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UNIQUENESS THEOREMS FOR A SINGULAR 
PARTIAL DIFFERENTIAL EQUATION 

P. RAMANKUTTY 

0. Introduction and summary. A singular partial differential equation 
which occurs frequently in mathematical physics is given by 

au H - h ku = 0 
Xi dxi 

where A = Yit=i d2/dxt
2 is the Laplacian operator on Rw of which the generic 

point is denoted by x = (xi, . . . , xn) and 5 and k are real numbers. The study 
of solutions of this equation for the case k = 0 was initiated by A. Weinstein 
[5], who named it 'Generalized Axially Symmetric Potential Theory'. 
Numerous references to the literature on this equation can be found in 
[1; 3; 6]. The analytic theory of equations of the type mentioned above has 
extensively been treated in [2]. 

In this paper uniqueness theorems for more general second order linear 
partial differential equations whose coefficients (of the first order derivatives) 
may become unbounded on the co-ordinate hyperplanes are obtained. These 
equations are assumed to be 'quasi-elliptic' in a sense to be defined. 

In § 1 certain notations are explained and the notion of 'quasi-ellipticity' 
of a linear second order partial differential operator Ln>m in Kn with unbounded 
coefficients is introduced. 

In § 2 a uniqueness theorem for the boundary-value problem associated 
with the equation Lnti[u] = f is established; the case of the bounded domain 
is proved in full and modifications for the case of the unbounded domain are 
indicated. Consideration is restricted to solutions u satisfying an ''evenness 
condition" (hypothesis (iv)) and, more crucially, also a restriction (hypothesis 
(v)) on the nature of du/dxi near the region of singularity x± = 0. In the case 
of the unbounded domain only solutions whose growth-rate at infinity is 
constant are considered. The principal tool used in establishing these results 
is the 'Strong maximum Principle' due to E. Hopf [4]. 

In § 3 the results of § 2 are extended to the case of the operator L„>w (m < n) 
which has singularities on m of the n co-ordinate hyperplanes. 

Acknowledgement. I wish to thank Professor Robert P. Gilbert of Indiana 
University for his help and guidance in the preparation of this paper. 

1. Notations and definitions. 1. For x = (#i, . . . , xw_i) 6 Rw~x and 
y £ R, (x\ky) will denote the point (xi, . . . , a^-i» y, xk, . . . , xn-i) G Rw for 
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k = 2, 3 , . . . , n — 2 while (x|rv) will denote the point (y, Xi, x 2 , . . . , xw_i) G Rw, 
and (£|»y) will denote the point (xi, x2, . . . , xn-i> y) G Rw. 

2. For D C Rw, and £ G {1, 2, . . . , n) 

Dk
+ = {(xi, . . . , x n ) G £>:xfc > 0}, 

#*"" = {(* i, . . . , * » ) ^ : ^ < 0 ) , 

A 0 = {(* i, . . . , xn) G D : xk = 0J. 

Obviously, Dk° may be identified with {x G Rw-1 : (x|*0) G £>} and this will 
be done whenever needed. 

3. Lntm will denote the linear second order partial differential operator on 
C2(D) defined by 

n A^IJ
 m 1 n an 

i,j=i oXfOXj jc=i x k
 K i=i aXi 

where {7&}S=i are positive integers and aij} bikl a are real-valued functions 
defined on D C Rw. These functions a^, bik, a will be called the coefficients of 
Ln>m. It will be assumed that n ^ 2 and m < n. For convenience, in the case 
m = 1, we will write D+, JD_, Z}0 instead of Di+, Di~~, Di0; (y, x) instead of 
(x\\y), 7 instead of 71, L instead of Ln,i and at instead of ba. 

Definition. Ln>m is said to be quasi-elliptic in D if and only if 

n m 

(0 ]C aij(x)^ Aj is positive definite for each x G D+ = Pi At+ and 

(ii) Z a i:/(x)XiX j is positive definite for each x G Dk°ior k = 1, . . . , m. 

2. An application of the maximum principle. Before proceeding to 
the uniqueness theorems, it is desirable to record here an "obvious" result 
regarding the usual topology of the n-dimensional Euclidean space Rn. 

LEMMA 2.1. If D C Rw is such that D+ = {x G D : Xi > 0} is a non-empty 
proper subset of R+ and if A is a component of D+1 then dA Pi 3D 9^ 0. 

Proof. Set H = {x e Rn : xx = 0}. Since ÔA C dD KJ H, if dA P dD = 0 
then dA C H so that dA P R+ = 0. Hence A is closed and open in R+ so 
that A = R+ a contradiction to D+ C R+. 

THEOREM 2.1. If L is quasi-elliptic in a non-empty open subset D of Kn, if 
the "coefficients of L" are continuous in D, and if for each i = 2, 3, . . . , n, 
at : Do —» R defined by: 

<Xi\%) — u m 7 
zi-»0 Xi 

exists and is continuous and a(D+) C ( — 00 , 0], then the boundary-value problem 
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(i) L[u] = 0 in D, 

(ii) u = 0 on dD, 

(iii) u G C\D) H C(D), 

(iv) u(D-)Cu(D+), 

(v) lim —y -— = 0 everywhere in D0 m-̂ o xi dxi 

with either D bounded, or D unbounded and 
(vi) limiî n^oo u(x) = 0 has only the trivial solution u = 0 in D. 

Proof. First consider the case of a bounded D. Suppose u is a non-trivial 
solution. Then there is a point x G D such that w(x) ^ 0. Since - « is a 
solution whenever u is, it can be assumed without loss of generality that 
u(x) > 0. Hence u attains a positive maximum K on D. Since u = 0 on dJ9 it 
follows that the non-empty subset 12 of D defined by 12 = {£ G D : w(£) = i£} 
is contained in D. Before continuing we shall prove the following lemma. 

LEMMA (a). The set 12 is a subset of D0. 

Proof. Suppose 12 (£ Do. Then, either 12 P D+ j* 0 or 12 Pi ZL. j* 0. Since 
w(£>_) C «(£>+), it follows that 12 Pi £>_ ^ 0 => 12 Pi D+ j£ 0. Thus 12 <£ £>o =» 
12 P D+ 9e 0. Let s G 12 P D+ and A be the component of D+ containing z; 
let g G A P 12. Since D+ is open and hence locally connected, A is an open 
subset of Rw. Therefore, from the continuity of u and the fact that w(£) = 
K > 0, it follows that there exists a closed ball B around £ such that B C A 
and w > 0 on B. Also, a(x) ^ 0 onB and Xi > 0 on B so that Xiya(x)u(x) ^ 0 
on i3. This shows that if the operator M is defined by 

then 

M[u] = — x{fa{x)u{x) ^ 0 on 5 . 

Since Xi > 0 on i?, the quasi-ellipticity of L in D implies the ellipticity of 
M in B; also the coefficients of M are continuous on B. Further, u attains its 
maximum value K on B at the point J G Int J3. Hence, by Hopf's strong 
maximum principle [4], it follows that u = constant in B. Thus, for each 
x G B, u(x) = «(£) = X. This shows that B C 12 and hence that B C A P 12. 
Thus, each point £ G A P 12 has a closed ball J3 around it such that B C A P 12. 
Hence A P 12 is open (in fact, in Rw). But since w is continuous, A P 12 = 
A P u~l(K) is closed in A. Since A is connected and A P 12 ̂  0, it follows 
that A P 12 = A. 

Therefore u(x) = K for each x G A and hence by continuity of u, 

(1) u(x) = K for each x G À. 
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Since A is a component of D+, by Lemma 2.1, <9A H 3D T* 0. Hence there 
is an x £ dA such that u(x) = 0. This, however, contradicts (1) and proves 
Lemma (a). 

Let v : Do —> R be defined by v(x) = u((Q, x)). The hypothesis 
limxl_+o(l/xiy) (du/dxi) = 0 implies that \imxl_^odu/dxi = 0 since y è 1. 
Hence 

(|H) = l i m l ( f - ( ^ ) j^im-1-^ 
\ OX\ / a:i=0 xi->0 Xi \ dXi \ OXi J z1==o/ m->0 #1 dXi 

= lim xi~ —y-— = 0 again because y > 1. 
*i-»o #i dxi 

Also for i 5̂  1, we have 

| dV \ _ y d2u _ y _d__ I du\ 
\dXidxJxl=o xl_>o dXidXi xl_>o dxt \ dXi / 

= / - ( l i m ^ ) = 0 . 
°%i \ xi-»0 OX\ J 

Therefore, rewriting L[u] = 0 at (xi, x) where x £ Do and taking limits as 
Xi —> 0, we have 

n *\2 n n 

(2) £,««(*> ̂  + £«'<*> ̂  + «(*)" = °-
where a{j(x) = a^((0, £)) and a(x) = a((0, #)). Clearly, the operator L 
defined by 

L[w] = X) <*<*(*) XT^T" + S «<(*) "ZT + «(£)w 
i,j=2 OXfOXj i=2 OX i 

is elliptic in Z>o (by the condition (ii) in the definition of quasi-ellipticity of L) 
and has continuous coefficients in Do. Also by the continuity of a in D and the 
hypothesis a(D+) C ( — °° ,0] , we have a (Do) C ( — °° ,0] . Moreover, in 
terms of the function v, the Lemma (a) established above shows that 
12 = v-^K). 

Now in Rw_1, let xo £ 12 and 2 be the component of D0 containing x0; let 
| G 2 Pi ^_ 1(X). Again, 2 is open by the local connectedness of the open set 
Do, f £ 2 and v(%) = K > 0. Therefore, by the continuity of *;, it follows 
that | has a closed ball iV surrounding it such that N C 2 and i; > 0 on iV. 
Hence, if the operator M is defined by 

M M - j2«„(*) — + x ; «f(*> —, 
then 

M[v] = —a(x)v ^ 0 on N. 

Since it? is elliptic with continuous coefficients in N and v attains its maximum 
K on N at the point £ € Int N, it follows again by Hopf [4] that v = constant 
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on N. Thus, for each x G N, v(x) = v(%) = K. This shows that N C v^iK) 
and hence that N C 2 P i r 1 ^ ) . Thus, 2 Pi i r 1 ^ ) is open in R*"1 and 
hence both closed and open in 2. Also S H r 1 ^ ) ^ 0 because 
XQ G S H r 1 ^ ) . Hence it follows from the connectedness of 2 that 
S P zr*1^) = 2. Therefore fl(x) = K for each x G 2 and, again, by the 
continuity of v, 

(3) v(x) = K for each x G 2. 

Since dJ90 C 52? on which « = 0, it follows that z> = 0 on d2)0- But since 2 
is a component of DQ, 52 C 52)0. Hence we have v(x) = 0 for each x f 32 . 
This contradicts (3) since K > 0, and completes the proof of the theorem 
in the case of a bounded D. 

For the case of an unbounded D, the foregoing reasoning can be modified 
as follows. 

Let x0 G D be such that u(xo) > 0 and for r > 0 define 

S r(0) = {x G Rn: ||*|| < r } . 

Since « (x) —» 0 as | |x| | —» oo , a positive r can be found such that \u (x) | < u (x0) 
in 2)\2?r(0). If E = 2) P 2?r(0), then Xo £ E and hence u attains a maximum 
K on Ë such that X è u(x0) > 0. Also, clearly, dE C àD \J dBr(0) and, by 
hypothesis, u = 0 on dD while, by the choice of r, \u(x)\ < u(xQ) for each 
x £ D C\ dBr(0). Hence 

(4) \u(x)\ < u(x0) for each x G d£, 

so that 
12 = {x G D : u(x) = K) = {x G JÊ : «(*) = i£} 

is a non-empty subset of E. We now establish 

LEMMA (b). The set 12 is a subset of E0. 

Proof. Suppose 12 <£ E0. Then 12 C £ =* either 12 P £+ ^ 0 or 12 P £_ ^ 0. 
But from u(DJ) C u(D+), we have, a fortiori, u(EJ) C u(D+). Therefore, 
12 P E_ ^ 0 =» 12 P 2)+ T^ 0. However, in D+\E+ we have, by the choice of 
r, |«(*)| < ^(xo) g X. Therefore 12 P £>+ ^ 0 => 12 P E+ ^ 0. Thus 
12 (^ Eo =» 12 P E+ ^ 0. Let then, s G 12 P £+ and A be the component of E+ 
containing z. Then as in the proof of the Lemma (a) we have 

(5) u(x) = K for each x G Â. 

But, again by Lemma 2.1, <9A P d£ ^ 0 and if x G a A P dE, then by (4), 
|w(x)| < U(XQ) ^ i£ while by (5), u(x) = K. This contradiction proves 
Lemma (b). 

Now the succeeding arguments in the proof of the case of bounded D may 
be repeated with D replaced by E to show that 

(6) v(x) = K for each x G 2, 
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where x0 Ç 12 C E0 C Rw_1 and 2 is the component of E0 C Rw_1 containing 
xo. Since d£0 C dE, and by (4), |w(x)| < u(x0) S K for each x Ç dE, we 
have \v(x)\ < K for each x G d£0. But 2 a component of E0 => d2 C d£0. 
Hence we have, a fortiori, \v(x)\ < K for each x Ç d2. This, however, con
tradicts (6) and the proof in the case of unbounded D is complete. 

Note 1. It may be observed from the proof of the Theorem that the 
hypothesis u(DJ) C u{D+) on u can be replaced by the weaker hypothesis 
"there exists an x Ç D+ such that u{x) = max{^(x):xÇZ)}". If this be done, then 
in the case of bounded D, Lemma (a) is replaced by the weaker assertion 
12 Pi Do 7e 0. The proof of this assertion may be constructed the same way as 
that of Lemma (a) because denial of the assertion implies, by the new hypothe
sis, that 12 P\ D+ ?£ 0. Once the result 12 C\ D0 ?* 0 is proved, it can be inter
preted in terms of v as "there exists x0 Ç Do such that V(XQ) = K". The rest 
of the proof follows without change by taking 2 to be the component of Do 
containing xo, and so on. The case of unbounded D can also be dealt with in 
like manner. 

Note 2. It is obvious that the double hypothesis "D symmetric about the 
hyperplane xx = 0 and for each (xi, . . . , xn) Ç D, u((xi, . . . , xn)) = 
u(( — Xi,X2}...,xn)y' implies the hypothesis u(DJ) C u(D+). 

Note 3. The preceding theorem does not imply uniqueness of the solution to 
L[u] = f where / is a given continuous function because the hypothesis (iv) 
is non-linear in the sense that if u and v satisfy (iv) it does not follow that 
u — v does. For this reason it is desirable to replace (iv) by some linear 
hypothesis that implies (iv). One such linear hypothesis is the "double 
hypothesis" mentioned in Note 2 above. 

3. Extension to several singularities. In this section, the result of 
§ 2 is extended to the case m > 1. However, instead of the hypothesis (iv) of 
Theorem 2.1, the "double hypothesis" mentioned in Note 2 is used for ease of 
formulation. 

THEOREM 3.1. If LUtm is quasi-elliptic in a non-empty open subset D of Kn 

which is symmetric about the hyper planes xk = 0 for k = 1, 2, . . . , m, and the 
"coefficients of Lntm" are continuous in D, and if for each k G {1, 2, . . . , m} 
and for each i ^ k, /3ik : Dk° —> R defined by 

exists and is continuous and a(D+) C ( —oo,0], then the boundary-value 
problem: 

(i) Ln>m[u] = Oin D, 
(ii) u = 0 on 3D, 
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(m) u ç c2(D) n c(D), 
(iv) u((xij . . • , xn)) is even in each xk, k = 1, 2, . . . , m, 
(v) \imy^(l/y'vk)(du((x\ky))/dxk) = 0 for each x Ç Dk° for 

k = 1, 2, . . . , m, 
w£& ei/fter 1} bounded, or D unbounded, and 

(vi) limM2;,Uœw(x) = 0 
/zas 0^/3/ £/ze trivial solution u = 0 in D. 

Proof. We use induction on w. For m = 1, the result follows from Theorem 
2.1. Let m be an integer ^ 2 and consider the induction hypothesis that the 
theorem holds for all LPtTn_i for p > m — 1. Let w : 2) —•» R satisfy (i) through 
(v) and define v : Di° —>Rbyv(x) = u((x\iO)). Rewriting (i) at (x\iy) where 
x G Di° and taking limits as y —> 0 we have, as in the proof of Theorem 2.1 

(i)' I»-i.m-iM = 0 in 2 V 

where 

n ^ 2 m -I n «j 

I»-l,m-lb] = E ««(*) TT^T + E " u E M * ) T - + «(*)»> 
Î,J=2 OXiOXj k=2 Xk i=2 OXi 

an and a being real-valued functions defined on Di° b y a ^ ( x ) = a^((tf|iO)) 
and a(x) = a((x|iO)). Since w = 0 on 3D and d2)i° C 52), it follows that 

(ii)' v = 0 on âDi°. 

Also, from M G C2(£>) H C(D) it follows that 

(iii)/ v G C2(2)i°)n C(£?) . 

Again, the statement u((xi, . . . , xn)) is even in xk for fe = 1, 2, . . . , m 
implies that 

(iv)' v((x2, . . . , #w)) is even in xk for & = 2, . . . , m. 

Further, the condition (v) on u implies the corresponding condition (v)' on 
the function v for k = 2, 3, . . . , m. Moreover, hypothesis (ii) of the quasi-
ellipticity of Ln,m implies that Lw_i>m_i is elliptic in D±°. Also the hypothesis 
on the coefficients bik imply the corresponding hypotheses on (3ik. Lastly, the 
continuity of a and the hypothesis a(D+) C ( — °°, 0] together show that 
a{p+) C ( — °o, 0] which, in turn, implies that a((2V)+) C ( —°°, 0]. From 
these hypotheses satisfied by Zw_i>m_i and from the conditions (i)' through (v)' 
it follows by the induction hypothesis that v = 0, so that u = 0 on D±0. In 
like manner, it follows that u = 0 on Dk° for k = 1, 2, . . . , m. From this and 
the fact that u = 0 on dD we have the result: u = 0 on dD+ because dD+ C 
dDKJVlLiD,?. 
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Now let A be any component of D+. Since dA C dD+, we have 

(7) u = 0 on dA. 

Since D+ is an open subset of Rn it follows that A is open and hence a domain. 
In this domain Lw>w is elliptic by the condition (i) of quasi-ellipticity of Ln%m 

in D and hence the same is true of the operator M defined by 

M[w] = n OCJC ** Ln,m[w\. 

But M has continuous coefficients in A. Using again Hopf's maximum principle 
[4] we see that (7) together with the fact that M[u] = 0 in A implies that 
u = 0 in A. From the choice of A it follows that u = 0 in D+ and hence by 
continuity that u = 0 in D+. But then by the hypothesis (iv) on u it follows 
that u = 0 in D. This completes the proof in the case of bounded D. The case 
of unbounded D is similar. 
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