantage over t-SNE in runtime. While both UMAP and t-SNE produce somewhat similar output, the
increased speed and better preservation of global structure make UMAP a more effective tool for
visualizing high-dimensional chemical processes data. Furthermore, once a model has been created
using the historical information, incoming data points can be passed through the same UMAP model for
on-line process monitoring and fault detection systems (Kohonen, 1995).

In terms of clustering, hierarchical density-based clustering techniques have shown superior perform-
ance over flat centroid-based clustering in dealing with chemical process data. HDBSCAN adds an
additional level of resolution to the analysis as compared to DBSCAN. In most of our results, DBSCAN
strictly captures the new state, and the transient is added to the noise component (cluster). HDBSCAN on
the other hand reduces the level of noise and captures part of the transient into the main cluster. In general,
neighbor graphs dimensionality reduction methods have been shown to capture local and global events,
the combination of either t-SNE or UMAP with DBSCAN provides a good compromise in terms of the
level of resolution and reducing the number of clusters.

SGS was employed to identify the variables responsible for the distribution of the data. SGS effectivity
was demonstrated using simulated data (real changes are known), where the algorithm successfully identified
the correct variables as themain drivers for the observed changes. A similar analysis was conducted using the
real data from the pyrolysis reactor to show the applicability of SGS for real industrial scenarios.

SOMwas used for data visualization and clustering verification. The capabilities of SOM for detecting
patterns in the data as well as identifying correlations between each of the original variables and the
overall distribution of the data. Hence, it is recommended to include SOM analysis for DMKD
implementations to complement the observations derived from dimensionality reduction and clustering.

Finally, FASTMAN, a friendly graphic interface for data mining and knowledge discovery was
presented. The computational framework can be used with any dataset and facilitates the combination
of several data preprocessing, dimensionality reduction, and clustering methods, as well as the visual-
ization of the results.
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