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Summary• Wave generation processes are classified in (1) strong and (2) weak, and (a) 

spontaneous and (b) stimulated processes. Then, the case (2b) operating in convective 

zones is discussed in detail. Both the dynamical and the thermodynamical coupling be­

tween pulsation and convection are formulated by use of the diffusion approximation for 

the turbulent convection. A mixing length variable with time is thereby introduced. 

The work integral is transformed so that each of its terms can reveal the mechanism re­

sponsible for the stellar stability. An important destabilizing mechanism associated 

with the convective flux is found to exist among other known mechanisms. The mechani­

cal work is shown to be rather important. 

Wave generation processes. The genuine hydrodynamical generation of waves is due to 

the nonlinear Reynolds stresses (Lighthill 1952, Unno 1964). The adiabatic wave gene­

ration in an isothermal atmosphere was thoroughly studied by Stein (1967) . In this 

case, the waves are generated spontaneously. The propagation is not isotropic, but the 

anisotropy is not very strong because of dominating quadrupole emissions. The wave am­

plitude in situ is small in subsonic turbulence, butthe effect can be appreciable after 

the waves propagate in the outer layers. On the other hand, if the medium is made strong­

ly anisotropic by the presence of magnetic field or rotation, the monopole and dipole can 

be very important, and the wave generation can be strong. The generation of Alfven 

waves from turbulence under the presence of a strong magnetic field was found to be very 

effective (Kato 1968, Roberts 1976). A change in the basic structure of the medium is 

then expected. Spiral arms in galaxies, spicules and sunspots (Parker 1974) may be 

the manifestation of such cases. 

For waves that are trapped in some region of a star, the stimulated emission should be 

considered. The emitted wave and the underlying oscillation have a phase relation so 

that the whole process forms a self-exciting system. Therefore, in principle, the 

strong stimulated generation of waves may not be an inaccurate concept. Osaki (1974), 

however, considered that the resonance between the nonradial oscillation and the over-

stable convection in a fast rotating core could be the cause of the (3 Cephei variabil­

ity. In such a case, the theory remains qualitative. 

For trapped waves or pulsations, the weak stimulated emission can be accumulated and 

become important. The thermodynamical excitation of pulsation has been worked out by 

many authors (Zhevakin 1953, Baker and Kippenhahn 1962, Cox 1963, Christy 1964) as the 
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cause of the variabilities of Cepheids and RR Lyr stars. Less investigation has been 

done for stars having deep convective envelopes because of the theoretical difficulties 

in the treatment of a convective zone. 

Modulation of convection by pulsation can be calculated on the basis of the mixing-

length theory (Vitense 1953) slightly generalized to include the time dependence (Unno 

1967). Recently, Gabriel, Scuflaire, Noels and Boury (1975) calculated the thermody-

namical coupling of the convection with the nonradial pulsation, and they demonstrated 

an appreciable effect of the convective flux perturbation on the stability coefficient. 

The dynamical coupling has been neglected so far. But, it is caused by the perturba­

tions in the turbulent pressure, visocsity and conductivity, and its effect on the sta­

bility is not negligible as shown later. 

Table 1. Classification of wave generation mechanisms 

SPONTANEOUS 

propagating 

B. STIMULATED 

phase relation 
trapped 

1. STRONG 

.monopole-
Mipole ; 

anisotropic 

STRUCTURE CHANGE 

spicules 
sunspots 
(Kato, Parker) 

spiral arms 
6-Ceph 
(Osaki) 

2. WEAK 

(quadrupole) 

isotropic 

Effects on Outer Layers 

homog. (Lighthill) 

Excitation of Pulsation 

isothermal (Stein) 

thermal & dynamical 
5mn Oscill. pulsating stars 

© stability 

Table 1 summarizes the classification of the wave generation mechanisms discussed above. 

The excitation of spiral arms in galaxies (Mark 1976) is considered as an example of a 

strong emission mechanism. The excitation of the solar 5 min. oscillation studied by 

Ando and Osaki (1975) belongs to the weak stimulated emission mechanism. In these two 

examples, however, the coherence in spatial and temporal wave patterns is not completely 

perfect, and the emission mechanism may better be considered as partially spontaneous 

and partially stimulated. The solar stability (Dilke and Gough 1972, Boury, Gabriel, 

Noels, Scuflaire and Ledoux 1975, Shibahashi, Osaki and Unno 1975) is an interesting 

example involving the weak stimulated emission mechanism. The convection-pulsation 

coupling is important. A qualitative change in the underlying solar structure discussed 

in the present Colloquium may not take place, since the emission mechanism is weak. 

Basic equations of the pulsation-convection coupling. We shall hereafter restrict our­

selves to study the mechanisms of pulsational stability operating in the convective zone. 

At present, no complete description of the compressible inhomogeneous turbulence is a-
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vailable. We shall, therefore, approximate the nonlinear effects of the turbulent con­

vection by the eddy diffusivities. Then, the conservation equations of mass, momentum 

and thermal energy are described by (Unno 1969) 

|| - - pV-n + i ••(<V>Vp) % - pV-c , (1) 

ijfi. = _ I V(P+Pt) - V<J> + i [V(<y>V-u) + (V-<u>V)u] , (2) 

where d/dt is the Lagrangian time differentiation, p, T, P, S and u denote density, 

temperature, pressure, specific entropy, and the velocity, e , £ , F and P denote the 

nuclear energy generation rate, the turbulent viscous dissipation, the radiative flux, 

and the turbulent pressure, respectively, and <A>, <y> and <V> describe the coeffi­

cients of turbulent conductivity, viscosity and diffusion that are approximated by 

<pu £>, H being the mixing length and the prime indicating the convective fluctuation. 

The small scale fluctuations inside a representative convective element have been smooth­

ed out so that the P (=<pu 2>), <X>, <u> and <v> appear from their nonlinear effects. 

Since the turbulence has a continuous energy spectrum, the magnitude of these terms 

should depend also on the scale of motion under consideration (Nakano 197Z), but this 

dependence will not be explicitly described in this paper. We shall also neglect <v>, 

since mixing is efficient in the convection zone. The viscous dissipation e which is 

dimensionally given by 

£v%u'
3/£ (4) 

in accordance with equation (2) should not be disregarded, since for the adiabatic con­

vection the following relations, 

evo * W P o ^ W ^ o ' (5) 

rco * - <x>o V s o • ( 6 ) 

reduce essentially to the original Biermann formalism (1932) and then the energy con­

servation in steady state, 

P0eH0-y , C FR0+*C0> • (7) 

is ensured by equation (3). Here F. denotes the convective flux and the subscript 0 

indicates the statistically steady undisturbed state. The equilibrium structure is 

determined by 

(l/p0)V(P0 + PtQ) + V<)>0 = 0 (8) 
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in addition to equation (7). Subtraction of these equilibrium equations from the basic 

equations (2) and (3) yields the equations for perturbations. The difference in spatial 

and temporal spectra between pulsation and convection can be used to separate the system 

of equations governing pulsation and convection from each other. 

The work integral of the nonradial pulsation. The equations of pulsation are given by 

- Ko(6p/p0 + y-6r) = 0 , (9) 

- U)26* + ( I / P Q ) ^ - ( P l / p 0
2 ) V P 0 = Jx , (10) 

- iu)6S = 6 0 , (11) 

where 6q and qRepresent the Lagrangian and Eulerian perturbations of any variable q, 

the time differentiation d/dt„=3/3t+u,, *VQ of the Lagrangian perturbations are replaced 

by -iio , and 

Ji = " v*i " \ VPti + V VPto " j ^ « i V 6 r > + <v"^V) 6 r ] > (12) 

6^ = 6[T-l(eN + ev - p-'V-^) + p
_1?»<X>VS] . (13) 

The effects of the modulated convection enter through P , in %, and 6e„ and 6<X> in 
° tl -* 1 V 

6^. The calculation of these terms will be made later. 

Now we can define the pulsation energy E per unit volume by 

v _ 1 r_ Zj_ Pi2 , / dP0 , ,dlnP0 dlnp 0 > - I , P I Di,Zl ,.,. 

where c2=y P /p and y =(31nP/31np)„. It consists of the kinetic energy and the poten-
1 0 0 1 o 

tial energies of acoustic and gravity waves. From equations (9), (10) and (11), after 

some manupilations, we obtain 

SF 
gJ- + V-(PlUl + EpUg) = p0(Ul- J± + 6T<5^ ) . (15) 

Integrating this equation over the whole volume of a star and assuming the boundary 

conditions of P.w =0 and Un=0 at the surface, we obtain 

dt . EpdV = W = WM + WT E Re P0 («]_*• Jx+^* £ $•) dV . (16) 

The result is independent of the quasi-adiabatic approximation and the Cowling approxi­

mation used above. 

The mechanical work W„ is the sum of the turbulent pressure work W_ and the turbulent 
M P 

viscous stress work W ; 
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Wp = Re -iu6r*-V6PtdV = 2m P t 0 I m [ ( 6 p * / p 0 ) (6u ' / ug ) ]dV , (17) 

Wg = Re u1*-(- i i i ) ) [V(<u>0V'6r) + (V • <y > QV) 6r ] dV 

= - to2 <y>Q ( | 6 p / p 0 | 2 + |VSr|2)dV . (18) 

The c a l c u l a t i o n of I [ (6p*/pn) (<5u / u . ) ] w i l l be given l a t e r . The thermodynamical work 
W_ c o n s i s t s of the nuc lea r energy work W,,, t he v i scous d i s s i p a t i o n work W , the r a d i a ­
t i v e work WD, and the convect ive work W . After some man ipu l a t i ons , we ob t a in 

R C 

WN - Re } p0(6T*/T0)6e NdV = | P o e N O ( S > T , a d l 6 T / T o l 2 d V ' ( 1 9 ) 

Wy = Re | p0(6T*/T0)6evdV = | p 0 e v 0 Re[(6T*/T 0 ){3(6u7ug)-6J l /& 0 }]dV , (20) 

WR = Re I p0(6T*/T( ))6(p-1?-CTlnT)dV 

= - ^ L i f U + l ^ f l - ? - ^ ) l ^ | 2 d v 

-1 ̂  n£<f >i* + ̂  i f i2 ] d v +12v-wetf* ff^ 
+ *•(*.„£* { m - l ^ + Z*m±trW , (21) 

0 

Wc = Re pQ (6T*/T0)6(Tp-1V-<X>TS)dV 

S , - l Y , - l 0 T„ ; | T J 0 0 

+ R e | ^ ^ (K + f )dV + f 2 T 0 V ^ a R e [ | l * | r ] d v 
TQ 3r uQ ZQ J O TQ TQ 3r 

j_ „ f „ 6T*,326r 2 36r , 2-&QH-1) . . .„ , „ , , 
+ R e J FC0 T̂  (^rT " 7 I T + r* 6 r ) d V > ( 2 2 ) 

where 

_ ,31nT. dlnT0 _ dr 
Y3 ~ l31np'S ' 0 " dlnPQ ' 0 " dlnP0 ' 

_ 4acT" = ,31nK. , . = ,31neN^ 
3Kp ' T! ^lnrs ' velTT,ad ^SlnT 's ' 

L denotes the surface luminosity, and equation (6) has been used. The radiative con­

ductivity K appears in the expression of the radiative flux F , T —CTlnT. In calculat-
K K 

ing W_ and W , the fol lowing i d e n t i t y has been used, 

x/v A wo s » 3 B0 ,3 2 3 r 2 36r , 2-1 (.1+1) , . , „ , . , , „ • > 3<$r 
W- V V " " A0 3r~ ( ^ r T " 7 3 T + ~ 6 r ) " 2 V ' ( V V 3?" ' 
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where the spherical harmonics Y» (Q.ip) for the angular dependence of a normal mode has 

been assumed. The work integrals will be transformed to more convenient forms for re­

vealing physical processes, after the convection modulated by the pulsation is discuss­

ed in the following. 

Time dependent convection. Equations of the time dependent convection can be separated 

out from the basic equations (1), (2) and (3) as follows, 

dp'/d^ + ?«(pu') % ?-(pu') % 0 , (23) 

<dt7 + ^ u ' + ^ p ' -§^--V -i^t '+^t <24> 

ds'/d^ + u'-VS = [T-'(sN + ey - p-'V'FjP + p-'V'^VS]' , (25) 

when d/dt.=3/3t+U -V, T %£/u , the primed quantities are the Eulerian perturbations due 

to convection, and the coordinate and the quantities without prime include the Lagrang-

ian perturbations due to pulsation in addition to the equilibrium values. 

Now we neglect the right hand side of equation (24) and use the Boussinesq approximation 

instead of equation (23). Then, using the lateral component of equation (24) to elimi­

nate P from the radial component, we obtain 

, d , 1 . i ki2 p' 3P % kj.
2 , | T 1 , 3P . ,,,. 

(dt7 + ̂ )ur = k ^ ^ 3 r - % p - IPTI T
( -^r° ' (26) 

where p =(31np/31nT) and a spatial dependence of exp(ik-l:) has been assumed for the 

convection variables. Also, equation (25) can be rewritten as 

fr£- + -^ + ̂ - - ^ ) S * + u ' |5tt- 0 , (27) 
dtl TC TR V r 3r 

where T„, T„, and T denotes the time scales of the turbulent conduction, the heating 
C N K 

by nuclear burning, and the radiative cooling of a convective element. We shall here­

after write u for u and T for x and T without distinguishing the different numeri­

cal factors of the order of unity that are unimportant in the stability analysis. 

Equations (26) and (27) have to be supplemented by the definition of the mixing length 

Z which is modulated by pulsation. We assume that a convective element born at time t 

has a mixing length equal to the instantaneous scale height H (=-3r/31nP) initially and 

evolves according to the law p£3=const. during its life time T. Then, the relative ex­

cess 61/St. is given by ([<SH]/Hf1)e
_i'0': at its birth and will be further increased by 

(-1/3)([6p]/pn)(e
-i^t_elut ) during the time interval from t' to t, the time dependence 

in <$H and o'p being expressed explicitly and [6H] and [Sp] being the compressible ampli­

tudes. For the average convective element, we obtain 
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ot . r { m . e-icot' i I M (e-iUt _e-io)t')]exp(_ tzt'} 
K Ho 3 p o T 

[&!•} e-icot _ I r[fH] ^-icot' _ I I M ,„-iwt _siwt'M^„r_ t z t ^ d ( t - t ' ) 

*0 

6X. _ 1 ,6H . io)T Sp . . 
1^ " T=±OT ' ^ T ^ ' ' ( 2 8 ) 

assuming a constant birth rate and constant life time for the convective elements. A 

more precise theory for the time-dependent mixing length has been developed by Gough 

(1976). 

For equilibrium (d/dt..=0), equations (26) and (27) reduce essentially to the Vitense 

(1953) formalism. The modulation of convection by pulsation can be calculated from 

the Lagrangian variations of equations (26) and (27), (Unno 1967, Gabriel, Scuflaire, 

Noels and Boury 1975). For qualitative study, we now consider an envelope (TN/
T
R"*°°) 

in which convection takes place almost adiabatically (T /T-*») . The result comes out 
K 

to be : 

<5T' 1 ,6J, 3 6 r . n q \ 
f̂ 1" " 1-iUT (i ~ 3r ; *• ; 

1 ^ 1-iuiT H 3r ; + 2-iiDT 3r ^ P Q
; ' K* ' 

where the variations of p and of the mean molecular weight have been neglected. The 

value of 6i/i„ is calculated from equation (28) in which by definition (H=-dr/dlnP), 

6H/HQ = 36r/3r + HQ(3/3r)(6P/PQ) . (31) 

Thus, the modulation of convection to be used for the calculation of the work integral 

is now expressed in terms of (6T/T-) and (36r/3r), on account that V ( S P / P 0 ) = ( Y , - 1 ) 

(6p/p0)=6T/TQ. 

Some useful formulae. Readers can skip this section, unless mathematical details are 

of interest. 

The work integrals W and W should be simplified further by use of the equations of 
R C 

adiabatic oscillations. Neglecting J-. and 6 Q, , we obtain from equations (9), (10) 

and (11) after some manipulations, 

JL (r
2
6r) . 2 , -

r - - r* (1 - ̂ H ^ ) f , (32) 
3r co2r2 oj2r2 p. 

3r r2 p. 3r r2 p 
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Multiplying equation (33) by r , differentiating, and using equation (32), we obtain 

326r 2 3(Sr x 2 4 ( W ) . _ r2 ,,%2 &(&+l)c\ 6p 3 r r2 36p , 6p, .... 
-JZX " r — + JS 6r - - GMT (<° Tr~) p^ ~ 5F lGMrf^ 3r~ + ^ ] ' (34) 

where the variation of Mr has been neglected as in the Cowling approximation (<f>i=0). 

Thus, we have a formula appearing in equations (21) and (22) : 

„ r6T* 3
2<Sr 2 36r , 2-i(H+l) , ., 

Re [•=—(—5-5- "5— + H— <5r) ] 
T. 3rz r 3r rA 

- "2/r |6T. 2 HQ , 3 6T.,2 &(&+!) 16T.2 
(Y -Deo 2 ' T ' V L' 3r T ;' r5 ' T ' ' " 3 l;u,g 1 o vad r 10 0 

_1_ rl£L A . Iill 2 | X ^ H
 3 ( 1 ̂  lgTl21 23r lV , 3r !T J V-1 ° 3r ̂ V '' %} i 

ad 0 03 • ad 0 

+ -A- ;1U_ H -1- <-M> l-^l2 (35̂  
+ 23r y..., H0 3r ^ ^ ' TQ' ' (35) 

where ID 2 = GM /r3 . (36) 
g r 

Next we shall derive the expression of 36r/3r. Differentiating equation (32) with r 

and using equation (33), we obtain 

32(r26r)/3r2-J!,(S,+l)6r = -(3/3r) (r2<5p/p0)-Jia+l)ur
2A(SP/p0 , (37) 

where A=(dlnp /dr)-(l/y1)(dlnPQ/dr). The operation : [(37)/r
2-(34)] gives the expres­

sion of 36r/3r. Unfortunately, the resulting expression is not so simple. We shall 

be satisfied with a crude approximation in which we introduce an effective number of 

nodes n such that 32(r26r)/3r2%-n26r and 32(r26p/p0)3r
2%-n26p/pQ. If we neglect A, we 

obtain from equation (37), 

36r/3r % - {n2/[n2+S,a+l)]} (6p/p0) . (38) 

Physical processes of stability. With the help of the results in the preceding two 

sections, all the integrands in the work integrals given by equations (17)-(22) can be 

transformed into the forms proportional to the power of pulsation. 

After a number of partial integrations, we obtain finally, 

WM = »J ̂ W - h l n<f^KI+ ^ 1̂ 1 WJ<p>0(|^|
2
+|^|

2)dV , (39) 

W T = ( 1 / 2 ) ^ - ' - VlfiT/Tol2r=R 

- J (1/2)V-[K]FR0+{(Y3-1)-
1- 2+uT

R+«,T
R}Fc0J|6T/T0|

2dV 
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+ | PoENOI(eN>T,ad + « V 3 - 1 > " , + 2 6 T ^ a d " l < 1 ^ a d , P 4 e H , P / 2 » l 6 T / T o l 2 d V 

+ | etfvoU^W*^-1-^ l n< rVvo>+ ^>(u;R-^R)]|«T/T0|2dv 

+ | [ F R O ( V
a d " 1 - V 1 ) + F C O V a d " 1 ] H 0 [ l 3 ( 6 T / T 0 ) / 3 r | 2 + a ( J ' + 1 ) / r 2 } | 6 T / T 0 | 2 l d V 

' ad ad 0 0 

where approximations (5) and (6) have been used, 6_, H e t c . a r e defined by, [equa t ions 

( 2 8 ) - ( 3 1 ) ] , 

M l = x iZa , " / ( Y l - D 6T 
3r °T TQ

 v n2+S,(A+l) TQ ' 

«H . H 6T . J _ 6T = V a d ^ 6T HQ_ J _ ST 
Hn

 HT Tn
 + MT 3r ( -T. ; l °T + V , ; T - + V . 3 r l T . ; ' 

0 0 0 ad 0 ad 0 

£Q *T TQ
 + *T 3 r 4 Q

; I - K O T ^ T y - 1 ; T Q
 + HT 3 r 4 Q

; j 

u « + „' A(6T) = ( * E « I + V.H-'Vad.Px «T t T ' HnV^rt-1 _3_ j T 
T T„ T 3 r 4 „ ; 1 1 - 1 U T 2-liDT ' T„ U-iurc 2- IWT - V 4 , / ' 

6u 
u 
0 0 0 ""' 0 

and the other symbols have been defined before except that 

£N,P = d<lneN0)/dlnP0 ' a n d Vad,P = d<lnVad)/dlnP0 " 

The turbulent pressure work represented by the first integral in equation (39) can be 

positive or negative depending upon the mode (i and n) and the relative convection time 

U)T, while the turbulent stress work represented by the second integral is always nega­

tive. The ratio between them is of the order of (OJT)-1 which can be larger or smaller 

than unity depending upon the mode and the stellar structure. If the integrands of the 

thermodynamical work W_ are estimated to be of the order of (F„n/J,n) |ST/T„|
 2 and Frf> 

pnu.
3 in convection zones, the ratio WM/W_ becomes to be of the order of OOT or (cox)

2. 

The mechanical work should, therefore, be taken into account in the stellar stability 

calculation. 

In equation (40), the first line on the right hand side shows the spherical effect and 

the K-mechanism. If K increases strongly with increasing temperature and density (nega­

tive KJ), larger radiation loss results at lower density higher entropy state, causing 

the destabilization of the oscillation. The sphericity has a similar effect, though 

not so pronounced. The second line shows the correction to theKand other effects. The 

third line shows primarily the e mechanism which is the destabilizing effect due to high 

https://doi.org/10.1017/S0252921100112527 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112527


324 

temperature sensitivity of the nuclear burning process. The fourth line shows the simi­

lar effect by the viscous dissipation, but its work like the turbulent pressure work can 

be positive or negative. The term proportional to F n in the fifth line describes the 

Cowling-Souffrin-Spiegel (or radiative Cowling) mechanism (Graff 1976), and the term 

proportional to F _ describes the turbulent conduction mechanism (or convective Cowling 

mechanism) which seems to be found bv the present analysis. The sixth line shows the 

corrections to these two mechanisms. Because of the latter corrections, the radiative 

Cowling mechanism may not work for high frequency modes, while the convective Cowling 

mechanism may remain effective. 

If a fluid element moves up (or down) slowly (small 10 ) in a superadiabatic layer, the 

temperature inside becomes higher (or lower) than outside, and the density inside be­

comes lower (or higher) than outside because of the pressure balance. Both the radia­

tion and the turbulent conduction decrease (or increase) the thermal energy inside 

where the entropy is higher (or lower). This explains the radiative and convective 

Cowling mechanisms. Both mechanisms are due to the superadiabaticity, but they differ 

greatly in efficiency, because the gain (or loss) in thermal energy is of the same or­

der as the convective flux for the convective Cowling mechanism while it is smaller by 

a factor of (V„-V .) for the radiative Cowling mechanism. Although none of the mecha-
0 ad 

nisms can be neglected, the K mechanism and the convective Cowling mechanism are the 

main destabilizing mechanisms of pulsation in a convective star. 
Various approximations have been employed in the derivation of equations (39) and (40). 

Many of them should be easily avoided in numerical work of stellar stability. 

The author thanks Dr Y. Osaki for discussion. 
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