UNIQUENESS THEOREMS FOR A SINGULAR PARTIAL DIFFERENTIAL EQUATION

P. RAMANKUTTY

0. Introduction and summary. A singular partial differential equation which occurs frequently in mathematical physics is given by

$$
\Delta u+\frac{s}{x_{1}} \frac{\partial u}{\partial x_{1}}+k u=0
$$

where $\Delta \equiv \sum_{i=1}^{n} \partial^{2} / \partial x_{i}{ }^{2}$ is the Laplacian operator on \mathbf{R}^{n} of which the generic point is denoted by $x=\left(x_{1}, \ldots, x_{n}\right)$ and s and k are real numbers. The study of solutions of this equation for the case $k=0$ was initiated by A. Weinstein [5], who named it 'Generalized Axially Symmetric Potential Theory'. Numerous references to the literature on this equation can be found in $[\mathbf{1 ; 3 ; 6}]$. The analytic theory of equations of the type mentioned above has extensively been treated in [2].

In this paper uniqueness theorems for more general second order linear partial differential equations whose coefficients (of the first order derivatives) may become unbounded on the co-ordinate hyperplanes are obtained. These equations are assumed to be 'quasi-elliptic' in a sense to be defined.

In § 1 certain notations are explained and the notion of 'quasi-ellipticity' of a linear second order partial differential operator $L_{n, m}$ in \mathbf{R}^{n} with unbounded coefficients is introduced.

In § 2 a uniqueness theorem for the boundary-value problem associated with the equation $L_{n, 1}[u]=f$ is established; the case of the bounded domain is proved in full and modifications for the case of the unbounded domain are indicated. Consideration is restricted to solutions u satisfying an "evenness condition" (hypothesis (iv)) and, more crucially, also a restriction (hypothesis (v)) on the nature of $\partial u / \partial x_{1}$ near the region of singularity $x_{1}=0$. In the case of the unbounded domain only solutions whose growth-rate at infinity is constant are considered. The principal tool used in establishing these results is the 'Strong maximum Principle' due to E. Hopf [4].

In § 3 the results of § 2 are extended to the case of the operator $L_{n, m}(m<n)$ which has singularities on m of the n co-ordinate hyperplanes.

Acknowledgement. I wish to thank Professor Robert P. Gilbert of Indiana University for his help and guidance in the preparation of this paper.

1. Notations and definitions. 1. For $\tilde{x}=\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbf{R}^{n-1}$ and $y \in \mathbf{R},\left(\left.\tilde{x}\right|_{k} y\right)$ will denote the point $\left(x_{1}, \ldots, x_{k-1}, y, x_{k}, \ldots, x_{n-1}\right) \in \mathbf{R}^{n}$ for

[^0]$k=2,3, \ldots, n-2$ while $\left(\tilde{x}\left|\left.\right|_{1} y\right)\right.$ will denote the point $\left(y, x_{1}, x_{2}, \ldots, x_{n-1}\right) \in \mathbf{R}^{n}$, and $\left(\left.\tilde{x}\right|_{n} y\right)$ will denote the point $\left(x_{1}, x_{2}, \ldots, x_{n-1}, y\right) \in \mathbf{R}^{n}$.
2. For $D \subset \mathbf{R}^{n}$, and $k \in\{1,2, \ldots, n\}$
\[

$$
\begin{aligned}
D_{k}^{+} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in D: x_{k}>0\right\}, \\
D_{k}^{-} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in D: x_{k}<0\right\}, \\
D_{k}^{0} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in D: x_{k}=0\right\} .
\end{aligned}
$$
\]

Obviously, $D_{k}{ }^{0}$ may be identified with $\left\{\tilde{x} \in \mathbf{R}^{n-1}:\left(\left.\tilde{x}\right|_{k} 0\right) \in D\right\}$ and this will be done whenever needed.
3. $L_{n, m}$ will denote the linear second order partial differential operator on $C^{2}(D)$ defined by

$$
L_{n, m}[u]=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{k=1}^{m} \frac{1}{x_{k}^{\gamma_{k}}} \sum_{i=1}^{n} b_{i k}(x) \frac{\partial u}{\partial x_{i}}+a(x) u
$$

where $\left\{\gamma_{k}\right\}_{k=1}^{m}$ are positive integers and $a_{i j}, b_{i k}, a$ are real-valued functions defined on $D \subset \mathbf{R}^{n}$. These functions $a_{i j}, b_{i k}, a$ will be called the coefficients of $L_{n, m}$. It will be assumed that $n \geqq 2$ and $m<n$. For convenience, in the case $m=1$, we will write D_{+}, D_{-}, D_{0} instead of $D_{1^{+}}, D_{1^{-}}, D_{1}{ }^{0} ;(y, \tilde{x})$ instead of ($\left.\widetilde{x}\right|_{1} y$), γ instead of γ_{1}, L instead of $L_{n, 1}$ and a_{i} instead of $b_{i 1}$.

Definition. $L_{n, m}$ is said to be quasi-elliptic in D if and only if
(i) $\sum_{i, j=1}^{n} a_{i j}(x) \lambda_{i} \lambda_{j}$ is positive definite for each $x \in D_{+}=\bigcap_{k=1}^{m} D_{k}^{+}$and
(ii) $\sum_{i, j=1 ; i, j \neq k}^{n} a_{i j}(x) \lambda_{i} \lambda_{j}$ is positive definite for each $x \in D_{k}{ }^{0}$ for $k=1, \ldots, m$.
2. An application of the maximum principle. Before proceeding to the uniqueness theorems, it is desirable to record here an "obvious" result regarding the usual topology of the n-dimensional Euclidean space \mathbf{R}^{n}.

Lemma 2.1. If $D \subset \mathbf{R}^{n}$ is such that $D_{+}=\left\{x \in D: x_{1}>0\right\}$ is a non-empty proper subset of \mathbf{R}_{+}^{n} and if Δ is a component of D_{+}, then $\partial \Delta \cap \partial D \neq \emptyset$.

Proof. Set $H=\left\{x \in \mathbf{R}^{n}: x_{1}=0\right\}$. Since $\partial \Delta \subset \partial D \cup H$, if $\partial \Delta \cap \partial D=\emptyset$ then $\partial \Delta \subset H$ so that $\partial \Delta \cap \mathbf{R}_{+}^{n}=\emptyset$. Hence Δ is closed and open in \mathbf{R}_{+}^{n} so that $\Delta=\mathbf{R}_{+}^{n}$ a contradiction to $D_{+} \subset \mathbf{R}^{n}{ }_{+}$.

Theorem 2.1. If L is quasi-elliptic in a non-empty open subset D of \mathbf{R}^{n}, if the "coefficients of L " are continuous in D, and if for each $i=2,3, \ldots, n$, $\alpha_{i}: D_{0} \rightarrow \mathbf{R}$ defined by:

$$
\alpha_{i}(x)=\lim _{x_{1} \rightarrow 0} \frac{a_{i}\left(\left(x_{1}, x\right)\right)}{x_{1}{ }^{\gamma}}
$$

exists and is continuous and $a\left(D_{+}\right) \subset(-\infty, 0]$, then the boundary-value problem
(i) $L[u]=0$ in D,
(ii) $u=0$ on ∂D,
(iii) $u \in C^{2}(D) \cap C(\bar{D})$,
(iv) $u\left(D_{-}\right) \subset u\left(D_{+}\right)$,
(v) $\lim _{x_{1} \rightarrow 0} \frac{1}{x_{1}^{\gamma}} \frac{\partial u}{\partial x_{1}}=0$ everywhere in D_{0}
with either D bounded, or D unbounded and
(vi) $\lim _{\|x\| \rightarrow \infty} u(x)=0$ has only the trivial solution $u \equiv 0$ in D.

Proof. First consider the case of a bounded D. Suppose u is a non-trivial solution. Then there is a point $x \in D$ such that $u(x) \neq 0$. Since $-u$ is a solution whenever u is, it can be assumed without loss of generality that $u(x)>0$. Hence u attains a positive maximum K on \bar{D}. Since $u=0$ on ∂D it follows that the non-empty subset Ω of \bar{D} defined by $\Omega=\{\xi \in \bar{D}: u(\xi)=K\}$ is contained in D. Before continuing we shall prove the following lemma.

Lemma (a). The set Ω is a subset of D_{0}.
Proof. Suppose $\Omega \not \subset D_{0}$. Then, either $\Omega \cap D_{+} \neq \emptyset$ or $\Omega \cap D_{-} \neq \emptyset$. Since $u\left(D_{-}\right) \subset u\left(D_{+}\right)$, it follows that $\Omega \cap D_{-} \neq \emptyset \Rightarrow \Omega \cap D_{+} \neq \emptyset$. Thus $\Omega \not \subset D_{0} \Rightarrow$ $\Omega \cap D_{+} \neq \emptyset$. Let $z \in \Omega \cap D_{+}$and Δ be the component of D_{+}containing z; let $\xi \in \Delta \cap \Omega$. Since D_{+}is open and hence locally connected, Δ is an open subset of \mathbf{R}^{n}. Therefore, from the continuity of u and the fact that $u(\xi)=$ $K>0$, it follows that there exists a closed ball B around ξ such that $B \subset \Delta$ and $u>0$ on B. Also, $a(x) \leqq 0$ on B and $x_{1}>0$ on B so that $x_{1}^{\gamma} a(x) u(x) \leqq 0$ on B. This shows that if the operator M is defined by

$$
M[w]=x_{1}^{\gamma} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} a_{i}(x) \frac{\partial w}{\partial x_{i}},
$$

then

$$
M[u]=-x_{1}^{\gamma} a(x) u(x) \geqq 0 \text { on } B .
$$

Since $x_{1}>0$ on B, the quasi-ellipticity of L in D implies the ellipticity of M in B; also the coefficients of M are continuous on B. Further, u attains its maximum value K on B at the point $\xi \in \operatorname{Int} B$. Hence, by Hopf's strong maximum principle [4], it follows that $u \equiv$ constant in B. Thus, for each $x \in B, u(x)=u(\xi)=K$. This shows that $B \subset \Omega$ and hence that $B \subset \Delta \cap \Omega$. Thus, each point $\xi \in \Delta \cap \Omega$ has a closed ball B around it such that $B \subset \Delta \cap \Omega$. Hence $\Delta \cap \Omega$ is open (in fact, in \mathbf{R}^{n}). But since u is continuous, $\Delta \cap \Omega=$ $\Delta \cap u^{-1}(K)$ is closed in Δ. Since Δ is connected and $\Delta \cap \Omega \neq \emptyset$, it follows that $\Delta \cap \Omega=\Delta$.

Therefore $u(x)=K$ for each $x \in \Delta$ and hence by continuity of u,

$$
\begin{equation*}
u(x)=K \text { for each } x \in \bar{\Delta} . \tag{1}
\end{equation*}
$$

Since Δ is a component of D_{+}, by Lemma 2.1, $\partial \Delta \cap \partial D \neq \emptyset$. Hence there is an $x \in \partial \Delta$ such that $u(x)=0$. This, however, contradicts (1) and proves Lemma (a).

Let $v: D_{0} \rightarrow \mathbf{R}$ be defined by $v(\tilde{x})=u((0, \tilde{x}))$. The hypothesis $\lim _{x_{1} \rightarrow 0}\left(1 / x_{1}^{\gamma}\right)\left(\partial u / \partial x_{1}\right)=0$ implies that $\lim _{x_{1} \rightarrow 0} \partial u / \partial x_{1}=0$ since $\gamma \geqq 1$. Hence

$$
\begin{aligned}
\left(\frac{\partial^{2} u}{\partial x_{1}^{2}}\right)_{x_{1}=0} & =\lim _{x_{1} \rightarrow 0} \frac{1}{x_{1}}\left(\frac{\partial u}{\partial x_{1}}-\left(\frac{\partial u}{\partial x_{1}}\right)_{x_{1}=0}\right)=\lim _{x_{1} \rightarrow 0} \frac{1}{x_{1}} \frac{\partial u}{\partial x_{1}} \\
& =\lim _{x_{1} \rightarrow 0} x_{1}^{\gamma-1} \frac{1}{x_{1}^{\gamma}} \frac{\partial u}{\partial x_{1}}=0 \text { again because } \gamma \geqslant 1 .
\end{aligned}
$$

Also for $i \neq 1$, we have

$$
\begin{aligned}
\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{1}}\right)_{x_{1}=0} & =\lim _{x_{1} \rightarrow 0} \frac{\partial^{2} u}{\partial x_{i} \partial x_{1}}=\lim _{x_{1} \rightarrow 0} \frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{1}}\right) \\
& =\frac{\partial}{\partial x_{i}}\left(\lim _{x_{1} \rightarrow 0} \frac{\partial u}{\partial x_{1}}\right)=0
\end{aligned}
$$

Therefore, rewriting $L[u]=0$ at $\left(x_{1}, \tilde{x}\right)$ where $\tilde{x} \in D_{0}$ and taking limits as $x_{1} \rightarrow 0$, we have

$$
\begin{equation*}
\sum_{i, j=2}^{n} \alpha_{i j}(\tilde{x}) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{i=2}^{n} \alpha_{i}(\tilde{x}) \frac{\partial v}{\partial x_{i}}+\alpha(\tilde{x}) v=0 \tag{2}
\end{equation*}
$$

where $\alpha_{i j}(\tilde{x})=a_{i j}((0, \tilde{x}))$ and $\alpha(\tilde{x})=a((0, \tilde{x}))$. Clearly, the operator \tilde{L} defined by

$$
\tilde{L}[w]=\sum_{i, j=2}^{n} \alpha_{i j}(\tilde{x}) \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}+\sum_{i=2}^{n} \alpha_{i}(\tilde{x}) \frac{\partial w}{\partial x_{i}}+\alpha(\tilde{x}) w
$$

is elliptic in D_{0} (by the condition (ii) in the definition of quasi-ellipticity of L) and has continuous coefficients in D_{0}. Also by the continuity of a in D and the hypothesis $a\left(D_{+}\right) \subset(-\infty, 0]$, we have $\alpha\left(D_{0}\right) \subset(-\infty, 0]$. Moreover, in terms of the function v, the Lemma (a) established above shows that $\Omega=v^{-1}(K)$.

Now in \mathbf{R}^{n-1}, let $\tilde{x}_{0} \in \Omega$ and Σ be the component of D_{0} containing \tilde{x}_{0}; let $\tilde{\xi} \in \Sigma \cap v^{-1}(K)$. Again, Σ is open by the local connectedness of the open set $D_{0}, \tilde{\xi} \in \Sigma$ and $v(\tilde{\xi})=K>0$. Therefore, by the continuity of v, it follows that $\tilde{\xi}$ has a closed ball N surrounding it such that $N \subset \Sigma$ and $v>0$ on N. Hence, if the operator \tilde{M} is defined by

$$
\tilde{M}[w] \equiv \sum_{i, j=2}^{n} \alpha_{i j}(\tilde{x}) \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}+\sum_{i=2}^{n} \alpha_{i}(\tilde{x}) \frac{\partial w}{\partial x_{i}},
$$

then

$$
\tilde{M}[v]=-\alpha(\tilde{x}) v \geqq 0 \text { on } N .
$$

Since \tilde{M} is elliptic with continuous coefficients in N and v attains its maximum K on N at the point $\tilde{\xi} \in \operatorname{Int} N$, it follows again by Hopf [4] that $v \equiv$ constant
on N. Thus, for each $\tilde{x} \in N, v(\tilde{x})=v(\tilde{\xi})=K$. This shows that $N \subset v^{-1}(K)$ and hence that $N \subset \Sigma \cap v^{-1}(K)$. Thus, $\Sigma \cap v^{-1}(K)$ is open in \mathbf{R}^{n-1} and hence both closed and open in Σ. Also $\Sigma \cap v^{-1}(K) \neq \emptyset$ because $\tilde{x}_{0} \in \Sigma \cap v^{-1}(K)$. Hence it follows from the connectedness of Σ that $\Sigma \cap v^{-1}(K)=\Sigma$. Therefore $v(\tilde{x})=K$ for each $\tilde{x} \in \Sigma$ and, again, by the continuity of v,

$$
\begin{equation*}
v(\tilde{x})=K \text { for each } \tilde{x} \in \bar{\Sigma} . \tag{3}
\end{equation*}
$$

Since $\partial D_{0} \subset \partial D$ on which $u=0$, it follows that $v=0$ on ∂D_{0}. But since Σ is a component of $D_{0}, \partial \Sigma \subset \partial D_{0}$. Hence we have $v(\tilde{x})=0$ for each $\tilde{x} \in \partial \Sigma$. This contradicts (3) since $K>0$, and completes the proof of the theorem in the case of a bounded D.

For the case of an unbounded D, the foregoing reasoning can be modified as follows.

Let $x_{0} \in D$ be such that $u\left(x_{0}\right)>0$ and for $r>0$ define

$$
B_{r}(0)=\left\{x \in \mathbf{R}^{n}:\|x\|<r\right\} .
$$

Since $u(x) \rightarrow 0$ as $\|x\| \rightarrow \infty$, a positive r can be found such that $|u(x)|<u\left(x_{0}\right)$ in $D \backslash B_{r}(0)$. If $E=D \cap B_{r}(0)$, then $x_{0} \in E$ and hence u attains a maximum K on \bar{E} such that $K \geqq u\left(x_{0}\right)>0$. Also, clearly, $\partial E \subset \partial D \cup \partial B_{r}(0)$ and, by hypothesis, $u=0$ on ∂D while, by the choice of $r,|u(x)|<u\left(x_{0}\right)$ for each $x \in D \cap \partial B_{r}(0)$. Hence

$$
\begin{equation*}
|u(x)|<u\left(x_{0}\right) \text { for each } x \in \partial E, \tag{4}
\end{equation*}
$$

so that

$$
\Omega=\{x \in \bar{D}: u(x)=K\}=\{x \in \bar{E}: u(x)=K\}
$$

is a non-empty subset of E. We now establish
Lemma (b). The set Ω is a subset of E_{0}.
Proof. Suppose $\Omega \not \subset E_{0}$. Then $\Omega \subset E \Rightarrow$ either $\Omega \cap E_{+} \neq \emptyset$ or $\Omega \cap E_{-} \neq \emptyset$. But from $u\left(D_{-}\right) \subset u\left(D_{+}\right)$, we have, a fortiori, $u\left(E_{-}\right) \subset u\left(D_{+}\right)$. Therefore, $\Omega \cap E_{-} \neq \emptyset \Rightarrow \Omega \cap D_{+} \neq \emptyset$. However, in $D_{+} \backslash E_{+}$we have, by the choice of $r, \quad|u(x)|<u\left(x_{0}\right) \leqq K$. Therefore $\Omega \cap D_{+} \neq \emptyset \Rightarrow \Omega \cap E_{+} \neq \emptyset$. Thus $\Omega \not \subset E_{0} \Rightarrow \Omega \cap E_{+} \neq \emptyset$. Let then, $z \in \Omega \cap E_{+}$and Δ be the component of E_{+} containing z. Then as in the proof of the Lemma (a) we have

$$
\begin{equation*}
u(x)=K \text { for each } x \in \bar{\Delta} \tag{5}
\end{equation*}
$$

But, again by Lemma 2.1, $\partial \Delta \cap \partial E \neq \emptyset$ and if $\bar{x} \in \partial \Delta \cap \partial E$, then by (4), $|u(\bar{x})|<u\left(x_{0}\right) \leqq K$ while by (5), u($\left.\bar{x}\right)=K$. This contradiction proves Lemma (b).

Now the succeeding arguments in the proof of the case of bounded D may be repeated with D replaced by E to show that

$$
\begin{equation*}
v(\tilde{x})=K \text { for each } \tilde{x} \in \bar{\Sigma}, \tag{6}
\end{equation*}
$$

where $\tilde{x}_{0} \in \Omega \subset E_{0} \subset \mathbf{R}^{n-1}$ and Σ is the component of $E_{0} \subset \mathbf{R}^{n-1}$ containing \tilde{x}_{0}. Since $\partial E_{0} \subset \partial E$, and by (4), $|u(x)|<u\left(x_{0}\right) \leqq K$ for each $x \in \partial E$, we have $|v(\tilde{x})|<K$ for each $\tilde{x} \in \partial E_{0}$. But Σ a component of $E_{0} \Rightarrow \partial \Sigma \subset \partial E_{0}$. Hence we have, a fortiori, $|v(\tilde{x})|<K$ for each $\tilde{x} \in \partial \Sigma$. This, however, contradicts (6) and the proof in the case of unbounded D is complete.

Note 1. It may be observed from the proof of the Theorem that the hypothesis $u\left(D_{-}\right) \subset u\left(D_{+}\right)$on u can be replaced by the weaker hypothesis "there exists an $\bar{x} \in \bar{D}_{+}$such that $u(\bar{x})=\max \{u(x): x \in \bar{D}\}$ ". If this be done, then in the case of bounded D, Lemma (a) is replaced by the weaker assertion $\Omega \cap D_{0} \neq \emptyset$. The proof of this assertion may be constructed the same way as that of Lemma (a) because denial of the assertion implies, by the new hypothesis, that $\Omega \cap D_{+} \neq \emptyset$. Once the result $\Omega \cap D_{0} \neq \emptyset$ is proved, it can be interpreted in terms of v as "there exists $\tilde{x}_{0} \in D_{0}$ such that $v\left(\widetilde{x}_{0}\right)=K$ ". The rest of the proof follows without change by taking Σ to be the component of D_{0} containing \tilde{x}_{0}, and so on. The case of unbounded D can also be dealt with in like manner.

Note 2. It is obvious that the double hypothesis " D symmetric about the hyperplane $x_{1}=0$ and for each $\left(x_{1}, \ldots, x_{n}\right) \in D, u\left(\left(x_{1}, \ldots, x_{n}\right)\right)=$ $u\left(\left(-x_{1}, x_{2}, \ldots, x_{n}\right)\right) "$ implies the hypothesis $u\left(D_{-}\right) \subset u\left(D_{+}\right)$.

Note 3 . The preceding theorem does not imply uniqueness of the solution to $L[u]=f$ where f is a given continuous function because the hypothesis (iv) is non-linear in the sense that if u and v satisfy (iv) it does not follow that $u-v$ does. For this reason it is desirable to replace (iv) by some linear hypothesis that implies (iv). One such linear hypothesis is the "double hypothesis" mentioned in Note 2 above.
3. Extension to several singularities. In this section, the result of $\S 2$ is extended to the case $m>1$. However, instead of the hypothesis (iv) of Theorem 2.1, the "double hypothesis" mentioned in Note 2 is used for ease of formulation.

Theorem 3.1. If $L_{n, m}$ is quasi-elliptic in a non-empty open subset D of \mathbf{R}^{n} which is symmetric about the hyperplanes $x_{k}=0$ for $k=1,2, \ldots, m$, and the "coefficients of $L_{n, m}$ " are continuous in D, and if for each $k \in\{1,2, \ldots, m\}$ and for each $i \neq k, \beta_{i k}: D_{k}{ }^{0} \rightarrow \mathbf{R}$ defined by

$$
\beta_{i k}(\tilde{x})=\lim _{y \rightarrow 0} \frac{b_{i k}\left(\left(\left.\tilde{x}\right|_{k} y\right)\right)}{y^{\gamma_{k}}}
$$

exists and is continuous and $a\left(D_{+}\right) \subset(-\infty, 0]$, then the boundary-value problem:
(i) $L_{n, m}[u]=0$ in D,
(ii) $u=0$ on ∂D,
(iii) $u \in C^{2}(D) \cap C(\bar{D})$,
(iv) $u\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is even in each $x_{k}, k=1,2, \ldots, m$,
(v) $\lim _{y \rightarrow 0}\left(1 / y^{\gamma_{k}}\right)\left(\partial u\left(\left(\left.\tilde{x}\right|_{k} y\right)\right) / \partial x_{k}\right)=0$ for each $\tilde{x} \in D_{k}{ }^{0}$ for $k=1,2, \ldots, m$,
with either D bounded, or D unbounded, and
(vi) $\lim _{\|x\| \rightarrow \infty} u(x)=0$
has only the trivial solution $u \equiv 0$ in D.
Proof. We use induction on m. For $m=1$, the result follows from Theorem 2.1. Let m be an integer $\geqq 2$ and consider the induction hypothesis that the theorem holds for all $L_{p, m-1}$ for $p>m-1$. Let $u: D \rightarrow \mathbf{R}$ satisfy (i) through (v) and define $v: D_{1}{ }^{0} \rightarrow \mathbf{R}$ by $v(\tilde{x})=u\left(\left(\left.\tilde{x}\right|_{1} 0\right)\right)$. Rewriting (i) at ($\left.\left.\tilde{x}\right|_{1} y\right)$ where $\tilde{x} \in D_{1}{ }^{0}$ and taking limits as $y \rightarrow 0$ we have, as in the proof of Theorem 2.1

$$
\begin{equation*}
\widetilde{L}_{n-1, m-1}[v]=0 \text { in } D_{1}{ }^{0} \tag{i}
\end{equation*}
$$

where

$$
\tilde{L}_{n-1, m-1}[v]=\sum_{i, j=2}^{n} \alpha_{i j}(\tilde{x}) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{k=2}^{m} \frac{1}{x_{k}{ }^{\gamma_{k}}} \sum_{i=2}^{n} \beta_{i k}(\tilde{x}) \frac{\partial v}{\partial x_{i}}+\alpha(\tilde{x}) v,
$$

$\alpha_{i j}$ and α being real-valued functions defined on $D_{1}{ }^{0}$ by $\alpha_{i j}(\tilde{x})=a_{i j}\left(\left(\left.\tilde{x}\right|_{1} 0\right)\right)$ and $\alpha(\tilde{x})=a\left(\left(\left.\tilde{x}\right|_{1} 0\right)\right)$. Since $u=0$ on ∂D and $\partial D_{1}{ }^{0} \subset \partial D$, it follows that

$$
\begin{equation*}
v=0 \text { on } \partial D_{1}{ }^{0} . \tag{ii}
\end{equation*}
$$

Also, from $u \in C^{2}(D) \cap C(\bar{D})$ it follows that

$$
\begin{equation*}
v \in C^{2}\left(D_{1}{ }^{0}\right) \cap C\left(\overline{D_{1}{ }^{0}}\right) . \tag{iii}
\end{equation*}
$$

Again, the statement $u\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is even in x_{k} for $k=1,2, \ldots, m$ implies that
(iv) $)^{\prime} \quad v\left(\left(x_{2}, \ldots, x_{n}\right)\right)$ is even in x_{k} for $k=2, \ldots, m$.

Further, the condition (v) on u implies the corresponding condition (v$)^{\prime}$ on the function v for $k=2,3, \ldots, m$. Moreover, hypothesis (ii) of the quasiellipticity of $L_{n, m}$ implies that $\widetilde{L}_{n-1, m-1}$ is elliptic in $D_{1}{ }^{0}$. Also the hypothesis on the coefficients $b_{i k}$ imply the corresponding hypotheses on $\beta_{i k}$. Lastly, the continuity of a and the hypothesis $a\left(D_{+}\right) \subset(-\infty, 0]$ together show that $a\left(\bar{D}_{+}\right) \subset(-\infty, 0]$ which, in turn, implies that $\alpha\left(\left(D_{1}{ }^{0}\right)_{+}\right) \subset(-\infty, 0]$. From these hypotheses satisfied by $\widetilde{L}_{n-1, m-1}$ and from the conditions (i)' through (v) ${ }^{\prime}$ it follows by the induction hypothesis that $v \equiv 0$, so that $u=0$ on $D_{1}{ }^{0}$. In like manner, it follows that $u=0$ on $D_{k}{ }^{0}$ for $k=1,2, \ldots, m$. From this and the fact that $u=0$ on ∂D we have the result: $u=0$ on ∂D_{+}because $\partial D_{+} C$ $\partial D \cup \bigcup_{k=1}^{m} D_{k}{ }^{0}$.

Now let Δ be any component of D_{+}. Since $\partial \Delta \subset \partial D_{+}$, we have

$$
\begin{equation*}
u=0 \text { on } \partial \Delta . \tag{7}
\end{equation*}
$$

Since D_{+}is an open subset of \mathbf{R}^{n} it follows that Δ is open and hence a domain. In this domain $L_{n, m}$ is elliptic by the condition (i) of quasi-ellipticity of $L_{n, m}$ in D and hence the same is true of the operator M defined by

$$
M[w]=\left[\prod_{k=1}^{m} x_{k}^{\gamma_{k}}\right] L_{n, m}[w] .
$$

But M has continuous coefficients in $\bar{\Delta}$. Using again Hopf's maximum principle [4] we see that (7) together with the fact that $M[u]=0$ in Δ implies that $u \equiv 0$ in Δ. From the choice of Δ it follows that $u \equiv 0$ in D_{+}and hence by continuity that $u \equiv 0$ in \bar{D}_{+}. But then by the hypothesis (iv) on u it follows that $u \equiv 0$ in D. This completes the proof in the case of bounded D. The case of unbounded D is similar.

References

1. D. Colton and R. P. Gilbert, A contribution to the Vekua-Rellich theory of metaharmonic functions, Amer. J. Math. 92 (1970), 525-540.
2. R. P. Gilbert, Function theoretic methods in the theory of partial differential equations (Academic Press, New York, 1969).
3. - An investigation of the analytic properties of solutions to the generalized axially symmetric, reduced wave equation in $n+1$ variables, with an application to the theory of potential scattering, SIAM J. Appl. Math. 16 (1968), 30-50.
4. E. Hopf, Elementare Bemerkungen über die Losungen partieller Differentialgleichungen Zweiter Ordnung vom elliptichen Typus, S.-B. Preuss. Akad. Wiss. 19 (1927), 147-152.
5. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38.
6. - Singular partial differential equations and their applications, Proceedings of the symposium on fluid dynamics and applied mathematics, University of Maryland, 1961 (Gordon and Breach, New York, 29-49).

University of Auckland,
Auckland, New Zealand

[^0]: Received November 29, 1971 and in revised form, February 7, 1972.

