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Abstract

An (r, 1)-design is a pair (V, F) where V is a v-set and F is a family of non-null subsets of V
(b in number) which satisfy the following.

(1) Every pair of distinct members of V is contained in precisely one member of F.

(2) Every member of V occurs in precisely r members of F.

A pseudo parallel complement PPC(n,a) is an (n + 1, 1)-design with v = n’—an and
b=n’+n-a in which there are at least n —a blocks of size n. A pseudo intersecting
complement PIC(n,a) is an (n +1,1)-design with v=n’—-an+a—-1and b=n*+n—-a in
which there are at least n —a + 1 blocks of size n — 1. It has previously been shown that for
az4, every PIC(n,a) can be embedded in a PPC(n,a-1) and that for n>
(a*—2a'+2a’+ a —2)/2, every PPC(n, a) can be embedded in a finite projective plane of order
n. In this paper we investigate the case of & = 3 and show that any PIC(n, 3) is embeddable in a
PPC(n,2) provided n = 14.

1. Introduction

An (r,A)-design is a pair (V, F) where V is a finite set of V elements
(called varieties) and F is a family of non-null subsets of V (called blocks)
such that

(1) every variety of V occurs in precisely r blocks of F.

(2) every pair of distinct varieties occurs in precisely A blocks of F.
The symbol b is used to denote the number of blocks in F and the word
cardinality and size are used interchangeably. We refer to an (n + 1, 1)-design
with v = n”—an and b = n’+ n — a which contains at least n — a + 1 lines of
size n as a pseudo parallel complement PPC(n, o). An (n + 1, 1)-design with
v=n"—an+a — 1 varieties and b = n’+ n — a blocks, at least n — a + 1 of
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which are of size n — 1 is called a pseudo intersecting complement PIC(n, a).
We say that an (n + 1, 1)-design D, can be embedded in an (n + 1, 1)-design
D. if there exists a subset W of the variety set of D, such that the restriction
of D, to W is isomorphic to D,. We note that a PIC(n, a) can be obtained by
deleting a intersecting lines from a finite affine plane of order n. The
following theorem is proved in Mullin and Vanstone (1976).

THeorem 1.1. Let D be any PIC(n,a) with « Z4. Then D can be
embedded in a PPC(n, a« — 1). Further, if n > (a*— 20>+ 2a’+ a — 2)/2, then
D can be embedded in an affine plane of order n.

In this paper we investigate the validity of this theorem for @ = 3. We
briefly discuss the case a =2 which has been considered by deWitte.

2. Main result

For the purposes of this section let D be a PIC(n,3). It can easily be
shown (Vanstone (1973)) that the longest block in an (n + 1, 1)-design has
cardinality less than or equal to n + 1.

Lemma 2.1. D contains

(i) n—2 blocks of size n — 1.

(ii) 3(n —1) blocks of size n —2.

(iti) n*—3n +2 blocks of size n - 3.

Proor. Let b, be the number of blocks of size i in D. D contains

n’+n —3—1 blocks where [ is a nonnegative integer. Elementary counting
arguments yield the following.

+

n

b=n*+n-3-1

I

n+1

z ib=(n+1)(n°’-3n+2)

,il i(i—1Db=(n"-3n+2)(n*~3n+1).

Eliminating b.-. and b,_ from these equations gives

2 li—(n=2)][i—(n-3)b =2(n—2)—(n—2)(n -3

Since b,_, = n — 2 and all of the coefficients on the left side of this equation
are nonnegative, we conclude that I =b,=b,=---=b,.u=b,=b,., =0
Solving for b,-. and b,._s gives the desired result.
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LemMma 2.2, Suppose D contains a block B, of size (n — i) and a block
B, of size (n — j) such that B, N B, # < then B: and B; are mutually disjoint
from ij +i+j—3 blocks of D for 1=i,j-=3.

Proor. Immediate.

LEMMA 2.3. Ifn =7 then D contains two blocks of size n — 1 which are
disjoint.

PrROOF. Any block of size n — 1 is disjoint from precisely 2n — 4 blocks
of D. Suppose no two blocks of size n — 1 are disjoint; then, the sets of blocks
disjoint from each block of size n —1 must all be disjoint. Hence

(n-2)Cn—-4)+n-2=n*+n-3.
This implies n £ 6 and completes the proof.

THeoREM 2.1. (Main result). For n = 14 the blocks of sizen — 1 in D are
mutually disjoint.

Proor. By Lemma 2.3 D contains blocks B and B * of size n — 1 which
are disjoint. Let U be the set of 2n — 4 blocks of D which are disjoint from B.
Clearly B*€ U. If x € V\B, x must occur with each element of B precisely
once and since x must occur in n + 1 blocks of D, x must be contained in two
blocks of U. Hence, if V is the variety set of D then every element of V\B is
contained in precisely 2 blocks of U.

Let T* be the blocks of U other than B * which contain an element of B *
and T be the n — 4 blocks of U which are disjoint from B *. If T* has a block
B, of size n — 1 then by Lemma 2.2 B* and B, are mutually disjoint from no
blocks of D which would contradict the fact that they are disjoint from B.
Hence, T* contains only blocks of size n —2 and n — 3.

Let C be a block of T* of size n—1i, i =2 or 3. C is disjoint from
precisely n + i —5 blocks of U. Since C and B* intersect they are mutually
disjoint from 2i — 2 blocks of D. But C and B * are disjoint from B and hence
C is disjoint from at most 2i — 3 blocks of T. Thus C is disjoint from at least
n+i—5-2i+3or n—i—2 blocks of T*

Now suppose T* contains a block E of size n — 2. E is disjoint from at
least n — 4 blocks of T*. Suppose E intersects a block F of T* other than
itself. Since F is disjoint from at least n — i — 2 blocks of T* where i =2 or 3
then E and F are mutually disjoint from at least n — i — 3 blocks of T*. But
by Lemma 2.2 they are disjoint from at most 3i ~ 2 blocks of T*. Therefore
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n—i{—3=x3i-2
or
n=4i+1=13.

Hence if n > 13 then any block of size n —2 in T* is disjoint from all blocks
of T*.

Suppose C 1s a block of size n =2 in T* and let x € B*N C. By the
above arguments, since n > 13, C is disjoint from all other blocks of T* and
so the element of C\{x} must each occur in T once and no two in a common
block. Since |C\{x}|=n -3 and |T|=n —4, this is impossible. Thus T*
contains only blocks of size n — 3. Simple counting then shows that all the
blocks of T are of size n — 1. Lemma 2.2 implies that any blocks of size n — 1
in T must be disjoint. This completes the proof.

With this result we establish the following.

THeOREM 2.2. Forn = 14, D is embeddable in a PPC(n,2). Moreover, D
is embeddable in a finite projective plane of order n.

With Theorem 2.1, the proof of this result follows exactly as that given in
Mullin and Vanstone (1976) for the case of @ >3 and so we omit the
proof.

It should be noted that for n = 5 there are two examples of PIC(S,3)
which are not embeddable in a finite projective plane of order 5. One such
example can be found in Mullin and Vanstone (1976). We display both
examples in Section 4.

3. The a =2 case

As mentioned earlier P. deWitte (private communication) has considered
the case of a PIC(n,2) and has determined when it is embeddable. For
completeness, we make several observations about this case.

If D isa PIC(n,2) then D has n>+ n — 2 blocks, n’ — 2n + 1 varieties and
at least n — 1 blocks of size n — 1. From this one can deduce as in Lemma 2.1
that D contains 3(n — 1) blocks of size n —1 and n®—2n + 1 blocks of size
n — 2, and that any variety of D is contained in 3 blocks of size n — 1 and
n -2 of size n — 2. Deleting a block B of size n — 1 and all of its varieties from
D gives a PIC(n,3). Theorem 2.1 then implies that for n = 14, B and the
n — 2 blocks of size n ~ 1 disjoint from it are mutually disjoint and that D is
embeddable in a PPC(n, 1).

Instead of using the results of PIC(n, 3) to prove results on PIC(n,2) we
could prove a sequence of results analogous to those of Section 2 which would
yield the following.
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THEOREM 3.1. Let B be a block of size n — 1 in a PIC(n,2) for n >17.
Then B and the n —.2 blocks of size n — 1 in D disjoint from B are mutually
disjoint.

This implies that any PIC(n,2) for n >7 is embeddable in a finite
projective plane of order n.

4. Some observations

In this section we record some observations which may be useful in
settling the case a« =3 and n =13. Using the standard terminology of
geometry, we say that two blocks of an (n + 1, 1)-design are parallel if they do
not intersect.

LemmA 4.1.  In a PIC(n,3), parallelism is an equivalence relation on the
blocks of size n — 1.

Proor. It is clear that parallelism is reflexive and symmetric. We show
that it is transitive. Let B,, B, B, be three blocks of size n — 1 in the PIC(n, 3)
D, and suppose B, is parallel to B, and B, is parallel to B;. Suppose B, is not
parallel to B;. By Lemma 2.2, B, and B; are mutually disjoint from no other
blocks in D. This contradicts the fact that they are mutually disjoint from B..
Therefore, B, is parallel to B: and the proof is complete.

This lemma ensures us that the n — 2 blocks of size n — 1 in D partition
into classes (called parallel classes) Py, P,,-- -, P, such that any two distinct
blocks in P;(1 =i = t) are parallel and any block in P; intersects any block in
P, for i # j. Theorem 2.1 essentially proves that, for n = 14, the (n — 1) blocks
partition into only one parallel class in a PIC(n, 3). The next result shows that,
for 6 = n =13, the n — 1 blocks partition into at most 2 parallel classes.

THEOREM 4.1. Let D be a PIC(n,3) where n = 6. Then, the blocks of size
n —1 in D partition into at most two parallel classes.

Proor. Suppose the n —1 blocks of D partition into parallel classes
P, P, --- P andlet|P.|=a,1=i=t Consider any block B of size n — 1 in
D. B is disjoint from precisely 2n — 4 other blocks, denoted Ty. Let a, b and ¢
be the number of blocks of size n —1, n —2, and n — 3 respectively in T
Thus

a+b+c=2n-4
and since every variety, excluding those in B, is contained in 2 blocks of T5.

(n—-Da+(n-2)b+(n—-3)c=2(n—-1)(n-3).
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From these equations,
4.1 2a +b=2(n-3).

If B and B’ are any two intersecting blocks of size n — 1, then by Lemma 2.2,
Ts is disjoint from Ty

Let B: be any block in P, for 1 =i = t. Counting the number of blocks of
sizen—2in all Ts, 1 =1 =1¢, we get

> 2(n=3)=2(a — 1).
i=1
But D contains precisely 3(n — 1) blocks of size n — 2. Hence,
> 2(n—3)—2(a; — 1)=3(n - 1).
i=1

Since T!_, a; = n — 2, we obtain

=

t—
t—

A

n= 5

7
5

9]

unless ¢ = 2. This completes the proof.

For n =5, the n — 1 blocks in a PIC(5,3) can partition into at most 3
nonempty classes. For 3 classes, each must contain precisely one block, for 2
classes, one contains 2 blocks the other 1 and of course there may be only one
class. All three of these situations occur. An example of the last case
mentioned can be obtained from the affine plane of order 5. Examples of the
other two cases are given below. They are unique up to isomorphism.

1234 36T 1TE 49E 78V 27 47 1v 5T
1567 37E 39V SVE 79T 35 18 2E 69
2589 46V 48T 68E 2TV 45 19 38 26
1234 38T 1EV 4TE 36V 16 SE 6T 9V
5678 279 26E 89E 7TV 17 25 47 39
159T 469 37E 45V 28V 18 35 48 2T.
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