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Resonances for Slowly Varying
Perturbations of a Periodic Schrödinger
Operator

Mouez Dimassi

Abstract. We study the resonances of the operator P(h) = −∆x + V (x) + ϕ(hx). Here V is a periodic

potential, ϕ a decreasing perturbation and h a small positive constant. We prove the existence of shape

resonances near the edges of the spectral bands of P0 = −∆x + V (x), and we give its asymptotic

expansions in powers of h
1
2 .

0 Introduction

In this paper, we study the theory of resonances for periodic Schrödinger operator

with decreasing perturbations. We consider Hamiltonians of the form:

P(h) = −∆x + V (x) + ϕ(hx), x ∈ Rn, (h↘ 0).(0.1)

Hamiltonian (0.1) is one of the main models in the theory of solids. It describes a

Bloch electron in a crystal placed in an external field. The function V represents the

internal electric field of the crystal. It is real-valued, and periodic with respect to a

lattice Γ in Rn. ϕ(hx) is an external potential with dimensionless scale parameter h,

h � 1, which means that ϕ is slowly varying on the scale of the lattice. Usually, the

external field can be considered as very regular. See [2], [5], [27], [28], [37].

First, let us consider the case V = 0. If one changes the variable x to r = hx,

equation (0.1) becomes

P̂0(h) = −h2
∆r + ϕ(r).(0.2)

Resonances of equation (0.2) have been studied quite extensively in the 30 last years.

The Balslev-Combes theory of dilation analytic systems [3], [32], or one of its vari-

ants [1], [10], [22], [30] allows an elegant definition of the complex resonance ener-

gies for P̃(h). This theory identifies the resonances of a self-adjoint operator H with

the complex eigenvalues of a closed operator H(t), which is obtained from H by the

method of spectral deformation.

If V 6= 0, the main difficulty encountered while trying to carry out the asymp-

totic analysis of equation (0.1) is to uncouple x, the fast variable and r = hx, the

slow variable. V. Buslaev [9] has proposed an approach based on a two-scale expan-

sion in which the electron coordinate x and the slowly variable r = hx are regarded
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as independent variables. This method is based on the simple observation that if

u(·, h) ∈ D ′(R2n) is a solution Γ-periodic in x of

(
(hDr + Dx)2 + V (x) + ϕ(r)− λ

)
u(x, r, h) = 0,(0.3)

then v(x, h) = u(x, hx) satisfies

(
P(h)− λ

)
v(x, h) = 0.(0.4)

Buslaev has used this idea to construct asymptotic solutions of equation (0.4) by

considering (hDr + Dx)2 + V (x) + ϕ(r) − λ as an h-pseudodifferential operator in r

with an operator valued symbol

p(r, k) := (k + Dx)2 + V (x) + ϕ(r)− λ ∈ L
(

H2(T∗), L2(T∗)
)
.(0.5)

Here, T∗ = Rn/Γ∗ is the flat torus and Γ∗ is the dual lattice of Γ. If the n-th band

λn(k) of the unperturbed periodic Schrödinger operator

P0 = −∆ + V (x)

is simple, and if λ− λn(k)−ϕ(r) is the unique 0 eigenvalue of p(r, k), Buslaev trans-

formed the solvability of equation (0.4), modulo an error of order O(h), to the equa-

tion

(
ϕ(hDk) + λn(k)− λ

)
ũ(k, h) = 0, ũ(·, h) ∈ L2(T∗).(0.6)

Using this idea, Gérard, Martinez and Sjöstrand [15] have showed that the spectral

study of equation (0.1), near any fixed energy level z, can be reduced to the study of

a finite system of h-pseudodifferential operator E−+(k, hDk, z, h) = E0
−+(k, hDk, z) +

hE1
−+(k, hDk, z) + · · · acting on L2(T∗ ; CN ). The matrix E0

−+(k, r, z) satisfies:

det E0
−+(k, r, z) = 0⇐⇒ ∃ l such that z = ϕ(r) + λl(k).

The articles [9] and [15] reduce the problem of one electron in a periodic lattice

and additional perturbing potentials to a problem much like (0.2), and hence make

the problem of electron in a periodic lattice not more complicated than free electron

theory.

The goal of the present paper is to give a similar reduction for resonances, and

applying it to prove the existence of shape resonances. We will give explicitly the

leading terms of its asymptotic expansion in powers of h.

To our knowledge, the only known results on the existence of resonances for pe-

riodic Schrödinger operator perturbed by a decreasing potential were obtained for

the exponentially decaying perturbations. See [13], [14] and [25]. In the one dimen-

sional case (n = 1), N. E. Firsova [13] showed that in each gap of the Hill operator

of sufficiently high energy, there exists an odd number of resonances after perturba-

tions by an exponentially decaying potential. Under the same decay assumption, but

https://doi.org/10.4153/CJM-2002-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-037-9


1000 Mouez Dimassi

without any restriction on the dimension, the meromorphic continuation of the re-

solvent of P(1) = −∆+V (x)+ϕ(x) as a bounded operator between weighted Hilbert

spaces was proven in [14]. In the semi-classical regime, F. Klopp [25] has studied the

resonances of

H(h, δ) = −h2
∆ + V (x) + δW (x),

where W (x) is a compactly supported potential, and δ is a small positive parameter

depending on h. Using the same method as in [14], F. Klopp has proved the existence

of one or more resonances near the edge of the first band when n 6= 2.

The method of [13], [14], [25] works only for the exponentially decaying pertur-

bations. It excludes potentials of physical interest for which one expects resonances

to exist.

In this work, we will use the Balslev-Combes theory of resonances [3]. So, we

will identify the resonances of P(h), near some fixed energy level λ, with the complex

eigenvalues of a closed operator P(t, h), which is obtained from P(h) by the method of

spectral deformation (t is the distortion parameter). In order to study the spectrum

of the family P(t, h), we will adapt a method similar to the one used in [15]. More

precisely, for z in a small complex neighborhood Ω of λ, we construct an effective

Hamiltonian Ẽ−+(z, t, h) acting on L2(T∗,CN), N ∈ N so that

z ∈ σ
(

P(t, h)
)
⇐⇒ 0 ∈ σ

(
Ẽ−+(z, t, h)

)
.

Thus, the resonances of P(h) near λ are the points z in the lower half plane for which

Ẽ−+(z, t, h) is not invertible for some t in i ]0, t0[, (t0 is a small constant).

We are now going to briefly describe the main results of the paper.

Fix a point λ in the interior of some band Λl. We assume that the Fermi surface

F(λ) :=
⋃

l{k ; λl(k) = λ} does not contain any critical points, i.e., ∇λl(k) 6= 0

for k ∈ F(λ). In Section 4, we will prove that, for all φ and ψ in a dense subset A of

L2(Rn), (
(z − P0)−1φ, ψ

)
(resp. fφ,ψ :=

((
z − P(h)

)−1
φ, ψ

)
)

has a holomorphic (resp. meromorphic) continuation from the upper half plane C+

to a complex disc around λ. Following [1] and [32, Sect. XII.6], the poles of fφ,ψ are

called resonances of P(h).

Before stating the results concerning the existence of resonances, let us introduce

some assumptions on the l-th band Hamiltonian:

Wl(k, r) = λl(k) + ϕ(r).

We suppose that W−1
m (λ) = ∅ if m 6= l, W−1

l (λ) = {(k0, r0)} ∪ Σλ (where Σλ
is a connected component with (k0, r0) /∈ Σλ), and Wl has a local nondegenerate

extremum (local minimum or maximum) at (k0, r0). Finally, we assume that Σλ
satisfies some nontrapping condition, see assumption (H5). Under these conditions,

we prove in Section 5 that, for each C0 > 0, P(h) has a finite number of resonances in

the disc D(λ,C0h) = {z ∈ C ; |z − λ| < C0h}. Moreover, these resonances coincide,

modulo O(h
3
2 ), with the eigenvalues of the operator

λ−
h2

2
〈ϕ ′′(r0)∇k,∇k〉 +

1

2
〈λ ′′(k0)k, k〉.
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Let us notice that our reduction can be used to study other types of resonances for

P(h), similar to those studied in [35] and [7].

The paper is organized as follows: In the next section, we introduce some nota-

tions and state the assumptions and the results precisely, which are proved in Sec-

tions 4 and 5. In Section 2, we define the distorted Hamiltonian. We also prove some

h-pseudodifferential results on the torus which will be used in this paper. In Sec-

tion 3, we recall the two-scale method of Buslaev and construct the effective Hamilto-

nian Ẽ−+(z, t, h). Finally, some technical results on resolvent estimates and on pseu-

dodifferential calculus with operator valued symbols are given in an appendix.

Acknowledgements We thank J. Sjöstrand for helpful discussions and valuable com-

ments. We are also grateful to the referee for his remarks on our paper.

1 Preliminaries and Main Result

Let Γ =
⊕n

i=1 Zai be the lattice generated by the basis a1, a2, . . . , an, ai ∈ Rn. The

reciprocal lattice Γ∗ is defined as the lattice generated by the dual basis {a∗1 , . . . , a
∗
n}

determined by ai ·a
∗
j = 2πδi j , i, j = 1, . . . , n. A fundamental domain ofΓ is denoted

by E, the one ofΓ∗ by E∗. If we identify opposite edges of E (resp. E∗) then it becomes

a flat torus denoted by T = Rn/Γ (resp. T∗ = Rn/Γ∗).

Let V be a real-valued potential, C∞ and Γ-periodic. For k in Rn, we define on

L2(T)

Pk = (Dx + k)2 + V (x).(1.1)

Pk is a semi-bounded self-adjoint operator with k-independent domain H2(T). Since

the resolvent of (Dx +k)2 is compact, the resolvent of Pk is also compact, and therefore

Pk has a complete set of (normalized) eigenfunctions φn(·, k) ∈ H2(T∗), n ∈ N,

called Bloch functions. The corresponding eigenvalues accumulate at infinity and

we enumerate them according to their multiplicities, λ1(k) ≤ λ2(k) ≤ · · · . Since

e−ixγ∗Pkeixγ∗
= Pγ∗+k, λn(k) is periodic with respect to Γ∗. Ordinary perturbation

theory, shows that λ j(k) are continuous functions in k for every fixed j, and λ j(k)

is even an analytic function of k near every point k0 ∈ T∗ where λ j(k0) is a simple

eigenvalue of Pk0
. The function λ j(k) is called the band function and the closed

intervals Λl := λl(T∗) are called bands.

Now, consider the self-adjoint operator with domain H2(Rn)

P(h) = P0 + ϕ(hx), (h↘ 0),(1.2)

where

P0 = −∆ + V (x).(1.3)

By Bloch-Floquet theory, it is well known (see [26]) that

σ(P0) = σess (P0) =

l=∞⋃

l=1

Λl.(1.4)
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Fix λ in σ(P0), and put

F(λ) = {k ∈ T∗ ; λ ∈ σ(Pk)}.

We assume:

(H1) There exist positive constants a and δ, such that ϕ extends analytically to

D(a) = {z ∈ Cn ; |=z| ≤ a〈<z〉}, and

|ϕ(z)| ≤ C〈z〉−δ,(1.5)

uniformly on z in D(a). Here 〈z〉 = (1 + |z|2)
1
2 .

(H2) For every k ∈ F(λ), λ is a simple eigenvalue of Pk.

In a small neighborhood of F(λ), we let λ(k) be the simple eigenvalue which

is close to λ. Then λ(k) depends analytically on k, and is equal to λ when k

belongs to F(λ).

(H3) dλ(k) 6= 0 for all k ∈ F(λ).

Let us introduce the set of analytic vectors (see [10] and [30]),

A = {u ∈ L2(Rn) ; ∀c, s > 0, exp(c〈x〉)u(x) ∈ Hs(Rn)}.

Theorem 1.1 Under the assumptions (H1), (H2) and (H3), there exist a neighborhood

Ω of λ, and small constants η and ε > 0, such that for every t in Iε = i ]0, ε[ and every

ψ, φ ∈ A, we have:

i) The function

f 0
φ,ψ(z) :=

(
(P0 − z)−1φ, ψ

)
,

has an analytic continuation from the upper half plane C+ to Ω−η|t|. Here, Ωs :=

{z ∈ Ω ; =z > s}.
ii) For h small enough,

fφ,ψ(z) :=
(

(P(h) − z)−1φ, ψ
)
,

has a meromorphic continuation, fφ,ψ,t , from C+ to Ω−η|t|.

Definition 1.2 Following [1] and [32, Sect. XII.6], any z ∈ Ω−η|t| which is a pole of

fφ,ψ for some φ, ψ in A is called a resonance of P(h). We do not consider here the

resonances of P(h) which are far from the real axis.

Theorem 1.3 (Absence of Resonances) Under the assumptions (H1), (H2) and (H3),

there exist a h-independent neighborhood Ω of λ and a small positive constant ε, such

that if Sup{|ϕ(x)| ; x ∈ D(a)} ≤ ε then for all ψ and φ ∈ A

fφ,ψ(z) =
((

P(h)− z
)−1

φ, ψ
)
,

has a holomorphic continuation from C+ to Ω.
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Resonances We denote by W l(k, r) = ϕ(r) + λl(k) the l-th band Hamiltonian. For

m = 0, 1, 2, . . . , set

∑
λ,m := {(k, r) ∈ T∗ × Rn ; Wm(k, r) = λ}.

Assume

(H4)
∑

λ,m = ∅ for m 6= l,
∑

λ,l = {(k0, r0)} ∪ Σλ, where Σλ is a connected

component, (k0, r0) /∈ Σλ and Wl has a local non-degenerate extremum (lo-

cal minimum or maximum) at (k0, r0). By a translation, we can assume that

(k0, r0) = (0, 0).

(H5) Near Σλ, Gl(r, k) = r · λ ′l (k) is an escape function, i.e.,

∂Wl

∂k

∂Gl

∂r
−
∂Wl

∂r

∂Gl

∂k
= |λ ′l (k)|2 − 〈ϕ ′(r), λ ′ ′l (k)r〉 ≥ c0 > 0, ∀(k, r) ∈ Σλ.

(1.6)

The non-degeneracy of W at (0, 0) means that the 2n× 2n matrix,

W ′′(0, 0) =

(
ϕ ′′(0) 0

0 λ ′′(0)

)

of second partial derivatives of W at (0, 0) is either positive or negative definite ma-

trix. We define a reference Hamiltonian by

K = ±
1

2
[−〈ϕ ′′(0)∇,∇〉 + 〈λ ′′(0)k, k〉].(1.7)

+ (−) corresponds to a local minimum (maximum respectively).

It is clear that σ(K) is discrete and contained in ]0,∞[. Let en be the eigenvalues

of K listed in increasing size, counting multiplicity, e1 < e2 ≤ e3 · · · . Let 0 < C0 /∈
{e1, e2, . . . } and let N0 be the number of e j ’s in [0,C0], so that eN0

< C0 < eN0+1.

Our main result is:

Theorem 1.4 Fix C0 as above. Under the assumptions (H1), (H2), (H3), (H4) and

(H5), there exists h0 > 0, such that for h ∈ ]0, h0[, P(h) has precisely N0 resonances(
ei(h)

)
1≤i≤N0

, in D(λ,C0h) = {z ∈ C ; |z − λ| < C0h} (counted with their algebraic

multiplicities). Moreover,

e j(h) ∼ λ± e jh +
∑

k≥1

α j,kh1+ k
2 , (α j,k ∈ R), (h↘ 0).(1.8)

2 The Distorted Hamiltonian

2.1 Spectral Deformation Family

Let H be a Hilbert space. The scalar product in H will be denoted by ( , ). The

set of linear bounded operators from H1 to H2 is denoted by L(H1,H2). We set

L(H) = L(H,H).
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In this subsection, we define the spectral deformation family Ut which will be used

in this paper. With the change of variable r = hx, P(h) becomes

P̂(h) := −h2
∆r + V

( r

h

)
+ ϕ(r) = P̂0(h) + ϕ(r).

As indicated in the introduction, to study the spectrum of the distorted Hamil-

tinian, we will use the method of [15], which is based on Floquet theory. Then,

we shall construct a family Ut such that Ut P̂0(h)U−1
t commute with τhγ , γ ∈ Γ. Here

τhγu(x) = u(x − hγ) is the translation operator. For that, we employ a technique of

spectral deformation in the momentum space introduced by [10] (see also [30]).

Let v = (v1, . . . , vn) ∈ C∞(T∗ ; Rn) and let t0 be a small positive constant. For

t ∈ D(t0) = {t ∈ C ; |t| < t0}, set

vt (k) = k− tv(k).

We denote by Jt (k) := det[Dvt (k)] the Jacobian of vt (k). Since v is bounded with its

derivatives, there exists a positive constant t0 > 0 such that vt is invertible for all t in

D(t0).

For t ∈ ]−t0, t0[, we define a map on S(Rn) by

Ut u(r) = F
−1
h

{
J

1
2

t (k)(Fhu)
(

vt (k)
)}
,(2.1)

where Fh is the semi-classical Fourier transform

Fhu(k) :=

∫

Rn

e−irk/hu(r) dr.

From now on we write F for Fh. We adopt this notation henceforth.

Lemma 2.1 [30] Let A := {u ∈ L2(Rn) ; ∀ c, s > 0, exp(c〈x〉)u(x) ∈ Hs(Rn)}.

i) For |t| < t0 and real, the map Ut defined in (2.1) extends to a unitary operator on

L2(Rn).

ii) For any u ∈ A, t → Ut u can be extended to an L2(Rn)-valued analytic function on

D(t0), and the range UtA is dense in L2(Rn).

Lemma 2.2 For V ∈ C∞(T) and t ∈ ]−t0, t0[, the multiplication operator by V ( ·
h

)

on L2(Rn) is stable under decomposition with Ut , i.e.,

UtV
( ·

h

)
U−1

t u(r) = V
( r

h

)
u(r), ∀ u ∈ L2(Rn).(2.2)

Proof By Lemma 2.1 i), (2.2) is equivalent to

Ut

(
V
( ·

h

)
u
)

(r) = V
( r

h

)
Ut u(r), ∀ u ∈ S(Rn).(2.3)
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Let u ∈ S(Rn). Since V ∈ C∞(T), the Fourier series
∑

β∗∈Γ∗ cβ∗eirβ∗ of V is uni-

formly convergent, which shows that

∑

|β∗|≤N

cβ∗eirβ∗u→ Vu in L2(Rn).

Then, it suffices to show (2.3) for V (r) = eirβ∗ , β∗ ∈ Γ∗.
Using the fact that

J
1
2

t (k− β∗) = J
1
2

t (k), and vt (k− β∗) = vt (k)− β∗, ∀β∗ ∈ Γ∗,(2.4)

we obtain

Ut (eiβ∗·/hu)(r) = F−1
{

J
1
2

t (k)F
(

eiβ∗·/hu(·)
)(

vt (k)
)}

= F−1
{

J
1
2

t (k)Fu
(

vt (k)− β∗
)}

= F−1
{

J
1
2

t (k− β∗)Fu
(

vt (k− β∗)
)}

= eirβ∗/hUt u(r).

This ends the proof of the lemma.

2.2 h-Pseudodifferential Operators

In this subsection, we prepare some results on h-pseudodifferential operator calculus

which we use in the following sections.

Let m(r, k) be an order function. For l, δ ∈ R, we define the class of semi-classical

symbols on T∗Rn
= R2n:

Sl
δ(R2n,m) = {a(r, k ; h) ∈ C∞(R2n × ]0, 1] ; ∀α, β ∈ Nn, ∃Cα,β ,

|∂αr ∂
β
k a(r, k ; h)| ≤ Cα,βh−l−δ(|α|+|β|)m(r, k)}.

(2.5)

We denote by Sl
δ(R2n) (resp. S0(R2n,m)), Sl

δ(R2n, 1) (resp. S0
0(R2n,m)).

If a = a(r, k ; z, h) depends also on some parameter z ∈ Ω, we say that a ∈
Sl
δ(R2n,m), if the constant Cα,β in (2.5) is independent of z ∈ Ω.

Let a(r, k ; h) ∈ S0(R2n,m). We say that a(r, k ; h) has an asymptotic expansion in

powers of h in S0(R2n,m), and we write

a(r, k ; h) ∼
∞∑

j=0

a j(r, k)h j in S0(R2n,m),

if for every N ∈ N, h−(N+1)(a−
∑N

j=0 a jh
j) ∈ S0(R2n,m).

For a ∈ S0(R2n,m), the h-Weyl operator aw(r, hDr ; h) is defined by

aw(r, hDr ; h)u(r) = (2πh)−n

∫∫
ei(r−y)k/ha

( r + y

2
, k ; h

)
u(y) dy dk.(2.6)
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Let (r, k) → p(r, k ; h) ∈ S0(R2n) be Γ∗-periodic in k, and let a, δ be two positive

constants. We assume that p extends holomorphically to the complex zone

SW,a = {(r, k) ∈ Cn ×W ; |=r| ≤ a〈<r〉},

(where W is a complex neighborhood of the torus T∗), and satisfies

|p(r, k)| ≤ C〈r〉−δ,(2.7)

uniformly on (r, k) ∈ SW,a.

Note that, by passing from a to ã = a
2

we may assume that

∀α, β, ∃Cα,β ; |∂αr ∂
β
k p(r, k)| ≤ Cα,β〈r〉

−δ−|α|,(2.8)

uniformly on SW,ã. This is a simple consequence of (2.7) and Cauchy inequalities.

Theorem 2.3 For t0 > 0 small enough, the map

]−t0, t0[ 3 t → Ut pw(r, hDr)U
−1
t ,

extends to D(t0) as a L
(

L2(Rn)
)

-valued analytic function. Moreover, there exists pt ∈
S0(R2n, 〈r〉−δ), Γ∗-periodic with respect to k such that

Ut pw(r, hDr)U
−1
t = pw

t (r, hDr ; h),(2.9)

and

pt (r, k ; h) ∼

∞∑

j=0

pt, j(r, k)h j , in S0(R2n, 〈r〉−δ).

Here

pt,0(r, k) = p
((

1− tM(k)
)−1

r, vt (k)
)
, M(k) =

(
∂v j

∂ki

(k)

)

1≤i, j≤n

,(2.10)

pt,1(r, k) = 0.(2.11)

Proof Let u ∈ S(Rn) and t ∈ ]−t0, t0[. Remembering the definition of Ut and using

the well known formula

Fpw(r, hDr)F
−1
= pw(−hDr, r)

(see [21]), we obtain

FUt pw(r, hDr)U
−1
t F−1u(r)

= J
1
2

t (r)

(
pw(−hDr, r)

(
J
− 1

2
t (r)u

(
v−1

t (r)
)))(

vt (r)
)

= (2πh)−n

∫∫

Rn×Rn

ei(vt (r)−y)k/h J
1
2

t (r) J
− 1

2
t (y)p

(
−k,

vt (r) + y

2

)
u
(

v−1
t (y)

)
dy dk.
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Next, we use a standard change of variables and we get:

F Ut pw(r, hDr)U
−1
t F−1u(r)

= (2πh)−n

∫∫

Rn×Rn

ei(r−y−t(v(r)−v(y))k/h J
1
2

t (r) J
1
2

t (y)p

(
−k,

vt (r) + vt (y)

2

)
u(y) dy dk

= (2πh)−n

∫∫

Rn×Rn

ei(r−y)(1−tκ(r,y))k/h J
1
2

t (r) J
1
2

t (y)p

(
−k,

vt (r) + vt (y)

2

)
u(y) dy dk

= (2πh)−n

∫∫

Rn×Rn

ei(r−y)k/hGt (r, y, k)u(y) dy dk,

(2.12)

where

Gt (r, y, k)

= J
1
2

t (r) J
1
2

t (y)
(

det
(

1− tκ(r, y)
))−1

p

((
tκ(r, y)− 1

)−1
k,

vt (r) + vt (y)

2

)
.

(2.13)

κ(r, y) is defined by

v(r)− v(y) =

∫ 1

0

∂yv
(

y + s(r − y)
)

ds(r − y) = κ(r, y)(r − y).

Since v ∈ C∞(T∗ ; Rn), κ is bounded with all its derivatives. Combining this with

(2.13) and using the analytic assumption on p, we deduce that for t0 small enough

Gt (r, y, k) extends analytically on t ∈ D(t0). On the other hand, (2.8) and (2.13)

show that

∀α, β, γ ∈ Nn, ∃Cα,β,γ ; |∂αr ∂
β
y ∂

γ
k Gt (r, y, k)| ≤ Cα,β,γ〈k〉

−δ,(2.14)

uniformly on t in D(t0).

By a classical result of h-pseudodifferential theory (see [33, Theorem II.27]), we

deduce from (2.12), (2.13) and (2.14) that

FUt pw(r, hDr)U
−1
t F−1

= bw
t (r, hDr ; h),(2.15)

with

bt (r, k ; h) = e−ihDuDk Gt

(
r +

u

2
, r −

u

2
, k
)
|u=0

∼
∞∑

j=0

bt, j(r, k)h j ,(2.16)

in S0(R2n, 〈k〉−δ). Here

bt, j(r, k) =
i j

j!
(〈∂u∂k〉)

jGt

(
r +

u

2
, r −

u

2
, k
)
|u=0

.(2.17)
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In particular,

bt,0(r, k) = Gt (r, r, k) = p
((

tM(r)− 1
)−1

k, vt (r)
)
,(2.18)

and

bt,1(r, k) =
1

2

(
∂r∂kGt (r, r, k)− ∂y∂kGt (r, r, k)

)
= 0.(2.19)

Clearly, (2.15) implies

Ut pw(r, hDr)U
−1
t = bw

t (hDr,−r ; h) := pw
t (r, hDr ; h),

which together with (2.16), (2.18) and (2.19) give (2.9), (2.10) and (2.11).

By assumption, k→ p(r, k) is Γ∗-periodic. Hence,

e−irβ∗/h pw(r, hDr)eirβ∗/h
= pw(r, hDr + β∗) = pw(r, hDr).

Combining this with the fact that Ut commutes with eirβ∗/h (see Lemma 2.2), we get

pw
t (r, hDr + β∗ ; h) = e−irβ∗/h pw

t (r, hDr ; h)eirβ∗/h

= Ut

(
e−irβ∗/h pw(r, hDr)eirβ∗/h

)
U−1

t = pw
t (r, hDr ; h).

Consequently, pt (r, k ; h) is Γ∗-periodic with respect to k.

Now, it remains to show that t → Ut pw(r, hDr)U
−1
t ∈ L(L2) is analytic.

Let u, ψ ∈ S(Rn). By (2.12), one has

〈Ut pwU−1
t F−1u,F−1ψ〉 = (2πh)−n

∫∫∫
ei(r−y)k/hGt (r, y, k)u(y)ψ(r) dr dy dk.

Using repeated integration by parts with the help of the operator (1 + h2
∆y), we get

〈Ut pwU−1
t F−1u,F−1ψ〉

= (2πh)−n

∫∫∫
ei(r−y)k/h〈k〉−2N(1 + h2

∆y)N
(

Gt (r, y, k)u(y)
)
ψ(r) dr dy dk.

Clearly, for N large enough the right member of the above equality is analytic on t .

Since ‖pw
t (r, hDr ; h)‖L(L2) is uniformly bounded on t ∈ D(t0), by the Calderon-

Vaillancourt theorem (see Theorem A.3), and since {F−1u ; u ∈ S(Rn)} is dense in

L2(Rn), it follows from [23, p. 365] that Ut pw(r, hDr)U
−1
t is analytic on t .

Remark 2.4 Note that, if v(0) = 0 and p(r, k) = O
(

(r, k)α
)

, for all |α| ≤ N then

pt, j(r, k) = O
(

(r, k)β
)

for all |β| ≤ N − 2 j. This is a simple consequence of (2.13)

and (2.17).

Corollary 2.5 Let p(r, k) and pt (r, k ; h) be as in Theorem 2.3. The family of operators

pw
t (−hDk, k ; h), is well defined on L2(T∗) and is unitarily equivalent to pw(−hDk, k)

for real t. Moreover,

t ∈ D(t0)→ pw
t (−hDr, r ; h) = FUt pw(r, hDr)U

−1
t F−1 ∈ L

(
L2(T∗)

)

is analytic.
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Proof Since pt is Γ∗-periodic with respect to k, it follows from the Calderon-

Vaillancourt theorem on the torus (see [16]) that pw
t (−hDr, r ; h) ∈ L

(
L2(T∗)

)
.

The analiticity on t can be proved as in Theorem 2.3.

Note that, for real t

u ∈ L2(T∗)→ Ût u(k) := F UtF
−1
t u(k) = J

1
2

t (k)u
(

vt (k)
)
∈ L2(T∗),

is unitary. Hence, F Ut pw(r, hDr)U
−1
t F−1

= ÛtFpw(r, hDr)F
−1Û

−1
t is unitarily

equivalent to

Fpw(r, hDr)F
−1
= pw(−hDr, r).

Applying Theorem 2.3 to p(r, k) = ϕ(r), we get:

Corollary 2.6 Assume (H1). The map

t ∈ D(t0)→ UtϕU−1
t ∈ L

(
L2(Rn)

)
,

is analytic. Moreover, there exists ϕt ∈ S0(R2n, 〈r〉−δ), Γ∗-periodic in k such that

UtϕU−1
t = ϕw

t (r, hDr ; h),(2.20)

with

ϕt (r, k ; h) ∼

∞∑

j=0

ϕt, j(r, k)h j , in S0(R2n, 〈r〉−δ).

In particular

ϕt,0(r, k) = ϕ
((

1− tM(k)
)−1

r
)
, M(k) =

(
∂v j(k)

∂ki

)

1≤i, j≤n

,(2.21)

and

ϕt,1(r, k) = 0.(2.22)

We end this section by a standard result on a weighted L2-estimate [19]. Let f1 and

f2 be two real-valued functions, bounded with all their derivatives. We assume that f2

is Γ∗-periodic, and ‖∇ fi‖∞ is small enough. Conjugating the left hand side of (2.12)

by e fi/h, and using a standard change of variables (a complex version of Kuranishi

trick) similar to the one used in the last equality of (2.12), we prove:

Proposition 2.7 Let f1 and f2 be as above, and let pw
t (r, hDr ; h) be given by (2.9).

There exists p fi ,t (r, k ; h) ∈ S0(R2n, 〈r〉−δ), Γ∗-periodic with respect to k, such that

e f1(r)/h pw
t (r, hDr ; h)e− f1(r)/h

= p f1,t (r, hDr ; h),

and

e f2(hDr)/h pw
t (r, hDr ; h)e− f2(hDr)/h

= p f2,t (r, hDr ; h).
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Moreover

p fi ,t (r, k ; h) ∼
∞∑

j=0

p fi ,t, j(r, k)h j , in S0(R2n, 〈r〉−δ),

with

p f1,t,0(r, k) = pt,0

(
r, k + i∇ f1(r)

)
,(2.23)

and

p f2,t,0(r, k) = pt,0

(
r − i∇ f2(k), k

)
.(2.24)

Here pt,0(r, k) is given by (2.10).

2.3 Distorted Hamiltonian

Now, we are ready to define the distorted Hamiltonian. Consider for t ∈ ]−t0, t0[ the

family of unitarily equivalent operators,

P(t, h) = Ut P̂(h)U−1
t .

We recall that

P̂(h) = −h2
∆ + V

( r

h

)
+ ϕ(r).

A simple calculus shows that

Ut (−h2
∆)U−1

t =
(

vt (hDr)
) 2
,

which together with Lemma 2.2 and Corollary 2.6 yield

P(t, h) =
(

vt (hDr)
) 2

+ V
( r

h

)
+ ϕw

t (r, hDr ; h).(2.25)

Recall that vt (k) = k − tv(k), where v(k) is bounded with all its derivatives. This

ensures that the domain of
(

vt (hDr)
) 2

is independent of t and D
((

vt (hDr)
) 2
)
=

D(−∆) = H2(Rn). Combining this with Corollary 2.6, we get:

Proposition 2.8 Assume (H1). The self-adjoint operator P(t, h), defined for t ∈
]−t0, t0[, extends to an analytic type-A family of operators on D(t0) with domain

H2(Rn).

3 Effective Resonant Hamiltonians

When V = 0, the spectrum of P(t, h) was studied by Nakamura [30]. The main

technique used in [30] is the calculus of h-pseudodifferential operators and the

Fefferman-Phong inequalities.

The additional periodic, but rapidly oscillating potential modifies considerably

the spectral study of P(t, h). The main question is, how to uncouple x, the fast vari-

able and r = hx, the slow variable.

As indicated in the introduction, one possible choice is to introduce a new oper-

ator P(t, h) in which x and r are regarded as independent variables. This is the two

scale expansion method which we will describe in the next subsection.
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3.1 The Two Scale Expansion Method

Denote by TΓ the distribution in S ′(R2n) defined by

TΓ(r, x) =
1

vol(E)hn

∑

β∈Γ∗

ei(r−hx)β/h.(3.1)

We recall that E is a fundamental domain of Γ.

Set

L = {v(r)TΓ(r, x) ; v ∈ L2(Rn)}.

By Poissons’ formula, one has:

TΓ(r, x) =
∑

γ∈Γ

δ(r − hx + hγ).(3.2)

Then, for ϕ ∈ S(Rn × T) := {ϕ ∈ C∞(R2n) ; 〈r〉N∂αr,xϕ ∈ L2(Rn × T), ∀N, α} and

u(r, x) = v(r)TΓ(r, x)

〈u, ϕ〉 :=

∫∫

Rn×E

u(r, x)ϕ(r, x) dx dr

=

∑

γ∈Γ

∫

E

v
(

h(x − γ)
)
ϕ
(

h(x − γ), x
)

dx =

∫

Rn

v(hx)ϕ(hx, x) dx.

The last integral can be bounded by seminorms of ϕ in S(Rn × T). Hence, L can be

viewed as a subspace of S ′(Rn × T).

Moreover, the above equality shows that, uTΓ = 0 in L implies that u = 0 in L2.

Therefore, L equipped with (uTΓ, vTΓ) → (u, v)L2 has an Hilbert structure, and the

map

U : L2(Rn) 3 v→ vTΓ ∈ L(3.3)

is unitary.

Lemma 3.1 Let (r, k)→ p(r, k) ∈ S0(R2n) be Γ∗ periodic with respect to k. One has

U pw(r, hDr)U
−1
= pw(r, hDr).(3.4)

Proof (3.4) is equivalent to

∀w = u(r)TΓ(r, x) ∈ L, pw(r, hDr)w(r, x) =
(

pw(r, hDr)u
)

(r)TΓ(r, x).(3.5)

Since p(r, k + γ∗) = p(r, k) for all γ∗ ∈ Γ∗,

pw(r, hDr)ei(r−hx)γ∗/h
= ei(r−hx)γ∗/h pw(r, hDr),

which yields (3.5).

Lemma 3.2 Under assumption (H1), P(t, h) acting on L2(Rn) with domain H2(Rn) is

unitarily equivalent to

P(t, h) :=
(

Dx + vt (hDr)
) 2

+ V (x) + ϕw
t (r, hDr ; h)(3.6)

acting on L with domain L
2 := {u(r)TΓ(r, x) ; ∂αr u ∈ L2(Rn), ∀ |α| ≤ 2}. In particu-

lar, t ∈ D(t0)→ P(t, h) is analytic of type-A with domain L
2.
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Proof Recall that vt (hDr+γ
∗) = vt (hDr)+γ∗, ∀γ∗ ∈ Γ∗. Hence, for all u(r)TΓ(r, x) ∈

L

(
vt (hDr) + Dx

) 2
u(r)TΓ(r, x) =

∑

γ∗∈Γ∗

ei(r−hx)γ∗/h
(

vt (hDr + γ∗) + Dx − γ
∗
) 2

u(r)

=

∑

γ∗∈Γ∗

ei(r−hx)γ∗/hvt (hDr)
2u(r)

= TΓ(r, x)vt (hDr)
2u(r),

which yields

U
(

vt (hDr)
) 2

U−1
=
(

vt (hDr) + Dx

) 2
.(3.7)

On the other hand, the periodicity of V and (3.2) give

V
( r

h

)
TΓ(r, x) =

∑

γ∈Γ

V (x − γ)δ(r − hx + hγ) = V (x)TΓ(r, x),

which implies that

UV
( r

h

)
U−1

= V (x).(3.8)

Now, applying Lemma 3.1 to ϕt (r, k ; h) and using (3.7), (3.8) and Proposition 2.8

we get the lemma.

3.2 Grushin Problem for P(t, h)

In this subsection, we will reduce the spectral study of P(t, h) to an h-pseudodif-

ferential operator acting only on the r-variable. More precisely, we shall show that

complete informations on the spectrum of P(t, h), near any fixed energy level z, is

contained in a certain h-pseudodifferential operator Ẽ−+(z, t, h) = Ew
−+(−hDk, k ;

z, t, h), which is defined by constructing an inverse of an appropriate Grushin prob-

lem for P(t, h). See Theorem 3.8 below. Our method is quite similar to the one of

[15], and that is why we omit sometimes the details of the proofs and we refer to [15].

We introduce the following Hilbert space with their natural norms

H0 = L2(T),

Hm,k = {u ∈ H0 ; (Dx + k)αu ∈ H0, ∀ |α| ≤ m}.

We notice that only the norm on Hm,k depends on k and not the space itself and we

have:

‖u‖Hm,k
≤ C〈k− k ′〉m‖u‖Hm,k ′

, ∀ u ∈ Hm,0, k, k ′ ∈ Rn.

Then, we can use the theory of h-pseudodifferential operator with operator valued

symbol in L(Hm,k ; Hm ′,k). See Appendix A.
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In the form (3.6), we can view P(t, h) as an h-pseudodifferential operator on r

with operator valued symbols

P(r, k ; t, h) :=
(

Dx + vt (k)
) 2

+ V (x) + ϕt (r, k, h) ∈ S0
(

R2n
r,k ; L(H0,k,H0)

)
.

To construct a suitable Grushin problem for P(t, h), the first step is to construct a

Grushin problem on the symbol level. This will be the object of the next lemma.

Set

P(r, k ; t) :=
(

Dx + vt (k)
) 2

+ V (x) + ϕt,0(r, k),(3.9)

ϕt,0(r, k) is the principal term of ϕt (r, k ; h) given by (2.21).

Lemma 3.3 Pick λ in R. There exist N ∈ N, a small constant t0 > 0, a complex

neighborhood ϑ of λ and functions φ j in C∞(Rn
k ; H2,k) ∩C∞(Rn

x × Rn
k ), such that for

each k ∈ Rn, t ∈ D(t0) and each z ∈ ϑ the operator:

P(r, k ; z, t) =

(
P(r, k ; t)− z R−

(
vt (k)

)

R+

(
vt (k)

)
0

)
,(3.10)

is invertible from H2,k × CN into H0 × CN , with an inverse E0(r, k ; z, t) uniformly

bounded with respect to (r, k ; z, t) together with all its derivatives in L(H0 × CN ,
H2,k × CN ). Here

(
R+(k)u

)
j
=
(

u, φ j(·, k)
)

H0,0
and R−(k)u− =

∑N
j=1 u−j φ j(·, k).

Moreover, φ j

(
·, vt (k)

)
is analytic on t and satisfies

{∥∥∂βk φ j

(
·, vt (k)

)∥∥
H2,k
≤ Cβ , ∀β ∈ Nn, k ∈ Rn, t ∈ D(t0)

φ j

(
x, vt (k + γ∗)

)
= e−ixγ∗φ j

(
x, vt (k)

)
, ∀ γ∗ ∈ Γ∗.

(3.11)

Proof Set

P0(r, k) = (Dx + k)2 + V (x) + ϕ(r).

Proposition 2.1 of [15], see also [18, Theorem 3.1.1], gives the existence of N func-

tions φ j(x, k) such that Lemma 3.3 holds when we replace P(r, k, z, t) by

P0(r, k, z) =

(
P0(r, k)− z R−(k)

R+(k) 0

)
.

The functions φ j constructed in [15], [18] are of the form

φ j(x, k) =
∑

γ∈Γ

ψ j(x − γ)eik(γ−x)
=

∑

β∗∈Γ∗

ψ̂ j(β
∗ − k)eiβ∗x,(3.12)

with ψ j ∈ C∞0 (Rn). By Paley-Wiener-Schwartz theorem, see for instance [21, Theo-

rem 7.3.1], ψ̂ j(β
∗ − k) extends analytically on k and satisfies,

∀N ∈ N, α ∈ Nn, ∂αk

(
ψ̂ j

(
β∗−vt (k)

)
− ψ̂ j(β

∗−k)
)
= ON,α(|t0|)(1 + |β∗−k|)−N ,
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uniformly on t ∈ D(t0). We recall that vt (k) = k− tv(k) where v ∈ C∞(T∗ ; Rn).

From (3.12) and the above estimate, we deduce that φ j

(
·, vt (k)

)
is analytic on t

and

∥∥∂αk R−
(

vt (k)
)
−∂αk R−(k)

∥∥
L(CN ,H2,k)

,
∥∥∂αk R+

(
vt (k)

)
−∂αk R+(k)

∥∥
L(H0,CN )

= Oα(|t0|).

Combining this with the following equality

P(r, k ; t)− P0(r, k) = −2tv(k)(Dx + k) + v(k)2t2 + ϕt,0(r, k)− ϕ(r),

and using that ∂βr,k
(
ϕt,0(r, k)− ϕ(r)

)
= Oβ(|t|), we obtain

∥∥∂βr,k
(
P(r, k ; z, t)− P0(r, k ; z)

)∥∥
L(H2,k×CN ;H0×CN )

= Oβ(|t0|),

uniformly on (r, k ; t) ∈ R2n × D(t0).

Choosing t0 small enough, and applying the results of [15] to P0(r, k ; z), we get

Lemma 3.3.

Now, we turn to the operator P(t, h). We denote by

E0(z, t) := Ew
0 (r, hDr ; z, t),

and

P(z, t, h) :=

(
P(t, h)− z Rw

−

(
vt (hDr)

)

Rw
+

(
vt (hDr)

)
0

)

the Weyl quantization of E0(r, k ; z, t) and
(

P(r,k;t,h)−z R−(vt (k))

R+(vt (k)) 0

)
respectively.

For m ∈ N, set

K0 := L2(Rn
r × T),

Km := {u ∈ K0 ; (Dx + hDr)
αu ∈ K0, ∀ |α| ≤ m}.

Proposition 3.4 The operator E0(z, t) is continuous from S(Rn ; H0 × CN ), (resp.

S ′(Rn ; H0 × CN)) into S(Rn ; H2,0 × CN ) (resp. S ′(Rn ; H2,0 × CN )) and uniformly

bounded from K0 × L2(Rn
r ; CN) into K2 × L2(Rn

r ; CN ). Moreover, we have

P(z, t, h) ◦ E0(z, t) = 1 + hRw(r, hDr ; z, t, h),(3.13)

where R(r, k ; z, t, h) ∼
∑∞

j=0 R j(r, k ; z, t)h j in S0
(

R2n ; L(H0 × CN)
)

and R,R j

depend holomorphically on z.

Proof The continuity of E0(z, t) in S and S ′ follows from Lemma 3.3 and Proposi-

tion A.1.

Let Pα(k) =
(

(k+Dx)α 0
0 1

)
be the operator valued symbol in

S0
(

R2n ; L(H2,k × CN ,H0 × CN)
)
.
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In view of the definition of K2, we have just to prove

‖Pα(hDr) ◦ E0(z, t)‖L(K0×L2(Rn
r ;CN )) = O(1), ∀ |α| ≤ 2.(3.14)

Theorem A.2 shows that:

Pα(k) ◦ E0(r, k ; z, t) ∈ S0
(

R2n ; L(H0 × CN ,H0 × CN)
)
, ∀ |α| ≤ 2,

which together with Theorem A.3 give (3.14). Formula (3.13) is a simple conse-

quence of Lemma 3.3 and Theorem A.2.

Proposition 3.5 t ∈ D(t0)→ P(z, t, h) ∈ L
(
K2×L2(Rn

r ; CN ) ; K0×L2(Rn
r ; CN)

)

is analytic.

Proof That t → P(t, h) ∈ L(K2,K0) is analytic follows from Corollary 2.6. On the

other hand, by a proof similar to the one used in Theorem 2.3 we show, using the

properties of φ
(
·, vt (k)

)
given in Lemma 3.3 that Rw

+

(
vt (hDr)

)
and Rw

−

(
vt (hDr)

)

are analytic in t .

Proposition 3.6 Fix λ ∈ R. There exist a complex neighborhood ϑ of λ and small

constants h0, t0 > 0, such that, for (z, t, h) ∈ ϑ × D(t0) × ]0, h0[, P(z, t, h) is bi-

jective from S ′(Rn ; H0 × CN ) into S ′(Rn,H2,0 × CN ), from K2 × L2(Rn
r ; CN ) into

K0 × L2(Rn
r ; CN ) and has a uniformly bounded inverse of the form E(z, t, h) :=

Ew(r, hDr ; z, t, h), where

E(r, k ; z, t, h) ∼

∞∑

j=0

E j(r, k ; z, t)h j in S0
(

R2n ; L(H0 × CN ,H2,k × CN )
)
.

(3.15)

The principal term E0(r, k ; z, t) is given by Lemma 3.3. The operator E(z, t, h) has the

same continuity properties as E0(z, t) in Proposition 3.4.

Proof Proposition 3.4 and Theorem A.3 imply that Rw(r, hDr ; z, t, h) is uniformly

bounded on L
(
K0 × L2(Rn ; CN )

)
. Hence,

‖hRw(r, hDr ; z, t, h)‖L(K0×L2(Rn ;CN )) ≤ 1/2,

for h small enough, and therefore (1 + hRw)−1 exists in L
(
K0×L2(Rn ; CN )

)
. Using

(3.13), we conclude that P(z, t, h) has a right inverse

E(z, t, h) = E0(z, t) ◦ (1 + hRw)−1.

Recalling that P(z, t, h) is self-adjoint for z and t real. Hence, E(z, t, h) is also a

left inverse when z ∈ ϑ ∩ R and t ∈ D(t0) ∩ R.

Since t → P(z, t, h) is an analytic family of type A and P(λ, 0, h) is bijective, it

follows from Theorem XII.7 of [32] that P(z, t, h) is bijective for (z, t) in a small
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complex neighborhood of (λ, 0). This shows that E(z, t, h) is also a left inverse of

P(z, t, h) when (z, t) ∈ ϑ× D(t0).

Formula (3.15) is a consequence of Beals’ result (see [15], [12, chapter 8]), and

the fact that R has an asymptotic expansion in powers of h. This finishes the proof of

Proposition 3.6.

In the following, we denote
(

E(z, t, h) E+(z, t, h)

E−(z, t, h) E−+(z, t, h)

)

the matrix elements of E(z, t, h). By Proposition 3.6, E−+(z, t, h) has an asymptotic

expansion in powers of h:

E−+(r, k ; z, t, h) ∼
∞∑

j=0

E
j
−+(r, k ; z, t)h j , in S0

(
R2n ; M(CN)

)
.(3.16)

Here M(CN ) is the space of square matrices with complex coefficients. The principal

term E0
−+(r, k ; z, t) is the matrix which appears in the lower right corner of the

inverse E0(r, k ; z, t) given in Lemma 3.3.

3.3 Effective Resonant Hamiltonians

Because of (3.11), we have:
{

R−
(

vt (k + γ∗)
)
= e−ixγ∗R−

(
vt (k)

)

R+

(
vt (k + γ∗)

)
= R+

(
vt (k)

)
eixγ∗ ,

which implies
{

e−irγ∗/hRw
−

(
vt (hDr)

)
eirγ∗/h

= e−ixγ∗Rw
−

(
vt (hDr)

)

e−irγ∗/hRw
+

(
vt (hDr)

)
eirγ∗/h

= Rw
+

(
vt (hDr)

)
eixγ∗ .

Combining this with the fact that

P(r, k + γ∗, t, h) = e−ixγ∗P(r, k, t, h)eixγ∗ ,

we get
[
P(z, t, h),

(
ei(r/h−x)γ∗ 0

0 eirγ∗/h

)]
= 0.(3.17)

Obviously, (3.17) remains true if we replace P(z, t, h) by E(z, t, h). Hence,

E−+(r, k + γ∗ ; z, t, h) = E−+(r, k ; z, t, h),(3.18)
{

E+(r, k + γ∗ ; z, t, h) = e−ixγ∗E+(r, k ; z, t, h)

E−(r, k + γ∗ ; z, t, h) = E−(r, k ; z, t, h)eixγ∗
(3.19)

E(r, k + γ∗ ; z, t, h) = e−ixγ∗E(r, k ; z, t, h)eixγ∗ , ∀γ∗ ∈ Γ∗.(3.20)
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As in the proof of Theorem 3.7 in [15], (3.17)–(3.20) imply that

P(z, t, h) : L
2 ×V N

0 → L×V N
0 ,(3.21)

and

E(z, t, h) : L×V N
0 → L

2 ×V N
0 ,(3.22)

are bounded. Here V0 = {
∑

γ∈Γ cγδ(x − hγ) ∈ S ′(Rn) ; (cγ)γ∈Γ ∈ l2}. Combining

this with the fact that P(z, t, h) is bijective from S ′(Rn ; H0 × CN ) into S ′(Rn,H2,0 ×
CN) with inverse E(z, t, h) (see Proposition 2.6), as well as the fact that L

2 × V N
0 ⊂

S ′(Rn,H2,0 × CN ), we deduce that the operator in (3.21) is bijective with inverse

E(z, t, h).

Let F be the semi-classical Fourier transform. Set

P̂(z, t, h) =

(
P(t, h)− z R̂−

R̂+ 0

)
:=

(
1 0

0 F

)
P(z, t, h)

(
1 0

0 F−1

)

and

Ê(z, t, h) =

(
Ẽ(z, t, h) Ẽ+(z, t, h)

Ẽ−(z, t, h) Ẽ−+(z, t, h)

)
:=

(
1 0

0 F

)
E(z, t, h)

(
1 0

0 F−1

)
.

Since
(

1 0
0 F

)
is an isomorphism from L

2×V N
0 into L

2×L2(T∗ ; CN ), we have proved:

Theorem 3.7 P̂(z, t, h) is uniformly bounded from L
2 × L2(T∗ ; CN ) to L ×

L2(T∗ ; CN ), and has the uniformly bounded two sided inverse Ê(z, t, h).

The main result of this subsection is the following:

Theorem 3.8 There exist a complex neighborhood ϑ of λ and small constants h0, t0 >
0, such that for (z, t, h) ∈ ϑ× D(t0)× ]0, h0[, one has:

z ∈ σ
(

P(t, h)
)
⇐⇒ z ∈ σ

(
P(t, h)

)
⇐⇒ 0 ∈ σ

(
Ẽ−+(z, t, h)

)
.(3.23)

Here, Ẽ−+(z, t, h) = Ew
−+(−hDk, k ; z, t, h) : L2(T∗ ; CN)→ L2(T∗ ; CN).

Proof The first equivalence is a consequence of Lemma 3.2, the second follows from

the following standard identities (see [18]):

(
z − P(t, h)

)−1
= −Ẽ(z, t, h) + Ẽ+(z, t, h)Ẽ−+(z, t, h)−1Ẽ−(z, t, h),

Ẽ−1
−+(z, t, h) = R̂+

(
z − P(t, h)

)−1
R̂−.

Remark 3.9 Recalling the definition of P(z, t, h) and using that R ±w
(

vt (hDk)
)
=

UtR
w
±(hDk)U−1

t (which follows from Corollary 2.6), we see that P(z, t, h) =

UtP(z, 0, h)U−1
t . From this we deduce easily that Ẽ−+(z, t, h) = Ut Ẽ−+(z, 0, h)U−1

t

for real t .
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4 Proofs of Theorem 1.1 and Theorem 1.3

From now on we assume (H1), (H2) and (H3). We choose v(k) with v(k) = λ ′(k)

near F(λ).

Let us begin with the non-perturbed case, ϕ = 0. We denote the distorted Hamil-

tonian of P0 = −∆ + V (y) by P(t). Let

E(k, z, t) =

(
E(k, z, t) E+(k, z, t)

E−(k, z, t) E−+(k, z, t)

)
,

be the inverse of

P(k, z, t) =

((
Dx + vt (k)

) 2
+ V (x)− z R−

(
vt (k)

)

R+

(
vt (k)

)
0

)

given by Lemma 3.3. Since P(k, z, t) and E(k, z, t) are r-independent, we have:

Pw(hDr, z, t) ◦ Ew(hDr, z, t) = I, and Ew(hDr, z, t) ◦ Pw(hDr, z, t) = I,

which implies that, the effective Hamiltonian Ẽ−+(z, t) (corresponding to the non-

perturbed Hamiltonian P0) given by Theorem 3.8 is the operator multiplication on

L2(T∗ ; CN) by the matrix E−+(k ; z, t). Hence,

z ∈ σ
(

P(t)
)
⇐⇒ 0 ∈ σ

(
Ẽ−+(z, t)−1

)
⇐⇒ ∃ k ∈ T∗, st 0 ∈ σ

(
E−+(k, z, t)

)
.

(4.1)

On the other hand, using the fact that E(k ; z, t) is a left and right inverse of P(k ; z, t)

we deduce as in the proof of Theorem 3.8 that

z ∈ σ
((

Dx + vt (k)
) 2

+ V (x)
)
⇐⇒ 0 ∈ σ

(
E−+(k ; z, t)

)
.(4.2)

Lemma 4.1 Under the assumptions (H1), (H2) and (H3), there exist a neighborhood

Ω of λ and a small positive constants η, ε, such that for every t ∈ i ]0, ε[, Ẽ−+(z, t)−1

extends analytically from Ω+ = {z ∈ Ω ; =z > 0} to Ω−η|t|. In particular

σ
(

P(t)
)
∩ Ω−η|t| = ∅.(4.3)

Proof Due to assumption (H2), there exists a small neighborhood Ω of λ such that

z ∈ σ
((

Dx + vt (k)
) 2

+ V (x)
)
⇐⇒ z = λ

(
vt (k)

)
.(4.4)

By Taylor’s formula, one has

z − λ
(

vt (k)
)
= z − λ(k) + t〈λ ′(k).v(k)〉 + O(t2).(4.5)
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Fix t in i ]0, ε[ with ε small enough. Since 〈λ ′(k).v(k)〉 = |λ ′(k)|2 near F(λ), as-

sumption (H3) together with (4.5) yield

∃ η > 0 such that ∀ z ∈ Ω,
∣∣ z − λ

(
vt (k)

) ∣∣ ≥ |=z + η=t|.(4.6)

Clearly, Lemma 4.1 follows from equivalences (4.1), (4.2), (4.4) and (4.6).

We return now to the perturbed effective Hamiltonian Ẽ−+(z, t, h) corresponding

to the operator P(t, h).

Lemma 4.2 Under assumption (H1), Ẽ−+(z, t, h) − Ẽ−+(z, t) is a compact operator

on L2(T∗ ; CN ).

Proof The second resolvent equation gives

Ê(z, t, h)− Ê(z, t) = Ê(z, t)
(
P̂(z, t, h)− P̂(z, t)

)
Ê(z, t, h)

= Ê(z, t)

(
ϕw

t (r, hDr ; h) 0

0 0

)
Ê(z, t, h),

which yields

Ẽ−+(z, t, h)− Ẽ−+(z, t) = FE−(z, t)ϕw
t (r, hDr ; h)E+(z, t, h)F−1.(4.7)

Recall that ϕt ∈ S0(R2n, 〈r〉−δ), E+ ∈ S0
(

R2n ; L(CN ,H0)
)

and E− ∈

S0
(

R2n ; L(H0,CN)
)

. See Corollary 2.6 and Proposition 3.6. By a classical result

of symbolic calculus [24] and [36, Section 4], we deduce that

Kw(r, hDr ; t, h) := E−(z, t)ϕt (r, hDr ; h)E+(z, t, h)

∈ Opw
h

(
S0
(

R2n, 〈r〉−δ ; M(CN)
))

.

Now Lemma 4.2 follows from the equality

Ẽ−+(z, t, h)− Ẽ−+(z, t) = Kw(−hDk, k ; t, h).

Note that if p(k, r) ∈ S0(T∗ × Rn
r , 〈r〉

−δ) with δ > 0 then pw(k, hDk) defines a

compact operator on L2(T∗) (see [16]).

4.1 Proof of Theorem 1.1

Fix z0 ∈ Ω+. Since P(h, 0) is self-adjoint and since t → P(h, t) is an analytic family

of type A, we may assume that z0 /∈ σ
(

P(t, h)
)

when t ∈ i ]0, ε[ (ε being small

enough).

Set

K(z, t, h) = Ẽ−+(z, t, h)− Ẽ−+(z, t).

https://doi.org/10.4153/CJM-2002-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-037-9


1020 Mouez Dimassi

By Lemma 4.1 and Lemma 4.2, z → Ẽ−+(z, t)−1K(z, t, h) is a compact, analytic,

operator-valued function on Ω−η|t|. Since Ẽ−+(z0, t, h) is invertible by Theorem 3.8,

the analytic Fredholm theorem [31, Theorem VI.14] implies that,

Ẽ−+(z, t, h) = Ẽ−+(z, t)
(

I + Ẽ−+(z, t)−1K(z, t, h)
)
,(4.8)

is invertible on Ω−η|t| \ S, where S is a discrete subset of Ω−η|t|. Combining this with

Theorem 3.8, we get

σ
(

P(t, h)
)
∩ Ω−η|t| ⊂ S.(4.9)

Pick z in Ω+. Let φ0, ψ0 be in A, and set φh(x) = h−
n
2 φ0(x/h), ψh(x) =

h−
n
2ψ0(x/h). As long as t is real, Ut is unitary and

fφ0,ψ0
(z) =

((
P(h)− z

)−1
φ0, ψ0

)
=

((
P̂(h)− z

)−1
φh, ψh

)

=

((
P(t, h)− z

)−1
Utφh,Ut̄ψh

)
:= fφ0,ψ0

(z, t),
(4.10)

f 0
φ0,ψ0

(z) =
(

(P0 − z)−1φ0, ψ0

)
=

((
P(t)− z

)−1
Utφh,Ut̄ψh

)
:= f 0

φ0,ψ0
(z, t).

(4.11)

By Lemma 2.1 and Proposition 2.8, fφ,ψ(z, t) and f 0
φ,ψ(z, t) extend by analytic contin-

uation in t to the disc D(t0).

Now for fixed t in i ]0, ε[, the right hand side of (4.10) (resp. (4.11)) is meromor-

phic (resp. holomorphic) on z in Ω−η|t|, due to (4.9) (resp. (4.3)). This ends the

proof of Theorem 1.1.

Remark 4.3 Since {Utφ ; φ ∈ A} is dense in L2, the right hand side of (4.10) has a

pole z ∈ Ω−η|t| if and only if z ∈ σ
(

P(t, h)
)
∩ Ω−η|t|.

4.2 Proof of Theorem 1.3

When |ϕ| ≤ ε, (4.5) implies that ‖Ẽ−+(z, t, h) − Ẽ−+(z, t)‖ ≤ Cε, which together

with (4.8) and Theorem 1.1 i) give Theorem 1.3.

5 Proof of Theorem 1.4

5.1 Spectral Properties of the Effective Hamiltonian

For simplicity, we replace assumption (H4) by

W−1
l (Rn × T∗) ∩W−1

m (Rn × T∗) = ∅, ∀m 6= l.(H̃4)

With a slight modification, our methods developed below work also under assump-

tion (H4) (see Remark 5.10).
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Following Remark 4.3 and Theorem 3.8, the resonances of P(h) in Ω−η|t| are the

0 eigenvalues of the operator Ẽ−+(z, t, h). In the next proposition, we will show that,

Ẽ−+(z, t, h) is an h-pseudodifferential operator with scalar valued symbol and we give

explicitly the leading terms of its symbol.

We will first recall some well known facts about Bloch functions.

Let φl(·, k) ∈ ker
(

Pk − λl(k)
)

be the eigenfunction corresponding to the eigen-

value λl(k). If λl(k0) is a simple eigenvalue of Pk0
, then the function φl can be chosen

analytic on k in a neighborhood of k0 ∈ T∗. Moreover, if (H̃4) is satisfied, we can

choose φl analytic in a complex neighborhood W of T∗ with

((
Dx + vt (k)

) 2
+ V (x)

)
φl

(
x, vt (k)

)
= λ

(
vt (k)

)
φl

(
x, vt (k)

)
,(5.0)

∫

T∗
φl

(
x, vt (k)

)
φl

(
x, vt (k)

)
dx = 1, ∀ t ∈ D(t0) ∩ R, k ∈ Rn.(5.1)

See [18] and [34, Lemma 4.1].

The left-hand sides of (5.0) and (5.1) have an analytic continuation on t ∈ D(t0).

By uniqueness of analytic continuation, (5.0) and (5.1) remain true for all t ∈ D(t0).

From now on we write φ for φl.

Proposition 5.1 Fix λ ∈ W l. Under assumption (H̃4), the matrix E−+(r, k ; z, t, h)

given by (3.16) can be chosen real-valued such that for all m ∈ N:

E−+(r, k ; z, t, h) = z − E0
−+(r, k ; t)− hE1

−+(r, k ; t)

+

m∑

j=2

h jE
j
−+(r, k ; z, t) + hm+1R(r, k ; z, t, h),

(5.2)

where E
j
−+(r, k ; z, t),R(r, k ; z, t, h) ∈ S0(R2n), and

E0
−+(r, k ; t) = ϕ

((
1− tM(k)

)−1
r
)

+ λ
(

vt (k)
)
,(5.3)

E1
−+(r, k ; t) = −i

〈
∂kφ
(
·, vt (k)

)
φ
(
·, vt (k)

)〉
H0
∇r

(
ϕ
((

1− tM(k)
)−1

r
))

.

(5.4)

Proof Following the procedure of Section 3, we have only to show that we can take

N = 1 in Lemma 3.3, and prove (5.3), (5.4).

Let Πk : L2(T)→ L2(T) be the projection defined by

(Πku)(x, k) =
(

u, φ
(
·, vt (k)

))
H0

φ
(

x, vt (k)
)
.(5.5)

Under assumption (H̃4), (1 − Πk)
(

P(r, k, t) − z
)−1

(1 − Πk) is well defined for z in

a small complex neighborhood of λ.
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Let P(r, k ; z, t) be the operator constructed in Lemma 3.3 with

R+

(
vt (k)

)
u =

(
u, φ
(
·, vt(k)

))
H0

.

Using (5.0) and (5.1), we see easily that

E0(r, k ; z, t) =

(
(1−Π)

(
P(r, k ; t)− z

)−1
(1−Π) R−

(
vt (k)

)

R+

(
vt (k)

)
z − λ

(
vt (k)

)
− ϕt,0(r, k)

)(5.6)

is the inverse of P(r, k, z, t).

Recalling that E−+(r, k ; z, t, h) is the lower right corner of the matrix

E(z, t, h) = Ew
0 (r, hDr ; z, t) ◦ (1 + hRw)−1

= Ew
0 (r, hDr ; z, t)− hEw

0 (r, hDr ; z, t) ◦

(
a1 a3

a2 a4

)
+ O(h2).

(5.7)

Hence,

E−+(r, k ; z, t, h) = z − λ
(

vt (k)
)
− ϕt,0(r, k)

− h
[(

z − λ
(

vt (k)
)
− ϕt,0(r, k)

)
a4 + R+

(
vt (k)

)
a3

]
+ O(h2).

(5.8)

Here
(

a1 a3
a2 a4

)
denotes the principal term of R. Formula (3.13) and Theorem A.2 show

that (
a1 a3

a2 a4

)
=

1

2i
{P(r, k ; z, t),E0(r, k ; z, t)},

where {·, ·} is the Poisson bracket. Consequently,

a4 =
1

2i

{
R+

(
vt (k)

)
,R−

(
vt (k)

)}
, a3 =

1

i

{
ϕt,0(r, k),R−

(
vt (k)

)}
.(5.9)

Since R+ and R− depend only on k, a4 = 0. Combining this with (2.21), (5.8) and

(5.9) we get (5.3) and (5.4).

Remark The purpose of this remark is to provide a broad outline of the proof. Some

of ideas presented here come from older work of [29], [38].

Set

B(h) = Opw
h

(
ϕ(r) + λ(k) + hE1

−+(r, k, 0)
)
, B̂(h) := FB(h)F−1(5.10)

where E1
−+(r, k, 0) is the right-hand side of (5.4) token at t = 0. By Corollary 2.5,

D(t0) 3 t → FUtB(h)U−1
t F−1 := Bt (h) ∈ L

(
L2(T∗)

)
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is analytic and unitarily equivalent to B̂(h) for real t .

On the other hand, Theorem 2.3 and Corollary 2.6 show that Bt (h)− λ
(

vt (k)
)

is

a compact operator on L2(T∗), and

z − Bt (h) = Ẽ−+(z, t, h) + O(h2).(5.11)

Therefore, modulo
(
O(h2)

)
, we are led to study the spectrum of Bt (h) near λ.

It results from Lemma 3 of [32, p. 111] that,

σess

(
Bt (h)

)
=
{
λ
(

vt (k)
)

; k ∈ T∗
}
.

Fix t small with =t > 0, and let Ω = Ωt be a small complex neighborhood of λ.

Under assumption (H3), (4.5) and (4.6) imply that

σess

(
Bt (h)

)
∩ Ωt = ∅.

Therefore the spectrum of Bt (h) in Ωt consists of discrete eigenvalues of finite multi-

plicity. Moreover, since Bt (h) is obtained from B̂(h) by a spectral deformation, these

eigenvalues are t-independent, and therefore should be considered as resonances of

B̂(h).

Under assumption (H5), we will show that
(
λ − Bt (h)

)
is elliptic except for

(k, r) = (0, 0). Using this, we conclude by some weighted L2 estimate that, only

a microlocal version of Bt (h) near (0, 0) is needed to study the spectrum of Bt (h)

near λ. Hence, constructing an analytic family B̃t (h) such that B̃0(h) coincide with

K = h2

2
〈ϕ ′′(r0)∇k,∇k〉 + 1

2
〈λ ′′(k0)k, k〉, near (0, 0), we deduce that

σ
(

Bt (h)
)
∩ Ω =

(
λ + σ(K) + O(h2)

)
∩ Ω.

Finally we give the complete asymptotic expansion by constructing an asymptotic

solution of the equation Ẽ−+(z, t, h)u = 0.

5.2 Spectral Properties of Bt (h)

Without any loss of generality, we can assume that the band Hamiltonian W l(k, r)

has a non-degenerate minimum. Otherwise we consider−Bt (h) near−λ.

We denote by B(0, ε) a ball in T∗ × Rn of center (0, 0) and radius ε > 0. By

S0(T∗×Rn), we denote the space of symbols p(k, r) in S0(R2n) which are Γ∗-periodic

with respect to k.

In the following, t = i=t is fixed with =t > 0. The next lemma shows that

Bt (h)− λ is elliptic except at (k, r) = (0, 0).

Lemma 5.2 Under the assumptions (H1), (H2), (H3) and (H5), for sufficiently small

positive ε, there exists C > 0 such that

|p(k, r ; t)− λ| ≥
|t|

C
, ∀(k, r) /∈ B(0, ε)(5.12)

<
(

p(k, r ; t)− λ
)
≥
|r|2 + |k|2

C
, ∀(k, r) ∈ B(0, ε).(5.13)
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Here

p(k, r ; t) := E0
−+(−r, k ; t) = ϕ

((
tM(k)− 1

)−1
r
)

+ λ
(

vt (k)
)

denotes the principal term of Bt (h).

Proof By Taylor’s formula, one has:

p(k,−r ; t)− λ = ϕ(r) + λ(k)− λ− t
(
|λ ′(k)|2 − λ ′ ′(k)r · ϕ ′(r)

)
+ Or,k(t2),

(5.14)

where Or,k(t2) = O(t2) uniformly on (r, k) ∈ R2n and Or,k(t2) = O
(

t2(r, k)2
)

near

(0, 0). Assumption (H2) implies that

|λ(k)− λ| + |λ ′(k)| ≥ c0,(5.15)

for some c0 > 0. Since ϕ(r) and rϕ ′(r) tends to 0 when r tends to infinity, (5.14) and

(5.15) give (5.12) when |r| ≥ R with R large enough.

On the other hand, due to assumption (H5), we have: for (k, r) /∈ B(0, ε) with

|λ(k) + ϕ(r)− λ| ≤ δ and |r| < R:

|λ ′(k)|2 − λ ′′(k)r · ϕ ′(r) ≥
1

C
, for some C > 0.

This together with (5.14) ends the proof of (5.12).

Recalling that (0, 0) is a nondegenerate minimum of ϕ(r) + λ(k). Combining this

with (5.14), we obtain:

p(k, r ; t)− λ = ϕ ′′(0)
r2

2
+ λ ′′(0)

k2

2
+ tO

(
(r, k)2

)
,

for all (k, r) in B(0, ε). Choosing |t| small enough, we get (5.13).

Remark 5.3 The estimates of Lemma 5.2 remain true if we replace r (resp. k) in the

right hand side of (5.12) and (5.13) by r + i∇ f (k) (resp. k + i∇g(r)), where f (k) ∈
C∞(T∗) (resp. g(r) ∈ C∞(Rn)) is a non-negative function such that f (k), g(r) =

O(|t|), g(k), f (k) ∼ c0k2 near a neighborhoodΩ of 0 in T∗ (resp. Rn) and g(k), f (k) >
c|t|, for k /∈ Ω.

Theorem 5.4 Let E(h) ∈ D(λ,C0h) be an eigenvalue of Bt (h). Let uh be a normalized

associated eigenfunction,

Bt (h)uh = E(h)uh, ‖uh‖L2(T∗) = 1.

Then, there exists C > 0 which does not depend on h ∈ ]0, h0[, such that

‖e f /huh‖L2(T∗) ≤ C.(5.16)

Here f is a function satisfying the properties of Remark 5.3.
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Proof Put B
f
t (h) := e f /hBt (h)e− f /h and u f ,h = e f /huh. We have

(
B

f
t (h)− E(h)

)
u f ,h = 0.(5.17)

Proposition 2.7 and Corollary 2.5 imply that

B
f
t (h) = pw

(
k, hDk + i∂k f (k), t

)
+ O(h), in L

(
L2(T∗)

)
.(5.18)

Let η be a small positive constant. Let χ j ∈ C∞(T∗ × Rn ; ]0, 1[), j = 1, 2 be

smooth functions, such that supp χ1 ⊂ B(0, η), χ1 = 1 near (0, 0) and χ1 + χ2 = 1.

Lemma 5.2 and Remark 5.3 imply that

(k, r)→ p̃t (k, r ; z, t) := χ2(k, r)
(

z − p
(

k, r + i∂k f (k), t
))−1

∈ S0(T∗ × Rn).

Set, B̂t (z, h) = p̃w
t (k, hDk ; z, t). One has,

B̂t (z, h)
(

z − B
f
t (h)

)
= χw

2 (k, hDk) + O(h).(5.19)

Taking z = E(h) in (5.19), we get

χw
2 (k, hDk)u f ,h = O(h)u f ,h,(5.20)

due to (5.17). Since χ1 + χ2 = 1, then

u1
f ,h := χw

1 (k, hDk)u f ,h = u f ,h − χ
w
2 (k, hDk)u f ,h =

(
1 + O(h)

)
u f ,h.(5.21)

Combining this with (5.17), we obtain

(
B

f
t (h)− E(h)

)
u1

f ,h = O(h)u f ,h.(5.22)

In view of (5.13), we can apply the semi-classical sharp Gårding inequality (see for

instance [12, Theorem 7.12]) to the operator χw
1 (k, hDk)

(
B

f
t (h) − E(h)

)
χw

1 (k, hDk),

and get:

<
((

B
f
t (h)− E(h)

)
u1

f (h), u1
f (h)

)
≥ c
(

(h2D2
k + k2 −Ch)u1

f ,h, u
1
f ,h

)
,(5.23)

for some c and C > 0.

Let R be a large positive constant. Write

(
(h2D2

k + k2 −Ch)u1
f ,h, u

1
f ,h

)
=
(

(h2D2
k + k2 −Ch)u1

f ,h, u
1
f ,h

)
L2(|k|>(Rh)

1
2 )

+
(

(h2D2
k + k2 −Ch)u1

f ,h, u
1
f ,h

)
L2(|k|<(Rh)

1
2 )
.

(5.24)
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The first term of the right member is bounded from below by (R−C)h‖u1
f ,h‖

2, since

h2D2
k + k2 −Ch ≥ k2 −Ch in the sense of self-adjoint operators. On the other hand,

by construction of f (see Remark 5.3), e f /h
= OR(1) for |k|2 ≤ Rh. Consequently,

(
(h2D2

k + k2 −Ch)u1
f ,h, u

1
f ,h

)
L2(|k|<(Rh)

1
2 )
≥ −Ch

∫

{|k|<(Rh)
1
2 }

|u1
f ,h(k)|2 dk ≥ −CRh

where CR depends only on R. Here we have used the fact that ‖uh‖ = 1. Combining

this with (5.23) and (5.24), we get:

∥∥(B
f
t (h)− E(h)

)
u1

f ,h

∥∥ ‖u1
f ,h‖ ≥ (R−C)h‖u1

f ,h‖
2 −CRh.(5.25)

Using (5.22), (5.25) and the fact that ab ≤ R
4

a2 + 1
R

b2, we obtain

‖u1
f ,h‖

2 ≤
C̃

R
‖u f ,h‖

2 + C̃R.(5.26)

If we substitute (5.21) in the right hand side of (5.26), we get (5.16). This finishes the

proof of the theorem.

Remark 5.5 Let g be a function satisfying the properties of Remark 5.3. Using the

above arguments and Proposition 2.7 we obtain

‖eg(hDk)/huh‖L2(T∗) ≤ C,(5.27)

uniformly on h ∈ ]0, h0[.

Remark 5.6 Theorem 5.4 and Remark 5.5 show that the energy of eigenfunctions

of Bt (h) associated to an eigenvalue E(h) ∈ D(λ,C0h) are microlocally exponentially

concentrated near (0, 0). So, to compute the eigenvalues of Bt (h) in D(λ,C0h), we

need just to study a microlocal version of Bt (h) near (0, 0).

Let C0, (ei)1≤i≤N0+1 as in Theorem 1.4. We letΥ j (resp. Υ̂ j) be the complex circle

(resp. disk) of center λ + he j and radius δh. We choose δ small enough such that

Υ̂ j ∩ Υ̂k = ∅ when ek 6= e j . Set

D̂λ(h) := D(λ,C0h) \

N0⋃

k=1

Υ̂k.(5.28)

Now, we construct a microlocally version B̃t (h) of Bt (h) as indicated in Remark 5.6.

Fix N ≥ 5. Let λ̃ ∈ C∞(T∗) and ϕ̃ ∈ C∞(Rn) be two positive valued functions sat-

isfying:

i) λ̃(k) extends analytically in a small complex neighborhood of the torus T∗.

ii) λ̃−1(0) = Γ∗ and λ̃(k) =
∑
|α|≤N

1
α!
λ(α)(0)kα + O(|k|N+1) near zero.

iii) ϕ̃(r) extends analytically in Da, for some a > 0, and satisfies (1.5) with δ = 0.
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iv) lim inf ϕ̃ > 0, ϕ̃−1(0) = {0} and ϕ̃(r) =
∑
|α|≤N

1
α!
ϕ(α)(0)rα + O(|r|N+1) near

zero.

We define the operators B̃(h), B̃t (h) as B(h), Bt (h), but with λ̃, ϕ̃ instead of λ, ϕ.

Evidently, the spectrum of FB̃(h)F−1 near D(λ,C0h) is discrete and

σ
(
FB̃(h)F−1

)
∩ D(λ,C0h) = {ẽ1(h), . . . , ẽN0

(h)},

with

ẽk(h) = λ + ekh + O(h
3
2 ).(5.29)

For further information on the spectrum of an h-pseudodifferential operator near a

nondegenerate minimum we refer to [12, Chapter 4].

Since B̃t (h) is an analytic family of type A by Corollary 2.5, it follows from the

stability theorem of discrete spectrum (see [32]) that

σ
(

B̃t (h)
)
∩ D(λ,C0h) = {ẽ1(t, h), . . . , ẽN(t, h)},

where ẽi(t, h) are analytic on t . Combining this with the fact that B̃t (h) is unitarily

equivalent to FB̃(h)F−1 for real t , we get: ẽi(t, h) = ẽi(h) for all t ∈ D(t0). Conse-

quently,

σ
(

B̃t (h)
)
∩ D(λ,C0h) = {ẽ1(h), . . . , ẽN0

(h)}.(5.30)

The following result shows that there is no spectrum of Bt (h) in D̂λ(h).

Proposition 5.7 For h0 > 0 small enough, there exists a constant c > 0, such that

σ
(

Bt (h)
)
∩ D̂λ(h) = ∅

for all h ∈ ]0, h0[, and

∥∥(Bt (h)− z
)−1∥∥ ≤ ch−1,(5.31)

uniformly on z ∈ D̂λ(h).

Proof Let ε > 0 be a small constant which will be fixed later. Let χ j , j = 1, 2 be a

partition of unity on T∗ × Rn with χ1 = 1 near B(0, ε) and equals 0 outside B(0, 2ε).

Lemma 5.2 implies that Bt (h) is elliptic except for (k, r) = (0, 0). Hence, on supp χ2

we can apply the proof of (5.19) and show that

B̂t (z, h)
(

z − Bt (h)
)
= χw

2 (k, hDk) + O(h),(5.32)

uniformly on z ∈ D, where B̂t (z, h) ∈ Opw
h

(
S0(T∗ × Rn)

)
.
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On supp χ1, we compare
(

z−Bt (h)
)

with
(

z− B̃t (h)
)−1

via the obvious equality

χw
1 (k, hDk)

(
z − B̃t (h)

)−1(
z − Bt (h)

)

= χw
1 (k, hDk) + χw

1 (k, hDk)
(

z − B̃t (h)
)−1(

B̃t (h)− Bt (h)
)
.

(5.33)

Let χ3 be equal to 1 near support of χ1 and 0 outside B(0, 3ε). Lemma B.4 shows that

χ1

(
z − B̃t (h)

)−1
(1− χ3) = O(h∞).(5.34)

By construction, B̃0(h)−B0(h) = O
(

(r, k)β
)

for all |β| ≤ N + 1, which together with

Remark 2.4 give

(
Bt (h)− B̃t (h)

)
= O

(
|(k, r)|N+1

)
+ O
(

h2|(k, r)|N−3
)

+ O(h3).(5.35)

Since |k| + |r| ≤ 3ε on supp χ3, it follows from (5.35) and Lemma B.3 that

∥∥χw
1 (k, hDk)

(
z − B̃t (h)

)−1
χ3

(
Bt (h)− B̃t (h)

)∥∥ ≤ C(ε + h),(5.36)

where C > 0 is independent of ε and h. Now, (5.32), (5.33), (5.34) and (5.36) give

Ch−1
∥∥(Bt (h)− z

)
u
∥∥ ≥ (1−Cε)‖u‖.(5.37)

This shows that ker
(

Bt (h) − z
)
= {0} for z ∈ D̂λ(h). Since the spectrum of Bt (h)

in D is discrete, this also shows that σ
(

Bt (h)
)
∩ D̂λ(h) = ∅. Formula (5.31) is a

consequence of (5.37).

Theorem 5.8 For h small enough, one has:

σ
(

Bt (h)
)
∩ D(λ,C0h) =

N0⋃

j=1

{E j(h)},(5.38)

with

E j(h) = λ + he j + O(h3/2).(5.39)

Proof Fix j in {1, . . . ,N0}, and define

π(h) =
1

2πi

∫

Υ j

(
z − Bt (h)

)−1
dz(5.40)

π0(h) =
1

2πi

∫

Υ j

(
z − B̃t (h)

)−1
dz.(5.41)
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We recall that Υ j is the circle of center (λ + he j) and radius δh (δ is small so that

(λ + hek) is outsideΥ j when ek 6= e j). In view of (5.32) and (5.33), we have:

(
z − Bt (h)

)−1
− χw

1 (k, hDk)
(

z − B̃t (h)
)−1

= B̂t (z, h)−
[
O(h) + χw

1 (k, hDk)
(

z − B̃t (h)
)−1(

Bt (h)− B̃t (h)
)](

z − Bt (h)
)−1

,

(5.42)

uniformly on z ∈ D̂λ(h).

Since B̂t (z, h) is holomorphic inside Υ j , it results from (5.36), (5.42), Proposi-

tion 5.7 and the fact that diam(Υ j) = O(h),

‖π(h)− χw
1 (k, hDk)π0‖ ≤ C(ε + h).

Moreover, Lemma B.3 shows that χw
2 (k, hDk)π0(h) = O(h). We recall that χ1 +χ2 =

1 and χ2 = 0 near 0. Consequently, for h small enough

‖π(h)− π0(h)‖ ≤ C̃ε.

Next we choose ε so small that C̃ε < 1. Since π(h) and π0(h) are projectors, it follows

from Lemma 1.23 of [23, p. 438] that,

dim
(

rg
(
π0(h)

))
= dim

(
rg
(
π(h)

))
.

This gives (5.38).

Let us prove (5.39). By construction, B̃(h) is elliptic except for (k, r) = (0, 0)

and is analytic in a complex neighborhood of R2n. Hence, we can apply Theo-

rem 5.4 and Remark 5.5 to B̃t (h) and deduce that, the eigenfunctions corresponding

to an eigenvalue λ ∈ D of B̃t (h) are microlocally concentrated near (k, r) = (0, 0).

In particular, if ϕ1, . . . , ϕÑ is an orthonormal basis of rang
(
π0(h)

)
and if χ ∈

S0(T∗ × Rn) with χ(k, r) =
(

(k, r)α
)

, then

‖χw(k, hDk)ϕi‖ = O(h|α|/2), i = 1, . . . , Ñ.

Combining this with (5.35), we get

(
Bt (h)− B̃t (h)

)
ϕi = O(h3).(5.43)

Consequently,

(
Bt (h)− ẽ j(h)

)
ϕi =

(
Bt (h)− B̃t (h)

)
ϕi = O(h3).(5.44)

Put ψi = π(h)ϕi . (5.43) and (5.44) yield

ψi − ϕi =
(
π(h)− π0(h)

)
ϕi

=
1

2πi

∫

Υ j

(
z − Bt (h)

)−1(
Bt (h)− B̃t (h)

)(
z − B̃t (h)

)−1
ϕi dz

= O(h2).

(5.45)
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This shows that ψ1, . . . , ψÑ is a basis of rang
(
π(h)

)
when h is small enough. More-

over, (5.44) gives

(
Bt (h)− ẽ j(h)

)
ψ j = π(h)

(
Bt (h)− ẽ j(h)

)
ϕ j = O(h3),(5.46)

which means that the matrix M of π(h)Bt (h)π(h) in the basis (ψ1, . . . , ψÑ ) is of the

form:

M = ẽ j(h)I + O(h3).(5.47)

Now, it is clear that (5.39) follows from (5.47) and (5.29).

5.3 End of the Proof of Theorem 1.4

Since Ẽ−+(z, t, h) = z−Bt (h)+O(h2), it follows from Proposition 5.7 that Ẽ−+(z, t, h)

is invertible for z ∈ D̂λ(h). Then it suffices to study the invertibility of Ẽ−+(z, t, h)

for z in a fixed Υ̂ j .

Let B̃∗t (h) (resp. B∗t (h)) be the adjoint of B̃t (h) (resp. Bt (h)). Let (ϕ∗1 , . . . , ϕ
∗
N) be

a basis of
(

B̃t (h)− ẽ j(h)
) ∗

satisfying

(ϕi , ϕ
∗
j ) = δi j .(5.48)

As in the proof of (5.45), we can construct a basis (ψ∗1 , . . . , ψ
∗
N ) of

ker
(

Bt (h)− E j(h)
)∗

such that

ψ∗i = ϕ
∗
i + O(h2),

which together with (5.45) and (5.48) imply

(ψi , ψ
∗
j ) = δi j + O(h2).(5.49)

Let Π be the spectral projector defined by

Πu =

N∑

i=1

(u, ψ∗i )ψi .

Set

Π̂ = 1−Π, and B̂t (h) = Π̂Bt (h)Π̂.

Then, the reduced resolvent R̂(z, t, h) =
(

z − B̂t (h)
)−1

of B̂t (h) is well defined on

the range of Π̂. Moreover, the arguments used in the proof of Proposition 5.7 show

that

‖R̂(z, t, h)Π̂‖ ≤ Ch−1,(5.50)

uniformly on z in Υ̂ j .
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Consider the Grushin problem for Ẽ−+(z, t, h),

G(z, t, h) :=

(
Ẽ−+(z, t, h) r−

r+ 0

)
: L2(T∗)⊕ CN → L2(T∗)⊕ CN ,(5.51)

where r− : CN → L2(T∗) and r+ : L2(T∗)→ CN are defined by

r−(α1, . . . , αN ) =

N∑

i=1

αiψi , and r+u =
(

(u, ψ∗1 ), . . . , (u, ψ∗N )
)
.

In view of (5.48) and (5.49), one has

r+r− = I + O(h2), r−r+ = Π.(5.52)

Set

R(z, t, h) :=

(
R̂(z, t, h)Π̂ r−

r+

(
E j(h)− z

)
ICN

)
.

Using (5.50), (5.52) and the fact that Ẽ−+(z, t, h) = z−Bt (h)+O(h2), we check easily

G(z, t, h)R(z, t, h) = I +

(
O(h) O(h2)

O(h) O(h2)

)
,(5.53)

and

R(z, t, h)G(z, t, h) = I +

(
O(h) O(h)

O(h2) O(h2)

)
.(5.54)

Hence, G(z, t, h) is invertible with inverse

F(z, t, h) :=

(
F(z, t, h) F+(z, t, h)

F−(z, t, h) F−+(z, t, h)

)
.

On the other hand, the right hand side of (5.53) and (5.54) show that

F−+(z, t, h) =
(

E j(h)− z
)

ICN + O(h2).

Therefore,

det
(

F−+(z, t, h)
)
=
(

E j(h)− z
)N

+

N∑

k=1

ak(z, t, h)
(

E j(h)− z
)N−k

,(5.55)

where ai(z, t, h) depends holomorphically on z in Υ̂ j and ak(z, t, h) = O(h2k). Now,

by a Rouché’s theorem, we deduce from (5.55) that det
(

F−+(z, t, h)
)
= 0 has N

roots zk(h)1≤k≤N in Υ̂ j with

zk(h) = E j(h) + O(h2) = λ + he j + O(h3/2).

We recall that E j(h) = λ + he j + O(h3/2).

Summing up, we have proved:

Lemma 5.9 There exists a matrix F−+(z, t, h) : CN → CN , depending holomorphically

on z ∈ Υ̂ j , such that the following properties hold.
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i) z = z(h) ∈ Υ̂ j is a root of multiplicity m of det
(

F−+(z, t, h)
)
= 0, if and only if 0

is an eigenvalue of multiplicity m of Ẽ−+(z, t, h).

ii) det
(

F−+(z, t, h)
)
= 0 has N roots in Υ̂ j , z1(h), . . . , zN(h) (counted with their

multiplicities) and

zi(h) = λ + he j + O(h3/2).(5.56)

It follows from Theorem 3.8 and Lemma 5.9 that the resonances of P(h) in

D(λ,C0h) are all given by (5.56) with e j < C0. It remains to prove that zi(h) has

an asymptotic expansion in powers of h
1
2 , i.e.,

zi(h) ∼ λ + he j +
∑

l≥1

αi,lh
1+ l

2 , (αi,l ∈ R), (h↘ 0).(5.57)

The most essential step in the proof of (5.57) is to construct asymptotic solutions of

the equation

Ẽ−+(z, t, h)u = 0.

A similar problem was studied by [24], [29], [38] and that is why we omit the details.

Using Proposition 5.1 and Remark 3.9 we deduce as in the proof of (5.11) that,

for all m ∈ N, there exists Bm(h, z) = z − B(h) + h2b2(z) + · · · + hm+2bm+2(z) where

bi(z) ∈ Oph

(
S0(R2n)

)
such that

Bm
t (h, z) := Ût B̂

m(h, z)Û−1
t = Ẽ−+(z, t, h) + O(hm+2).(5.58)

Here B(h) is given by (5.10). We recall that B̂m(h, z) = FBm(h, z)F−1.

Fix t = is with 0 < s small enough. The arguments used in Section 5.2 show

that Bm
t (h, z) is elliptic uniformly on z ∈ D(λ,C0h) except for (k, r) = (0, 0). In

particular, the normalized solutions of the equation Bm
t (h, z)u = 0 are microlocally

concentrated near (0, 0).

Since ϕ(r) + λ(k) has a non-degenerate minimum near (0, 0), the construction of

Helffer-Sjöstrand in [20] (see also [24], [29], [38]) gives N asymptotic solutions in

the form

ui(k, h) = e−S(k)/h

2m+2∑

l=0

ci,l(k)hl/2−m j , (m j ∈ R),

associated with

z̃i(h) = λ + e jh +

2m∑

l=2

αi,lh
1+ l

2 ,

such that near (r, k) = (0, 0)

B̂m
(

h, z̃i(h)
)

ui = O(hm+1).

Here S(k) satisfies

ϕ(−∇kS) + λ(k) = 0,

https://doi.org/10.4153/CJM-2002-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-037-9


Slowly Varying Perturbations of a Periodic Schrödinger Operator 1033

with S(0) = 0,∇S(0) = 0 and <S > 0 for k 6= 0.

Let χ ∈ C∞0 (T∗) be supported in a small neighborhood of zero and equals one

near 0. Set vt
i (k, h) := χ(k)Ût ui(k, h). One has

B̂m
t

(
h, z̃i(h)

)
vt

i (k, h) = O(hm+1),

which together with (5.58) give

Ẽ−+

(
z̃i(h), t, h

)
vt

i (k, h) = O(hm+1).

Now to finish the proof of (5.57), we just need to study a Grushin problem for

Ẽ−+(z, t, h), similar to (5.51), but with ψi = vt
i (k, h).

Remark 5.10 The purpose of this remark is to explain why our methods work under

assumption (H4).

Let us denote by E0
−+(r, k ; z, t) the lower right corner of the matrix E0(r, k ; z, t)

given in Lemma 3.3. Under assumption (H4), we can construct E0
−+(r, k ; z, t) scalar

valued with

E0
−+(r, k ; z, t) =

(
z − λ

(
vt (k)

)
− ϕt,0(r, k)

)
g(r, k ; z, t),

near Σ := (E0
−+)−1{0} and |g| ≥ C > 0. See [18, Theorem 3.5]. Thus, Lemma 5.2

remains true. In particular, to study the spectrum of Ẽ−+(z, t, h) near 0, one only

needs a microlocal version of Ẽ−+(z, t, h) near (0, 0).

A Operator-Valued Symbols

We recall some basic results about operator-valued symbols. Our main reference is

[15]. We shall consider a family of Hilbert spaces AX , X = (x, ξ) ∈ R2n satisfying:

AX = AY as vector spaces for all X,Y ∈ R2n,(A.1)

∃N0 > 0,C > 0, tq ‖u‖AX
≤ C〈X − Y 〉N0‖u‖AY

for all u ∈ A0,X,Y ∈ R2n.

(A.2)

Let BX and CX satisfy (A.1) and (A.2). We say that p ∈ C∞
(

R2n ; L(A0,B0)
)

belongs to S0
(

R2n ; L(AX ,BX)
)

if for every α ∈ N2n there is a constant Cα such that

‖∂αX p‖L(AX ;BX ) ≤ Cα, for all X ∈ R2n.(A.3)

We can then associate with p the operator pw(x, hDx). As in the scalar case, one has:

Proposition A.1 [15] Let p ∈ S0
(

R2n ; L(AX ,BX)
)

. Then pw
= pw(x, hDx) is

uniformly continuous S(Rn ; A0)→ S(Rn ; B0).
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Theorem A.2 [15] Let p ∈ S0
(

R2n ; L(BX ,CX)
)

, q ∈ S0
(

R2n ; L(AX ,BX)
)

. Then

pw ◦ qw
= rw, where r ∈ S0

(
R2n ; L(AX ,CX)

)
is given by

r = exp

(
ih

2
σ(Dx,Dξ ; Dy ,Dη)

)(
p(x, ξ)q(y, η)

)
|x=y,ξ=η

,

where σ is the usual symplectic 2 form. We have the asymptotic formula:

r ∼
∞∑

k=0

1

k!

(
ih

2
σ(Dx,Dξ ; Dy ,Dη)

)k

p(x, ξ)q(y, η)|x=y,ξ=η
.

Theorem A.3 [15] Assume AX = A0, BX = B0, ∀X ∈ R2n. If p ∈ S0
(

R2n ;

L(A0,B0)
)

then Opw
h (p) is uniformly bounded

L2(Rn ; A0)→ L2(Rn ; B0).

B Some Resolvent Estimates

Lemma B.1 Fix m ∈ {0, 1, 2}. Let p, χ ∈ S0(R2n) be real valued satisfying:

i) p(x, ξ) ≥ 0, lim inf p(x, ξ)(x,ξ)→∞ > 0 and p−1(0) = {(0, 0)}.
ii) p has a non-degenerate minimum at (0, 0).

iii) χ(x, ξ) = O(xαξβ) for all |α| + |β| ≤ m.

Then, there are c,C, h0 > 0 such that,
(

pw(x, hDx) + Ch
)

is invertible and

∥∥χw(x, hDx)
(

pw(x, hDx) + Ch
)−1∥∥ ≤ ch

m
2
−1,(B.1)

uniformly on h ∈ ]0, h0[.

Proof For λ > 0, set

Qλ(x, ξ) =
(

p(x, ξ) + λ
)−1

.

The following properties were shown in [12, proof of Theorem 7.12],

1) ∀α, β, ∃Cα,β (independent of λ) such that

|∂αx ∂
β
ξ Qλ| ≤ Cα,βQλ(x, ξ)λ−

|α|+|β|
2 .(B.2)

2) There are C, h0 > 0 such that
(

pw(x, hDx) + Ch
)

is invertible and

(
pw(x, hDx) + Ch

)−1
= Qw

Ch(x, hDx) ◦ A,(B.3)

where ‖A‖ = O(1), uniformly on h ∈ ]0, h0[.
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On the other hand, assumptions ii) and iii) imply that

∣∣χ(x, ξ)
(

p(x, ξ) + λ
)−1∣∣ ≤ C0λ

m
2
−1.

Combining this with (B.2), we get

|∂αx ∂
β
ξ (χQλ)| ≤ Cα,βλ

m
2
−1λ−

|α|+|β|
2 .

This shows that χQCh ∈ S
m
2
−1

1
2

(R2n). Now, Lemma B.1 follows from Proposition 7.7

of [12].

Remark B.2 Note that Lemma B.1 remains true if we replace λ = Ch by λ = z with

|z − Ch| ≤ C1h and dist
(

z, σ(P)
)
≥ C2h for some C1,C2 > 0. This follows easily

from Lemma B.1 and the first resolvent equation

(P − z)−1
= (P + Ch)−1 + (P + Ch)−1(z + Ch)(P − z)−1.

We recall that dist
(

z, σ(P)
)
≥ C2h and P = P∗ imply ‖(z − P)−1‖ ≤ (C2h)−1.

Lemma B.3 Let χ ∈ S0(T∗ × Rn) satisfy χ(k, r) = O(kαrβ) for all |α| + |β| ≤ m

(m ∈ {0, 1, 2}). There exists C > 0 (independent of h and z ∈ D0), such that

∥∥χw(k, hDk)
(

z − B̃t (h)
)−1∥∥ ≤ Ch

m
2
−1(B.4)

∥∥( z − B̃t (h)
)−1

χw(k, hDk)
∥∥ ≤ Ch

m
2
−1.(B.5)

In particular for m = 0, we get:

∥∥( z − B̃t (h)
)−1∥∥ ≤ Ch−1, ∀ z ∈ D0.

Proof We only prove (B.4). The proof of (B.5) is similar. By construction, B̃(h) =

O
(

(r, k)α
)

+ O(h) for all |α| ≤ N + 1. Remembering the expression of B̃t (h) and

using Proposition 2.6, we get

B̃t (h)− B̃(h) = t
(

r0(x, ξ ; t) + hr1(x, ξ, t)
)

+ h2R(x, ξ ; t, h),

where r0, r1,R ∈ S0(R2n) and r0(x, ξ ; t) = O(xαξβ), for all |α| + |β| ≤ N + 1.

Applying Lemma B.1 and Remark B.2 to p = B̃(h) and χ(x, ξ) = r0(x, ξ ; t), we

obtain ∥∥( B̃t (h)− B̃(h)
)(

z − B̃(h)
)−1∥∥ = O(t).

Consequently, for t0 small enough,
(

I−
(

B̃t (h)− B̃(h)
)(

z− B̃(h)
)−1

)
is invertible

and ∥∥∥
(

I −
(

B̃t (h)− B̃(h)
)(

z − B̃(h)
)−1

)−1∥∥∥ = O(1).
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Now, (B.4) follows from Lemma B.1 and the following formula

(
z − B̃t (h)

)−1
=
(

z − B̃(h)
)−1

(
I −

(
B̃t (h)− B̃(h)

)(
z − B̃(h)

)−1
)−1

.

Lemma B.4 Let χi ∈ S0(T∗ × Rn), i = 1, 2. We assume that supp(χ1) is a compact

set, χ1 = 1 near (0, 0) and d(supp χ1, supp χ2) > ε > 0. Then, for all M ∈ N,

∥∥χw
2 (k, hDk)

(
z − B̃t (h)

)−1
χw

1 (k, hDk)
∥∥ = OM(hM).(B.6)

Proof For any M we can find ψ1, . . . , ψM ∈ C∞0 (R2n), constant in a neighborhood

of supp χ1 and such that

χ1ψ1 = χ1, ψi−1ψi = ψi−1, 1 ≤ i ≤ M, ψMχ2 = 0.

Then

χ2

(
B̃t (h)− z

)−1
χ1

= χ2

(
B̃t (h)− z

)−1
ψ1 · · ·ψMχ1

= χ2

(
B̃t (h)− z

)−1
[ψ1, B̃t (h)]

(
B̃t (h)− z

)−1
[ψ2, B̃t (h)]

(
B̃t (h)− z

)−1

· · ·
(

B̃t (h)− z
)−1

[ψM , B̃t(h)]
(

B̃t (h)− z
)−1

χ1.

(B.7)

Symbolic calculus shows that [ψk, B̃t (h)] = hO
(

(x, ξ)2
)

. Combining this with

Lemma B.3, we get

∥∥( B̃t (h)− z
)−1

[ψk, B̃t (h)]
∥∥ = O(h),

which together with (B.7) give (B.6).
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