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Linear modal instabilities of flow over untapered wings with aspect ratios AR = 4 and
8, based on the NACA 0015 profile, have been investigated numerically over a range of
angles of attack, α, and angles of sweep, Λ, at chord Reynolds numbers 100 ≤ Re ≤ 400.
Laminar base flows have been generated using direct numerical simulation and selective
frequency damping, as appropriate. Several families of unstable three-dimensional linear
global (TriGlobal) eigenmodes have been identified and their dependence on geometric
parameters has been examined in detail at Re = 400. The leading global mode A is
associated with the peak recirculation in the three-dimensional laminar separation bubble
formed on the wing and becomes unstable when recirculation reaches O(10 %). On
unswept wings, this mode peaks in the midspan region of the wake and moves towards
the wing tip with increasing Λ, following the displacement of peak recirculation; its linear
amplification leads to wake unsteadiness. Additional amplified modes exist at nearly the
same and higher frequencies compared to mode A. The critical Re has been identified and
it is shown that amplification increases with increasing sweep, up to Λ ≈ 10◦. At higher Λ,
all global modes become less amplified and are ultimately stable at Λ = 30◦. An increase
in amplification of the leading mode with sweep was not observed over the AR = 4 wing,
where tip vortex effects were shown to dominate.

† Present address: Department of Engineering, City, University of London, London EC1V 0HB,
UK. Email address for correspondence: wei.he.2@city.ac.uk

‡ Present address: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong
University, Shanghai 200240, PR China

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 944 A6-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:wei.he.2@city.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.420&domain=pdf
https://doi.org/10.1017/jfm.2022.420


A. Burtsev and others

Key words: instability, low-Reynolds-number flows, vortex flows

1. Introduction

Our present concern is with linear global instability mechanisms associated with
unsteadiness of laminar three-dimensional separated flows over finite aspect ratio,
untapered swept wings at low Reynolds numbers. To date, the vast majority of instability
studies have focused on simplified models of laminar separation with no spanwise base
flow component, as encountered in flows over two-dimensional profiles, or spanwise
homogeneous flow over infinite-span wings, both of which have been used as proxies
to understand fundamental mechanisms of separation in practical fixed- or rotary-wing
applications. However, either of these approximations fails to address the essential
three-dimensionality of the flow field (Wygnanski et al. 2011; Wygnanski, Tewes &
Taubert 2014) and the implications of linear instability of three-dimensional separated
flow on the ensuing unsteadiness on a finite-span swept wing. Presently there exists
limited knowledge on linear instability mechanisms associated with three-dimensional
separation on the wing surface, or a deep understanding of the complex vortex dynamics
arising from this instability on a finite-span wing, as a function of the aspect ratio (AR)

and angles of attack (α) and sweep (Λ). In fact, there is a void in the literature that
employs three-dimensional global (TriGlobal) linear instability analysis appropriate for
the fully inhomogeneous three-dimensional flow field around a finite AR wing at high
α. The present work aims to close this knowledge gap by documenting modal instability
mechanisms and their evolution on different wing geometries.

A review of existing literature on the subject sets the scene for the work performed
herein. Studies of separation have extensively analysed laminar separation bubbles (LSBs)
in the context of flat plates. Although such bubbles were known to be structurally
unstable (e.g. Dallmann 1988), Theofilis, Hein & Dallmann (2000) showed that the
physical mechanism leading to unsteadiness and three-dimensionalisation of a nominally
two-dimensional LSB, as well as to breakdown of the associated vortex, arises from
self-excitation of a previously unknown stationary three-dimensional global mode. Soon
after that, global linear stability theory was applied to two-dimensional airfoils (Theofilis,
Barkley & Sherwin 2002) and unswept wings of infinite span (Kitsios et al. 2009).
Rodríguez & Theofilis (2010) studied structural changes experienced by the LSB on
a flat plate due to the presence of the unstable stationary three-dimensional global
mode and established a criterion of approximately 7.5 % backflow for self-excitation
of the nominally two-dimensional flow. Furthermore, linear superposition of the global
mode discovered by Theofilis et al. (2000) upon the two-dimensional LSB revealed the
well-known three-dimensional U-separation pattern (Hornung & Perry 1984; Perry &
Chong 1987; Délery 2013), whereas the surface streamlines topology induced by the global
mode resembled the characteristic cellular structures known as stall cells (SCs) (Moss &
Murdin 1968; Bippes & Turk 1980; Winkelman & Barlow 1980; Weihs & Katz 1983;
Bippes & Turk 1984; Broeren & Bragg 2001; Schewe 2001), that are observed to form
on stalled wings. Finally, Rodríguez & Theofilis (2011) have extended this analysis to a
real LSB on an infinite span wing, showing that the surface streamlines generated by the
leading global modes strongly resemble SCs.

Massively separated spanwise homogeneous flow over stalled wings was studied by
He et al. (2017a) using global linear modal and non-modal stability tools. Flow over
three different NACA airfoils was analysed at 150 ≤ Re ≤ 300 and 10◦ ≤ α ≤ 20◦.
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Linear instabilities on post-stall swept finite 3D wings

A travelling Kelvin–Helmholtz (K–H) mode dominating the flow at a large spanwise
periodicity length and a three-dimensional stationary mode most active as the spanwise
periodicity length becomes smaller were identified. Non-modal analysis showed that linear
optimal perturbations evolve into travelling K–H modes. Secondary instability analysis
of the time-periodic base flow ensuing linear amplification of the K–H mode revealed
two amplified modes with spanwise wavelengths of approximately 0.6 and 2 chords.
These modes are reminiscent of the classic mode A and B instabilities of the circular
cylinder (Barkley & Henderson 1996; Williamson 1996) although, unlike on the cylinder,
the short-wavelength perturbation was the first to become linearly unstable. This work
showed that SC-like streamline patterns on the wing arise from linear amplification of
this short-wavelength secondary instability. By contrast to the primary instability based
scenario proposed by Rodríguez & Theofilis (2011), this mechanism could explain the
emergence of SC at lower angles of attack.

Zhang & Samtaney (2016) extended the analysis of He et al. (2017a) to study
instability of unsteady flow over a NACA 0012 spanwise periodic wing at higher Reynolds
numbers, 400 ≤ Re ≤ 1000 at α = 16◦. At Re = 800 and 1000 these authors identified
two oscillatory unstable modes corresponding to near-wake and far-wake instabilities,
alongside a stationary unstable mode, whereas only one unstable mode was found at
the lower Re = 400 and 600. Ground-proximity effects on the stability of separated flow
over NACA 4415 at low Reynolds numbers were studied using two-dimensional global
(BiGlobal) theory with consideration of both flat (He et al. 2019c) and wavy ground
surfaces (He et al. 2019b). Finally, Rossi et al. (2018) considered incompressible flow
over a NACA 0010 airfoil and a narrow ellipse of the same thickness at a large α of 30◦
(100 ≤ Re ≤ 3000) documenting multiple bifurcations. The aforementioned efforts have
certainly enriched our understanding of instability mechanisms of spanwise homogeneous
flow over wings of infinite span. However, BiGlobal analysis cannot be applied to address
the instability of fully three-dimensional vortical patterns arising in finite AR wing flows.

Before discussing the application of the appropriate linear TriGlobal modal analysis, a
brief review of experimental and numerical work on finite aspect ratio wings is presented.
Early experimental studies on finite AR wings are summarised in Boiko et al. (1996). On
three-dimensional swept wings in particular, the presence of significant spanwise flow
leads to three-dimensional flow structures such as the ‘ram’s horn’ vortex (Black 1956).
As soon as local stall appears on a swept wing, spanwise boundary layer flow alters
the stall characteristics of sections with attached flow along the span (Harper & Maki
1964). More recently, aerodynamic performance of small aspect ratio (AR = 0.5–2) wings
has been studied experimentally (Torres & Mueller 2004) and computationally (Cosyn
& Vierendeels 2006). Taira & Colonius (2009) used three-dimensional direct numerical
simulation (DNS) to study impulsively translated flat-plate wings (AR = 1–4) of different
planforms at a wide range of α and 300 ≤ Re ≤ 500. The AR, α and Reynolds number
were found to have a large influence on the stability of the wake profile and the force
experienced by the finite wing with the flow reaching a stable steady state, a periodic cycle
or aperiodic shedding. The three-dimensional nature of the flow was highlighted, and tip
effects were found to stabilise the flow and exhibit nonlinear interaction with the shedding
vortices. Even at larger AR = 4 the flow did not reach two-dimensional von Kármán vortex
shedding due to the emergence of SC-like patterns. The effects of trapezoidal rather than
rectangular planform (Huang et al. 2015), and larger AR wings (Son & Cetiner 2017) have
been considered in more recent publications.

In the general context of vortex dynamics, a large body of experimental and large-scale
numerical simulation work exists on separated flows over finite AR wings. There are studies
analysing complex vortex dynamics under unsteady manoeuvres including translation and
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rotation (Kim & Gharib 2010; Jones et al. 2016), surging and plunging (Calderon et al.
2014; Mancini et al. 2015), pitching (Jantzen et al. 2014; Son & Cetiner 2017; Smith &
Jones 2020) and flapping (Dong, Mittal & Najjar 2006; Medina et al. 2015). These works
focused on the analysis of large-scale flow structures such as leading edge vortices (Gursul,
Wang & Vardaki 2007; Eldredge & Jones 2019) which can augment unsteady vortical lift
and offer opportunities for flow control (Gursul, Cleaver & Wang 2014). However, none of
these studies have looked at the global instability mechanisms of these flows.

In the framework of linear stability analysis of finite wings, works exist that consider
the entire flow field but typically at low α (that allows the use of streamwise periodicity
assumption). He et al. (2017b) performed linear global instability analysis using spatial
BiGlobal eigenvalue problem and linear PSE-3D disturbance equations in the wake of
a low AR three-dimensional wing of elliptic planform constructed using the Eppler E387
airfoil at Re = 1750. Symmetric perturbations corresponding to the instability of the vortex
sheet connecting the trailing vortices and antisymmetric perturbations peaking at the
vortex sheet and also in the neighbourhood of the trailing vortex cores were identified.
Edstrand et al. (2018a) carried out spatial and temporal stability analysis of a wake
and trailing vortex region behind a NACA 0012 finite wing at Re = 1000, α = 5◦ and
AR = 1.25, documenting seven unstable modes with the wake instability dominating in
both temporal and spatial analyses. Unlike many stability analysis works focusing only on
the vicinity of the tip vortex, the full half-span of the wing was considered. BiGlobal
stability analysis was employed exploiting streamwise homogeneity in the absence of
large scale separation at the low α considered. This allowed capturing three-dimensional
modes with structures in the tip and the wake regions. Subsequent work of Edstrand et al.
(2018b) on the same geometry employed parabolised stability analysis to guide the design
of active flow control for tip vortex based on a subdominant instability mode that was
found to counter-rotate with the tip vortex. Forcing of this mode introduced at the trailing
edge was shown to attenuate the tip vortex. Navrose, Brion & Jacquin (2019) conducted
TriGlobal non-modal stability analysis of a trailing vortex system over a flat plate and
NACA 0012 wing at α = 5◦, AR = 6 and Re = 1000. Unlike in earlier studies, their fully
three-dimensional analysis included the tip vortex and flow over the wing. It was shown
that the linear optimal perturbation is located near the wing surface and advects into the
tip vortex region during its evolution, which agrees with the findings of Edstrand et al.
(2018b). The displacement of the vortex core due to evolution of the optimal perturbation
was proposed as a possible mechanism behind trailing vortex meandering. All these
studies have demonstrated that addressing the three-dimensionality of finite wing wake
through stability analysis allows for enhanced understanding of the underlying physical
mechanisms. However, the relatively low angles of attack considered in these studies meant
that the underlying base flows had a relatively simple vortical structure.

In the framework of our present combined theoretical/numerical and experimental
efforts, Zhang et al. (2020b) employed DNS to analyse the development of
three-dimensional separated flow over unswept finite wings at a range of α (Re = 400, 1 ≤
AR ≤ 6). The formation of three-dimensional structures in the separated flow was
discussed in detail. The vortex sheet from the wing tip rolls up around the free end to
form the tip vortex which at first is weak with its effects spatially confined. As the flow
around the tip separates, the tip effects extend farther in the spanwise direction, generating
three-dimensionality in the wake. It was shown that the tip-vortex-induced downwash
keeps the wake stable at low AR, whereas at higher AR unsteady vortical flow emerges
and vortices are shed forming closed loops. At AR � 4 tip effects slow down the shedding
process near the tip, which desynchronises from the two-dimensional shedding over the
midspan region, giving rise to vortex dislocation. The interactions of the tip vortex with the
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Linear instabilities on post-stall swept finite 3D wings

unsteady wake structures at high α lead to noticeable tip vortex undulations. Subsequently,
Zhang et al. (2020a) addressed swept wing flows at the same conditions. Several
stabilisation mechanisms additional to those found in Zhang et al. (2020b) were reported
for swept wings. At small AR and low Λ, the tip vortex downwash effects still stabilise
the wake, whereas the weakening of the downwash with increasing span allows the
formation of unsteady vortex shedding. For higher Λ, the source of three-dimensionality
was shown to transition from the tip of the wing to midspan where a pair of symmetric
vortical structures is formed with their mutually induced downward velocity stabilising the
wake. Therefore, three-dimensional midspan effects leading to the formation of stationary
vortical structures allow steady flow formation at higher AR which would not be feasible on
unswept wings. At higher AR the midspan effects weaken near the tip leading to unsteady
vortex shedding in the wing tip region. Finally, for high AR and high Λ wings, steady flow
featuring repetitive formation of the streamwise aligned finger-like vortices along the span
ensues.

Despite the substantial improvement in understanding of complex vortical structures
that recent computational efforts have offered, several key questions remain open and
motivate the present work. First, the origin of the wake unsteadiness observed in the
simulations of Zhang et al. (2020b) and those performed herein, remains unexplained
and the conjecture that this unsteadiness arises on account of a presently unknown flow
eigenmode needs to be examined. Further, the frequency content and spatial structure of
this (and possibly other) modes existing in the flow both during the linear regime and
at nonlinear saturation needs to be documented and classified. Finally, the effects of wing
geometry on the global modes, especially that of Λ and AR, needs to be examined. In order
to address these questions, we perform linear TriGlobal modal analysis of separated flow
over finite three-dimensional wings, followed by a brief data-driven modal analysis (Taira
et al. 2017) once the leading three-dimensional global mode has led the flow to nonlinear
saturation.

Finally, the choice of the flow analysed with respect to its stability deserves some
discussion. Stability analysis of the mean flow, obtained by time-averaging the unsteady
periodic flow, has been shown to accurately predict the frequency of the unsteadiness in
certain types of flows (Barkley 2006; Beneddine et al. 2016). This was explained using
weakly nonlinear analysis by Sipp & Lebedev (2007), who formulated two conditions
in terms of the complex constants of the Stuart–Landau equation that must hold for
linear stability analysis of a mean flow to be relevant. It was demonstrated that these
conditions are satisfied for the circular cylinder near the critical Reynolds number
considered by Barkley (2006). A discussion of this point in the context of the present
fully three-dimensional flow will be presented in the closing chapters, after the main body
of results, obtained using base flows that numerically satisfy the equations of motion, has
been presented.

The paper is organised as follows. The theory underlying linear modal stability analysis
is discussed in § 2 followed by the explanation of computational set-up and numerical
methods as well as verification of stability analysis tools in § 3. Results are reported in § 4
starting with the discussion of the base flow. Linear global modes and the effects of wing
geometry at Re = 400 and α = 22◦ are reported in § 4.2. The effects of varying Reynolds
number and α are considered in § 4.3. Finally, the growth of the leading global mode and
eventual transition to nonlinearity is discussed in § 4.4.
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2. Theory

The flow under consideration is governed by the non-dimensional, incompressible
Navier–Stokes and continuity equations:

∂tu + u · ∇u = −∇p + Re−1∇2u, ∇ · u = 0, (2.1a,b)

where the Reynolds number, Re ≡ U∞c/ν, is defined by reference to the free-stream
velocity, U∞, the chord, c, and the kinematic viscosity, ν. The flow field can be expressed
on an orthogonal coordinate system as a function of the unsteady velocity u = (u, v, w)T

and pressure

q(x, t) = (u, v, w, p)T, (2.2)

which are decomposed into a base flow component q̄ and a small perturbation q̃ with unit
magnitude, such that

q = q̄ + εq̃, ε � 1. (2.3)

The approach followed to obtain steady stable, or stationary unstable base flows are
discussed in § 3.3. Substituting (2.3) into (2.1a,b), subtracting the base flow at O(1) and
neglecting O(ε2) terms leads to the linearised Navier–Stokes equations (LNSEs)

∂tũ + ū · ∇ũ + ũ · ∇ū = −∇p̃ + Re−1∇2ũ, ∇ · ũ = 0. (2.4a,b)

For the incompressible flow of interest the pressure perturbation can be related to the
velocity perturbation through p̃ = −∇−2(∇ · (ū · ∇ũ + ũ · ∇ū)). Now the LNSEs can be
written compactly as the evolution operator L forming an initial value problem (IVP)

∂tũ = Lũ. (2.5)

For steady basic flows, the separability between time and space coordinates in (2.5)
permits introducing a Fourier decomposition in time of the general form ũ = û(x) e−iωt.
Depending on the number of inhomogeneous spatial directions in the base flow analysed
and the related number of periodic directions assumed, different forms of the ansatz for ũ
can be used (Theofilis 2003; Juniper, Hanifi & Theofils 2014). As the flow in question is
fully three-dimensional, no homogeneity assumption is permissible. This requires the use
of TriGlobal linear stability theory, in which both the base flow q̄ and the perturbation ũ
are inhomogeneous functions of all three spatial coordinates giving the following ansatz

ũ(x, y, z, t) = û(x, y, z) e−iωt + c.c. (2.6)

Here, û is the amplitude function, and c.c. is a complex conjugate to ensure real-valued
perturbations. Substituting (2.6) into (2.5) leads to the TriGlobal eigenvalue problem
(EVP)

Aû = −iωû. (2.7)

The matrix A results from spatial discretisation of the operator L and comprises the basic
state q̄(x) and its spatial derivatives, as well as the Reynolds number as a parameter.
The TriGlobal EVP (2.7) is solved numerically to obtain the complex eigenvalues ω and
the corresponding eigenvectors û, which are referred to as the global modes. The real
and imaginary components of the complex eigenvalue ω = ωr + iωi correspond to the
frequency and the growth/decay rate of the global mode.
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Figure 1. Problem set-up showing wing and the computational domain. The symmetry condition is applied at
the Back plane. The half-wing model is shown in grey and is not to scale. Light grey indicates the opposite side
of the wing when mirrored in the symmetry plane and is shown for visualisation purpose only.

3. Numerical work

3.1. Geometry and mesh
The geometry under consideration is an untapered wing based on the symmetric NACA
0015 airfoil with a sharp trailing edge and a straight cut wing tip. Taking advantage of
the symmetry of the problem, half of the wing is considered as shown in figure 1. The
chord-based Reynolds number Re = 400 is held constant, whereas the wing sweep (Λ),
semi-aspect ratio (sAR) and angle of attack (α) are varied. Here, we use sAR = b/2c,
where b is the wingspan defined from wing tip to wing tip and c is the wing chord.

It is important to take into account the order of the operations performed to construct
a swept wing at an angle of attack. First, a two-dimensional mesh was generated
and extruded along a vector {x, y, z} = {b/2 tan Λ cos α, −b/2 tan Λ sin α, b/2}. This is
equivalent to rotating the wing about an axis normal to the symmetry plane and achieves
a swept back wing without a dihedral angle.

The computational extent is (x, y, z) ∈ [−15, 20] × [−15, 15] × [0, 15] with the origin
located at the leading edge of the wing when it is at zero α as shown in figure 1. The
half-wing was meshed using Gmsh (Geuzaine & Remacle 2009), with a structured C-type
mesh around the wing. Macroscopic elements for a typical sAR = 4 straight wing mesh are
shown in figure 2(a), the enlarged view in 2(b) shows refinement near the wing. Within
each element both spectral codes (discussed in § 3.2) resolve flow quantities by use of
high-order polynomials, the degree of which is adjusted until convergence is achieved.
Several computational meshes having a different number of macroscopic elements were
tested with different polynomial order p to ensure spatial and temporal convergence.
A combination of 46 735 hexahedra and prisms as macroscopic elements for an sAR = 4
wing and polynomial order of 5 was selected.

For analysing the effect α, the sAR and Λ are kept constant at sAR = 4 and
Λ = 0◦. The effects of Λ are analysed at a constant α = 22◦ at which the flow is
separated with Λ varied between 0◦ and 30◦ for wings of sAR = 4 and 2. Length and
velocity are non-dimensionalised by wing chord c and U∞, respectively. Time refers
to non-dimensional convective time normalised by c/U∞ and the Strouhal number
is defined as St = fc sin(α)/U∞. For modal stability results shown in further section,
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y
xz

x
y
z

(a) (b)

Figure 2. Computational mesh showing (a) the full domain and (b) an enlarged view of the mesh near the
airfoil. For clarity only the macroscopic elements are shown, whereas the internal field and the mesh resulting
from a high-order polynomial fitting are not shown.

each perturbation component is normalised by maximum of all components and the
non-dimensional angular frequency is defined as ωr = 2πfc/U∞.

3.2. Solvers and boundary conditions
DNS is used to solve equations of motion using either of the nek5000 (Fischer,
Lottes & Kerkemeier 2008) or nektar++ (Cantwell et al. 2015) spectral element codes.
The incompressible solver in both codes relies on the solution of a Helmholtz equation.
In nektar++ a Jacobi (diagonal) preconditioner was used. In nek5000 the preconditioning
strategy is based on an additive Schwarz method (Offermans et al. 2020), which combines
a domain decomposition method (Fischer 1997) and a coarse grid problem (Lottes &
Fischer 2005). For the coarse grid problem, a direct solution method called XXT (Tufo
& Fischer 2001) is used. For iterative time-stepping, the Arnoldi algorithm utilised
in the PARPACK library was used in nek5000, whereas the modified Arnoldi method
(Barkley, Blackburn & Sherwin 2008) was used in nektar++. The time integration method
was second order in both codes with backward differentiation formula (BDF) used in
nek5000 and implicit–explicit (IMEX) scheme used in nektar++. Both codes were used
for computing artificially stationary base flows and to perform TriGlobal stability analysis
via time-stepping, in order to cross-validate the results presented here, as is discussed
shortly.

In order to close the systems of equations solved, appropriate boundary conditions (BCs)
were prescribed. On the wing boundary, homogeneous Dirichlet (D) BC was used for both
base flow and perturbation velocity components. On north, south and west boundaries a
uniform free-stream velocity was imposed for the base flow and D for the perturbation.
On the east and front faces, outflow and robust outflow in nektar++ (Dong, Karniadakis
& Chryssostomidis 2014) were used for the base flow with homogeneous Neumann (N)
BC for the perturbation. Finally, symmetry BC (N for u, v and D for w) was used for both
base flow and the perturbation on the back boundary. The base flow solutions obtained
by both codes were compared to ensure that identical results are achieved. Figure 3 shows
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Figure 3. Comparison of v velocity signal between nek5000 and nektar++ for
(sAR, Λ, α, Re) = (2, 0◦, 22◦, 400) at (x, y, z) = (4, 0, 1).

Present results Zhang et al. (2020b)

Case α CL CD CL CD

sAR = 4 12◦ 0.37 0.25 0.36 0.24
22◦ 0.57 0.38 0.58 0.38

sAR = 2 12◦ 0.33 0.24 0.33 0.24
22◦ 0.50 0.36 0.50 0.36

2D 22◦ 0.77 0.46 0.77 0.46

Table 1. Comparison of mean lift and drag coefficients computed with nektar++ over unswept NACA 0015
wings at Re = 400 with the literature.

good agreement in the variation of vertical velocity with time for a given wing geometry
between the two codes. The average difference between instantaneous values of v produced
by two codes is 3 %. For the configurations considered, good agreement between the two
codes is achieved when using time steps Δt ≤ 5 × 10−4 and polynomial orders p ≥ 5.

The values of the average lift (CL) and drag (CD) coefficients, computed with nektar++
and presented in table 1, are in agreement with results of Zhang et al. (2020b).
Further comparisons between results of the CharLES and nektar++ solvers have been
presented in He et al. (2019a) and Zhang et al. (2020b).

3.3. Steady-state generation and linear global stability analysis
At conditions at which a steady state exists, the base flow for the analysis is obtained
by converging the DNS solution in time. Past the first bifurcation, unsteady flow ensues
and obtaining a steady base flow is not as straightforward. A number of numerical
techniques have been developed for the recovery of steady states at conditions where
global linear instability is expected. These include approaches based on continuation
(Keller 1977), selective frequency damping (SFD) (Åkervik et al. 2006) and, more
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Code p SFD (4, 0◦) (4, 5◦) (2, 0◦)

nektar++ 5 1 × 10−5 1.5198 + i0.3018 1.6581 + i0.2701 1.6727 + i0.4184
nek5000 5 1 × 10−5 1.5164 + i0.2985 1.6335 + i0.3173 1.6608 + i0.4236
nek5000 5 1 × 10−6 1.5151 + i0.2969 1.6321 + i0.3512 —
nek5000 7 1 × 10−5 — 1.6383 + i0.3501 —

Table 2. Eigenvalue of the least-damped global mode for different (sAR, Λ) at α = 22◦, Re = 400 obtained
with different codes, polynomial order p and level of SFD convergence.

recently, a residual recombination procedure (Citro et al. 2017) and minimal gain marching
(Teixeira & Alves 2017). Here the SFD method, as implemented in nektar++ and nek5000,
has been used to compute artificially stationary, unstable base states that were used for the
subsequent modal analyses. Verification of the SFD methodology employed was presented
by He et al. (2019a) who recovered accurate amplified global modes of a sphere. SFD uses
filtering and control of unstable temporal frequencies in the flow, the time continuous
formulation can be expressed as

q̇ = NS(q) − γ (q − q̄),

˙̄q = (q − q̄)/Δ,

}
(3.1)

where q represents the problem unknown(s), the dot represents the time derivative, NS
represents the Navier–Stokes equations, γ ∈ R+ is the control coefficient, q̄ is a filtered
version of q and Δ ∈ R+∗ is the filter width of a first-order low-pass time filter (Jordi,
Cotter & Sherwin 2014). Choice of the parameters γ and Δ affects the convergence to the
steady-state solution when q = q̄. If the dominant mode is known and specified as input
one can adjust the filter parameters to accelerate convergence.

TriGlobal instability analysis was performed using the time-stepper algorithm and
the implicitly restarted Arnoldi method with the BCs presented in § 3.2. Krylov
subspace dimensions between 50 and 100 have been used to converge between 6 to 12
leading eigenmodes within a tolerance of 10−5. For both codes SFD was converged to
1 × 10−6–1 × 10−5.

3.4. Validation and verification of the linear stability analysis
Table 2 lists the details of the effect of the polynomial order p and the extent of SFD
convergence on the eigenvalues of the least-damped global mode for swept and unswept
configurations using both spectral codes. Overall, very good agreement in terms of the
frequency with less than 2 % difference between the two codes is observed at the same
levels of p and SFD convergence. The difference in damping rate is within 2 % for unswept
cases and is about 15 % for the swept case. When increasing the p or using better converged
base flows the damping rate of the leading mode is substantially higher. It should be noted
that due to the high computational costs these tests were only conducted using nek5000.
At higher resolutions, the agreement between the two codes is expected to improve. An
equivalent agreement was achieved for other cases as well.

To further validate the global stability analysis, a nonlinear simulation was performed
with the stationary base flow as initial condition for (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400).
The evolution of the vertical velocity v signal over time is shown in figure 4 for a
probe location in the wake. The signal first exhibits a period of linear growth with
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Figure 4. Growth of the perturbation v̂ velocity component for (sAR, Λ, α) = (4, 5◦, 22◦) showing the slope.
The inset shows the location of the probe point P(x, y, z) = (4, 0, 2).

the eventual transition to nonlinearity. Corresponding frequency ω, obtained with a fast
Fourier transform of the time signal is 1.69 and the growth rate is 0.350 which are in good
agreement with the frequency and damping rate of the dominant global mode listed in
table 2.

4. Results

4.1. Base flows
The evolution of the flow over the unswept sAR = 4 wing at Re = 400 obtained by DNS
with the angle of attack is shown in figure 5. The vortical structure of the three-dimensional
wake over unswept wings is in agreement with the DNS results of Zhang et al. (2020b).
With increasing α, the separation location moves closer to the leading edge and the tip
vortex becomes stronger. For the separated flows at high angles of attack, three regions
can be identified behind the wing.

As seen in figure 5, the flow is steady at α = 10◦ with separation occurring at
approximately two-thirds of the chord and being practically two-dimensional. At α = 14◦,
an unsteady wake is formed, and the shed vortices are nearly parallel to the trailing edge
of the wing. The separation location moves upstream to approximately half-chord, and
the spanwise region of the flow affected by the tip vortex is reduced, with the separation
bubble extending closer to the tip. At the higher angles of attack of α = 18◦ and 22◦, also
shown in figure 5, the three distinct regions develop (Zhang et al. 2020b). These regions
are the wake, consisting of spanwise vortices near the symmetry plane, the essentially
steady tip vortex, and the interaction region between the wake and tip characterised by the
braid-like vortices, composed of both streamwise vorticity (ωx) and crossflow vorticity
(ωy). These braid-like vortices close the spanwise vortex system by connecting a pair of
counter-rotating spanwise vortical structures in the wake region forming a closed vortex
loop.

The effect of sweep angle on the flow over the sAR = 4 wing is shown in figure 6.
As the wing is swept back, the interaction region is moved closer to the wing tip due to
the increased spanwise crossflow, which results in the tip vortex becoming weaker and
noticeably less steady. There is a qualitative change in the wake structure as the sweep
angle reaches Λ = 15◦. The periodic vortices passing through the symmetry plane are
no longer visible, and the wake now consists of two series of braid-like vortices forming
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Figure 5. Effect of α on instantaneous DNS solution shown with isocontours of Q-criterion (Q = 1)
coloured by streamwise vorticity (−5 ≤ ωx ≤ 5) at (sAR, Λ, Re) = (4, 0◦, 400).

outboard of the midspan, that do not pass through the symmetry plane. The tip vortex
is now less pronounced and clearly unsteady. At Λ = 30◦ vortices extending from the
inboard section of the wing into the wake behind the tip are starting to form; these
structures are sometimes referred to as ‘ram’s horn’ vortices (Black 1956). A ram’s horn
vortex is generated on the suction side of the wing close to the symmetry plane and a
stronger counter-rotating vortex emanates from the trailing edge as seen in the bottom
row of figure 6. For clarity, an additional contour of Q = 0.1 in transparent is included
for Λ = 30◦. These two vortices form a closed structure and start to shed far downstream
behind the wing.

The steady base flow that will be used in the subsequent linear stability analysis has been
converged by SFD and is shown on the right column of figure 6 for the corresponding
sweep angles. The contours of ū = 0 in transparent grey and ū = −0.1 in darker grey
are superimposed upon the contours of Q = 1 to indicate the recirculation region. For
the unswept wing, there is a large separation bubble in the base flow that covers most of
the span of the wing up to z ≈ 3.8 where the flow remains attached due to the downwash
induced by the tip vortex. The bubble is largest at the symmetry plane and extends to x ≈ 5
in the streamwise direction. As the wing is swept back, this maximum in the streamwise
extent of the recirculation region shifts away from the symmetry plane and towards the tip.
The conjecture that the spanwise location of maximum recirculation is connected to the
instabilities of the flow will be examined in what follows. It is likely that a global mode
will manifest itself at this location. At Λ = 30◦ the flow over most of the wing is steady,
as is suggested by the fact that the structures of Q are identical between instantaneous
result and SFD base flow as seen in the bottom row of figure 6. For the steady base flow at
Λ = 30◦, the separation bubble extends nearly all the way to the wing tip and the tip vortex
is no longer visible. On the inboard side of the wing, a region of attached flow develops,
and the separation bubble is split in two no longer passing through the symmetry plane.
Interestingly, the presence of such region of attached flow at the root of a swept wing was
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Figure 6. Effect of Λ on (a,c,e,g,i) instantaneous DNS solution and (b,d, f,h,j) steady base flow after SFD
shown with isocontours of Q = 1 for (sAR, α, Re) = (4, 22◦, 400), coloured by streamwise vorticity (−5 ≤
ωx ≤ 5). W and I denote the wake and interaction regions, respectively.

also reported by Visbal & Garmann (2019) for turbulent flow at much higher Reynolds
numbers. Overall, a higher angle of sweep has a stabilising effect on the flow. It was shown
by Zhang et al. (2020a) that, as the sweep is further increased, the flow turns steady beyond
Λ ≈ 45◦.

The effects of sweep are qualitatively analogous on the lower semi-aspect ratio wing
(sAR = 2, figure 7). For the unswept wing, only one row of braid-like vortices is formed
compared with the larger aspect ratio wing and there is no clear wake region. The reduced
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Figure 7. Same as figure 6 but for sAR = 2 at α = 22◦. For clarity additional contour of Q = 0.1 in
transparent is included for Λ = 30◦.

span of the wing means that the wake is greatly influenced by the tip effects. Hence, there
is not enough spanwise separation between the tip and the symmetry plane for spanwise
aligned vortices to develop. Similar to the sAR = 4 case, horn-like vortices are formed
at Λ = 30◦, with the flow over most of the wing being steady. In the SFD base flow,
the spanwise location of the maximum extent of recirculation for the sAR = 2 wing also
moves towards the tip; however, the spanwise extent of the recirculation region is reduced
compared with the sAR = 4 wing.

4.2. Linear global modes
TriGlobal modal linear stability analysis was performed at conditions at which steady flow
naturally exists or could be computed using the SFD method discussed in § 3.3. The effects
of Reynolds number and angle of attack on leading modes are discussed in § 4.3. Here,
we first focus on the most unstable conditions of Re = 400 and α = 22◦, where multiple
amplified modes exist, and present results of parametric studies of the effects of angle
of sweep and wing aspect ratio. Owing to the computational cost of the SFD method,
analysis results are shown for a selected number of representative configurations, focusing
on the most unstable eigenmodes. Global stability results for the sAR = 4 wing at constant
α = 22◦ are shown in figures 8–12.

Figure 8 shows the three leading flow eigenmodes on the sAR = 4 wing, classified using
their frequency, phase and spatial structure. These modes, named A, B and C, are plotted
with contours of the three perturbation velocity components for the same wing geometry
of (sAR, Λ, α, ) = (4, 5◦, 22◦); in each subplot, both a top and a side view of the same
mode are shown. Mode A is the most unstable for most cases examined and takes the
form of periodic vortical structures at half-span. As hypothesised in § 4.1, it originates at
the peak in the recirculation regions of the base flow. The structure of mode B is visually
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Figure 8. Modes A, B and C for (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400) visualised with contours of perturbation
velocity components at ±0.1. The contours of ū = 0 in transparent grey and ū = −0.1 in darker grey indicate
the recirculation region.

similar to mode A but with a streamwise drift. It can be seen that both modes A and B
originate at the peaks in the recirculation regions of their respective base flows that were
shown in figure 6. The û and ŵ velocity components of modes A and B have two branches,
each associated with the shear layer at the top and bottom of the separation bubble, which
suggests that these are shear layer instabilities. The vertical v̂ velocity component of these
modes has a chevron-like structure when viewed from above. However, the peak of the
spatial structure of mode A is located near the wing, whereas the structures of mode B
become stronger further away from it. Unlike modes A and B that originate at the peaks in
the recirculation regions of their respective base flows, mode C has structures just inboard
or outboard of the maximum recirculation as shown in the bottom row of figure 8. The
contours of v̂ velocity of mode C no longer shows a chevron-like pattern, and all velocity
components have a row of periodic structures at 2 ≤ z ≤ 3 that are oblique to the wing.

Figures 9–11 show the dependence of the frequency and the amplification rate of each
of the modes A, B and C on the sweep angle. Figure 12 shows the stable modes present
at Λ = 30◦ which was the highest sweep angle considered. In each of these figures, the
eigenvalues of a specific mode are highlighted by full symbols and are shown alongside
the eigenvalues of other modes to aid visual comparison. As in the figures that showed the
base flow, contours of ū = 0 in transparent grey and ū = −0.1 in darker grey indicate the
recirculation region. The spatial structures of the selected group of modes are shown by
labelled contours of Q = 0.5 in all figures and St is defined as St = ωrc sin α/2πU∞.

Figure 9 shows mode A, which is the leading unstable flow eigenmode in the range 0◦ ≤
Λ ≤ 15◦. The plot of Q-criterion of mode A for the unswept wing shows periodic vortical
structures at half-span. When mirrored in the symmetry plane, the structures of Q have
a necklace-like shape when viewed from above. Similar necklace vortices were identified
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Figure 9. Spatial structures of mode A at different Λ, on a sAR = 4 wing at a constant α = 22◦, Re = 400,
visualised with contours of Q = 0.5 shown with top and side view coloured by spanwise vorticity (−5 ≤ ωz ≤
5). An arrow indicates the change of the leading eigenvalue with increasing sweep angle.

by Taira & Colonius (2009) in flows over flat plates. Here, such structures are associated
with the leading global eigenmode of a finite wing at different geometrical conditions.
This same mode A is the most amplified at Λ = 5◦ and 10◦ as can be seen in figure 9.
With sweep, the spatial structures of mode A move away from the symmetry plane and
towards the tip following the spanwise location of the peak recirculation of the base flow.
The frequency remains within 6 % from the unswept case, but the amplification rate
increases by 26 % from unswept to Λ = 10◦. At Λ = 15◦, mode A is still dominant,
but the spatial structures show some changes. In particular, the lower branch associated
with the bottom shear layer is less pronounced when looking from the side, and when
viewed from the top the structures show inboard curvature, associated with the shape of the
separation bubble near the tip. This might be due to the induced velocity by the tip vortex.
Furthermore, under these conditions mode A is about 50 % less amplified compared to
Λ = 0◦, which points to a change in the amplification of the leading mode between Λ of
10◦ and 15◦. This is attributed to the balance of tip-induced and spanwise flow effects with
increasing sweep angle. Both the tip vortex downwash (Zhang et al. 2020b) and increased
angle of sweep (Zhang et al. 2020a) were shown to have a stabilising effect on the wake.
As Λ increases, the stabilising effects of the tip decrease, due to the weakening of the
tip vortex observed in the flow, leading to mode A being more amplified. As Λ increases
further, the spanwise flow becomes stronger as discussed in appendix A, and mode A
becomes less amplified due to stabilising effect of spanwise flow.

In addition to mode A, which is amplified in all four low-sweep cases shown, a
subdominant mode, labelled B shown in figure 10, is also found with the exact same
frequency. At Λ = 5◦ and 10◦, mode B is the second most amplified mode and is the
third most amplified for Λ = 0◦. As mentioned before, mode B closely resembles mode
A, however, the structures of modes A and B are out of phase and the two modes have
different phase velocities and wavelengths. Just like with mode A, the spanwise location of
the peak of mode B moves towards the tip as Λ increases, following the peak recirculation
of the respective base flow.

Mode C, shown in figure 11, has a higher frequency than modes A and B and nearly
the same phase velocity as mode B. Unlike the compact structures of modes A and B,
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Figure 10. Same as figure 9, highlighting mode B.
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Figure 11. Same as figure 9, highlighting mode C.

the periodic structures of mode C extend further in the spanwise direction. In addition,
mode C is not localised at the peak of the separation bubble but also has structures
concentrated on either side of it as in the case of Λ = 0◦ and 10◦ or on both sides as
in Λ = 5◦ and 15◦.

No unstable modes were found in the spectrum of the Λ = 30◦ wing. The least-stable
mode, labelled D, is stationary and damped. The mode structure shown in figure 12
indicates that it is a vortical structure that counter rotates with respect to the tip vortex.
The mode structures follow the direction and spatial location of the spanwise vortices seen
in the base flow (figure 6). The second most unstable mode E shown in the same figure
peaks further downstream behind the wing with structures showing some resemblance to
the wake-like modes A and B but also having vortex-like characteristics.

Finally, the lower aspect ratio wing (sAR = 2) is considered at the same α = 22◦. Global
modes for several sweep angles are shown in figure 13. Similar to sAR = 4 case, the
dominant mode for Λ = 0◦ and 10◦ is mode A. However, unlike in the higher aspect ratio
wing, mode A appears to be less amplified at Λ = 10◦, and mode B no longer appears
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Figure 12. Same as figure 9 showing modes D and E for (sAR, Λ, α, Re) = (4, 30◦, 22◦, 400).
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Figure 13. Same as figure 9 showing modes A and F on the shorter sAR = 2 wing.

in the spectrum at least up to an Kylov subspace dimension of 50. The fact that mode A
does not become more amplified at Λ = 10◦ over the sAR = 2 wing can be explained by
stronger tip effects on the shorter wing. At Λ = 30◦, the leading mode, labelled F, is steady
and takes the form of a tip like instability that was not seen on sAR = 4 wing. Additional
low-frequency travelling and stationary modes are present but are all stable.

The existence of three families of modes that manifest themselves at a range
of geometrical configurations is encouraging. Documenting these instabilities at low
Reynolds numbers offers a basis for theoretically founded flow control strategies as well
as a first step towards understanding turbulent flow at higher Reynolds numbers as it is
expected that these modes will exist at range of Reynolds numbers. As mode A, which
is dominant for most configurations, is a shear layer instability related to the separation
bubble, flow control targeted at the separation bubble could be used to attenuate the
formation of wake structures observed in § 4.1 which result from linear growth and the
eventual nonlinear saturation of the leading mode as shown in § 4.4. Theoretically founded
flow control studies based on solution of the adjoint TriGlobal EVP are currently underway
and will be presented elsewhere.

4.3. Effects of Reynolds number and angle of attack
The effect of the Reynolds number on the growth rate and frequency of the leading mode
is considered at a fixed set of parameters (sAR, Λ, α) = (4, 0◦, 22◦). For the cases where
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Figure 14. Dependence on Re of (a) growth rate and (b) frequency of the leading global mode A at
(sAR, Λ, α) = (4, 0◦, 22◦). The DNS shedding frequency is also shown in (b).
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Figure 15. Variation of (a) growth rate and (b) frequency of the leading global mode A with α at
(sAR, Λ, Re) = (4, 0◦, 400).

steady flow exists, the residuals algorithm (Theofilis 2000) was used to extract global
mode characteristics from the DNS results, whereas for unstable cases the TriGlobal
eigenvalue problem was solved numerically. Consistent results were obtained by the
two approaches, the results of which are shown as data points connected by splines.
Figure 14(a) presents the dependence of the amplification rate of mode A on Reynolds
number and establishes the critical Reynolds number at these conditions, Recrit = 180.3,
at which a Hopf bifurcation and the onset of wake unsteadiness occur. The frequency of
mode A, shown in figure 14(b), increases before reaching a peak at Recrit and decreases
afterwards. The growth rate increases nearly lineally in the vicinity of Recrit and continues
to increase at a lower rate once the flow becomes unstable. As in the case of the
two-dimensional cylinder flow (Barkley 2006), at the bifurcation point the frequency of the
leading mode matches the wake shedding frequency measured from DNS results, whereas
beyond Recrit the frequencies diverge. Mean flow stability analysis is needed at Reynolds
numbers higher than Recrit to recover the shedding frequency as shown in 14(b).

Next, the Reynolds number is kept constant at the highest value considered presently,
Re = 400, and the angle of attack (α) is varied, keeping sAR and Λ constant, in order to
establish the critical angle of attack (αcrit) at which the flow becomes unstable; results are
shown in figure 15. It can be seen that increasing α has a destabilising effect on the flow,
the critical angle of attack at these parameters being αcrit = 13.4◦. Moreover, it can be
seen that the amplification rate of the leading global mode plateaus near α = 22◦, whereas
its frequency reduces systematically past the critical angle of attack.

The association of the leading three-dimensional global mode with peaks in the
reversed streamwise velocity component of the base flow (ūrev) seen in figure 9, calls
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Figure 16. Dependence of the maximum reverse streamwise velocity component on (a) Re at (sAR, Λ, α) =
(4, 0◦, 22◦) and (b) on α at (sAR, Λ, Re) = (4, 0◦, 400). Lines correspond to a least-squares fit of the data
points.

for examination of the dependence of the latter quantity on the same two variables
used in figures 14 and 15. Figure 16 shows the dependence of ūrev on Re and α, as a
fraction of the free stream velocity. In both cases, the maximum reversed flow increases
monotonically when either of Re or α is increased. This growth correlates with the linear
slope of the ωi curve in the vicinity of the bifurcation point in figures 14(a) and 15(a).
The values of recirculation corresponding to the critical conditions Recrit and αcrit are
14 % and 11 %, respectively. As such, these values fall within the bracket of predictions
for absolute instability, 7.5 % ≤ ūrev ≤ 15 %, obtained by classic absolute/convective
instability analysis (Hammond & Redekopp 1998), DNS (Rist & Maucher 2002) and
global stability analysis (Rodríguez & Theofilis 2010) of two-dimensional LSB models.

4.4. Modal analyses in the nonlinear saturation regime
The evolution of the linearly unstable flows documented in the earlier sections towards
nonlinearity is examined next at (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400). Figure 17 shows the
time history at a probe located at (x, y, z) = (4, 0, 2), whereas the full flow fields are
visualised with Q = 1 coloured by streamwise vorticity −5 ≤ ωx ≤ 5. The resulting flow
field (EIG) at a time that is well into the nonlinear regime (t = 60) is compared with
the initial DNS. At early times t < 15, the flow remains nearly identical to the steady
SFD-obtained base flow. At t ≈ 20, vortical structures emerge at 1 ≤ z ≤ 2, corresponding
to the spatial locations of the peak of the global mode A. As time evolves, nonlinearity
takes over with more complex structures forming in the wake, as seen at t = 30, with the
eventual flow field (t = 60) being practically identical to the DNS at corresponding times.
The small phase discrepancy is because the times at which the EIG and DNS fields are
shown do not exactly match, because the mode takes a long time to grow from the steady
flow. The corresponding time for the DNS for this qualitative comparison was chosen such
as to approximately match the peaks during nonlinear saturation.

Table 3 presents a quantitative comparison of the frequencies and amplification rates
of the leading two modes at different times during the flow evolution: the top two
rows show results of the stationary base flow, whereas the middle and lower two rows
correspond to the mean flow obtained by time-averaging during nonlinear saturation
and to data-driven analyses performed on snapshots, also taken in the nonlinear regime.
A number of observations worthy of discussion are made on the basis of these results.
First, the growth of the most amplified linearly unstable global mode exactly corresponds
to the slope of the logarithmic derivative of the DNS probe data during linear growth.
Second, as already seen in figure 14, modes obtained from mean flow stability analysis
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Figure 17. Growth of the global mode for (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400) showing the time history at
point P(x, y, z) = (4, 0, 2) and flow field evolution at selected times. On the right, the resulting flow field is
also compared with the DNS result.

Λ = 0◦ Λ = 5◦

Method Mode St ωi St ωi

Base flow EVP 1 (A) 0.090 0.299 0.098 0.350
2 (B) 0.089 0.104 0.098 0.033

Mean flow EVP 1 (IM) 0.140 −0.010 0.141 0.010
2 (WM) 0.155 −0.027 0.157 −0.030

POD/DMD EVP 1 (IM) 0.140 −0.003 0.140 −0.003
2 (WM) 0.160 −0.009 0.160 −0.017

Table 3. Comparison of the frequencies and amplification rates of the first two modes obtained by different
methods for (sAR, α, Re) = (4, 22◦, 400).

(Barkley 2006; Sipp & Lebedev 2007) have different frequencies to those of the leading
global mode, whereas their amplification rate is close to the theoretically expected value of
zero. Third, data-driven analyses (Taira et al. 2017) using proper orthogonal decomposition
(Lumley 1967; Sirovich 1987) and dynamic mode decomposition (Schmid & Sesterhenn
2008; Rowley et al. 2009; Schmid 2010) at the nonlinear regime, deliver essentially
identical results with those of the corresponding mean flow stability analysis.

Figure 18 shows a visual representation of these results, focusing on the spatial structure
of the leading modes obtained using a base flow that satisfies the equations of motion
vs their counterparts resulting from mean flow and data-driven stability analyses, all
performed at (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400). Contours of ū = 0 in transparent grey
and ū = −0.1 in darker grey indicate the recirculation region of the base and mean
flows. It can be clearly seen that mean flow modes are distinctly different from the
amplified base flow modes and are qualitatively very similar to the modes obtained
by data-driven analysis, namely the interaction and wake modes, that will be further
discussed in figure 19. In summary, conclusions drawn on the basis of mean flow
stability analysis of simpler geometries, namely that the mean flow stability analysis yields
neutrally stable perturbations with the frequency of the saturated limit cycle (Barkley
2006; Sipp & Lebedev 2007), are found to carry over in the present fully inhomogeneous
three-dimensional flow configuration. The linearly unstable global modes have essentially
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Figure 18. Leading modes of (a) base flow, (b) mean flow and (c) data-driven stability analysis for
(sAR, Λ, α, Re) = (4, 5◦, 22◦, 400). Isocontours of modes at Q = 0.5 coloured by spanwise vorticity −5 ≤
ωz ≤ 5.
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Figure 19. Data-driven modal results for (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400) showing (a) the base flow (BF),
(b) the interaction mode and (c) the wake mode. Isocontours of base flow at Q = 1 and modes at Q = 0.5
coloured by streamwise vorticity −5 ≤ ωx ≤ 5.

different spatial distribution of the amplitude functions, as well as different frequencies
compared to their counterparts obtained by analysis of the nonlinearly saturated flow
regime. The role of the linear eigenmodes identified herein is to connect the steady laminar
flow with the nonlinear saturated counterpart through a modal amplification scenario.

Figure 19 introduces some qualitative features of the stability analysis results in the
nonlinear saturation regime. The two most interesting structures found in the spectrum
and corresponding to the mean flow stability analysis results shown in figure 18, are
denominated the interaction mode (IM) and the wake mode (WM). The IM, shown in
figure 19(b), has vortical structures in the wake reflecting the curvature of the vortices
shed from the wing but also has structures corresponding to the interaction region vortices
present in the base flow as shown in figure 19(a). On the other hand, WM, shown in
figure 19(c), is concentrated in the wake region with structures near the wing being parallel
to it. The evolution of these modes with changes in the parameters Re, sAR, Λ and α will
be discussed in detail elsewhere.

5. Summary

Linear modal three-dimensional (TriGlobal) instability analysis of laminar separated flows
over finite aspect ratio, constant-chord wings has been performed at 100 ≤ Re ≤ 400, two
aspect ratios and a range of angles of attack and sweep.
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Linear instabilities on post-stall swept finite 3D wings

Monitoring the unsteady base flows, the following observations were made, as the angle
of sweep (Λ) increased. When 0◦ ≤ Λ < 10◦, the three distinct regions reported by Zhang
et al. (2020b) were also observed, namely the tip vortex, wake and the interaction region
with braid-like vortices. For 15◦ ≤ Λ < 25◦, the braid-like vortices of the interaction
region become dominant and absorb the tip vortex. Finally, at 25◦ ≤ Λ ≤ 30◦, tip stall
and ram’s horn vortices are present with steady flow over most of the wing. The overall
effect of increasing sweep is flow stabilisation. In the steady flow generated by SFD, a
large separation bubble is observed. The spanwise location of the maximum extent of the
bubble changes with Λ moving towards the tip.

Linear TriGlobal instability analysis was used to identify the critical Reynolds number,
Recrit = 180.3, and critical angle of attack, αcrit = 13.4◦, on a straight finite wing of
sAR = 4. A parametric study of the effect of sweep angle conducted at conditions of
maximum unsteadiness, Re = 400 and α = 22◦, revealed the existence of three families
of unstable global modes, denominated A, B and C. Their frequency content and spatial
structure were documented for a range of Λ and two sAR. The leading mode A is dominant
in all cases examined, and its most interesting characteristic is that it originates at the peak
recirculation zone of the three-dimensional LSB formed on the wing. The latter is located
at half-span for an unswept wing and moves towards the wing tip as the angle of attack
increases. Mode A follows this spanwise motion of the peak recirculation at all conditions
examined. Subdominant modes B and C were also discovered; mode B has practically the
same frequency as mode A and also peaks at maximum recirculation but has a different
phase velocity. In contrast to the previous two, mode C has a higher frequency, whereas its
structure is not localised at the maximum recirculation but extends further in the spanwise
direction.

Overall, an increase of the sweep angle was found to stabilise the flow as no globally
unstable modes were found at the maximum considered Λ of 30◦. The leading mode
at this Λ is stable and stationary taking the form of a single vortex tube similar to
structures observed in the base flow. This suggests that stabilising effects of spanwise
flow are significant only at Λ � 10◦, whereas, at lower sweep angles, mode A becomes
more amplified due to the weakening of the tip vortex and the reduction of associated
stabilising effects. This is not the case for the sAR = 2 wing, where mode A is already less
amplified at Λ = 10◦ compared with the unswept case, suggesting a monotonic decrease of
the amplification rate with Λ. This is attributed to the stronger tip effects over the shorter
wing. At the highest sweep angle of 30◦ and sAR = 2, the leading stable mode is a tip
instability suggesting that the tip effects are stronger than spanwise flow effects even for
high Λ on the short wing.

The origin of the wake unsteadiness observed in the simulations of Zhang et al. (2020b)
and those performed herein was associated with the unstable global mode A. Exponential
growth of mode A superposed upon the underlying steady base flow leads to vortical
structures appearing in the DNS results at the same spatial locations where mode A
peaks. As time evolves, nonlinearity takes over and more complex structures form in
the wake. The variation of the leading mode frequency and growth rate with Reynolds
numbers above Recrit is found to be that predicted by Barkley (2006) on the canonical
two-dimensional cylinder: the time-averaged mean flow of the finite wing is neutrally
stable and yields the shedding frequency of the wake.

To conclude, linear TriGlobal instability analysis revealed the leading eigenmodes of
this class of flows for the first time. The evolution of these modes with aspect ratio and
sweep angle was documented. The essential differences between the linear global modes
identified herein and those resulting from mean flow (or data-driven) stability analysis
has been discussed. This analysis provides insight into the formation of the unstable

944 A6-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.420


A. Burtsev and others

–0.5

2.0
4 3 2 1 0

1.5

1.0
x

z

0.5

0

4 53210

y

z

4 5 5 10321

Spanwise distance

–0.5

–1.0

–1.5

1.5

1.0

0.5 LE

TE
0

|〈V
sp
an

〉|

〈ωx〉

0.05

0

0.10

0.15

0.20

0.25

0.05

y = 0.1
y = 0.2
y = 0.3

0

0.10

0.15

0.20

0.25

0.30

0.35
Λ = 0°

Λ(°)

Λ = 5°
Λ = 10°

(b)(a)

(d)(c)

0

1

–1

–2

–3

–4

2

Figure 20. (a) Top view of (sAR, Λ, α) = (4, 5◦, 22◦) wing showing contours of 〈w〉. (b) Slice from (a)
showing streamwise vorticity and velocity vectors (x = 1.5). (c) Magnitude of spanwise flow towards the
root (—–) at a line 0.1c above the wing TE and towards the tip (- - -) at a line 0.1c above the wing LE.
(d) Comparison of spanwise flow magnitude towards the root (—–) and tip (- - -) at z = 2 for lines at different
heights (y) above the TE.

wake for the range of conditions examined. The results reported here establish a basis
for understanding flow dynamics and instabilities on finite three-dimensional untapered
wings at low Reynolds numbers, as a first step towards understanding turbulent flow at
higher Reynolds numbers.
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Appendix. Effect of Λ on the spanwise flow on the wing

Spanwise flow effects are considered by analysing the time-averaged flow for the Λ = 5◦
wing. Figure 20(a) shows isosurfaces of the time-averaged spanwise component of velocity
〈w〉 at levels from −0.2 to 0.2, on the (sAR, Λ, α, Re) = (4, 5◦, 22◦, 400) wing. A region
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of positive (towards the tip, shown in red) flow is visible at the leading edge (LE) of the
wing as the sweep angle increases. Above the trailing edge (TE), a region of negative
(towards the root, shown in blue) flow is seen to peak at z ≈ 2. Figure 20(b) shows the
time-averaged streamwise vorticity 〈ωx〉 behind the wing on the x = 1.5 plane. As noted
by Zhang et al. (2020b), the vortex sheet emanates from the leading edge and the wing tip.
The region of negative streamwise vorticity is associated with the roll-up of the wing tip
vortex sheet that gives rise to the tip vortex, while the roll-up of the LE vortex sheet leads
to a region of positive streamwise vorticity. It can be seen from the velocity vectors in
figure 20(b) that these opposing regions of vorticity induce spanwise flow towards the
root of the wing in the vicinity of the wing TE. The magnitude of this spanwise flow
|〈Vspan〉| over the TE is compared with spanwise flow towards the tip above the LE in
figure 20(c) on a line parallel to the wing and 0.1c above the wing. On the Λ = 5◦ wing,
the induced spanwise flow towards the root is comparable in strength to spanwise flow
caused by wing sweep from the quarter-span and nearly all the way to the wing tip, whereas
this induced spanwise flow is weaker at larger Λ values. This trend holds when lines
at various heights above the TE are considered, as is evident in figure 20(d), where the
magnitude of opposing spanwise flow is compared at quarter-span (z = 2). As the angle
of sweep increases, the strength of the tip vortex, and hence spanwise flow towards the
root, decreases; by contrast, the spanwise flow at the LE, which is opposite in direction,
increases with increasing Λ. At Λ = 5◦ the lines describing the opposite flow motion
intersect, suggesting a balance of spanwise and tip-induced flow under these conditions.
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