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1. The Problem Posed- We are here concerned with the 
oo 

problem of deciding when £ f(n)/n i 0 , given that f is 
n=l 

periodic and the series convergent. In particular, we consider 

CONJECTURE A. Let p be a positive integer and f 
a (real-or complex-valued) number-theoretic function with 
period p. If f(n) i 0 for some positive integer n, then 

00 

ZJ f(n)/n # 0 whenever the series is convergent. 
The problem in this form was posed by S. Chowla in an address 
delivered before the Annual Meeting of the American Mathematical 
Society in 1949 and appeared subsequently as one of fourteen 
unsolved problems in number theory in the published version of 
that address [ l , p. 300]. He (incorrectly) attributed Conjecture A 
to Paul Erdos. (See Section 5 below for Erdos' conjecture. ) 

A positive resolution of Conjecture A would include several 
results in number theory whose known proofs are decidedly non-
trivial. In this connection, Chowla cites the Dirichlet formula 

oo 
S (~)/n t 0 , 

a = l P 

where (—) is the Legendre "quadratic character11 symbol 
P 

(defined to be 0 when p|n), which is a special case of 

THEOREM A [2, p. 93]. If p is a positive integer and x 
a non-principal character modulo p , then 
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n = l 

the series being convergent. 

This Theorem is the crucial step in the known proofs of 
Dirichlet' s 

THEOREM B [2, p. 96]. Jf a and b are positive integers 
for which (a,b) = 1, then there are infinitely many primes in the 

00 

sequence {a-fnb} . 
n=i 

Observe that the requirement of convergence for the series 

in Conjecture A is equivalent to the condition 27 f(n) = 0. It is 
n=l 

then clear that when p = 2, the only functions under consideration 

are multiplies of (-1) . In this case , Conjecture A is obviously 
true, the series in question being a multiple of i n 2. We 
formalize this as 

THEOREM 1. 1. Conjecture A is true when p = 2. 

One of the purposes of this note is to show that Theorem 
1. 1 is ail that can be said. Indeed, we show that Conjecture A 
is false for every p > 2 (Corollary 2. 1). Admittedly the 
counter- example s we exhibit do not have all the structure of 
characters modulo p , though in certain cases they are multi
plicative. They do suggest, however, that Theorem A is suffi
ciently deep that an argument of the complexity of Dirichlet* s 
cannot be avoided. 

Since Conjecture A is generally false, is it possible that 
it will become true under sufficiently mild further restrictions 
on f ? For example, can we get by with the additional assump
tion that f(p-n) = -f(n), which is the case for f(n) = (—) when 

P 
p is a prime of the form 4k+3 [3, p. 38]? In particular, 
Chowla has (informally) posed [ l , p. 300] 

CONJECTURE B. Let p be a positive integer and f 
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a (real- or complex-valued) number-theoretic function with 
period p. If f(p-n) = - f(n) (n = 1, 2,. . . , p-1) and f(n) # 0 

00 

for some positive integer n, then S , f(n)/n ^ 0 whenever 

the series is convergent. 

In the case when p = 2, it is evident that the only number-
theoretic function for which f(n+2) = f{n) and f(2-n) = - f(n) is 
the zero function; hence Conjecture B is (vacuously) true when 
p = 2. For p = 3 and p = 4, it is easily seen that the only 
functions under consideration in Conjecture B are multiples of 
f(n) = sin(2mr/3) and f(n) = sin(nir/2), respectively. The Con
jecture is then obviously true for these cases; formally, 

THEOREM 1.2. Conjecture B is true for P < 4 . 

Chow la claims to have proved the truth of Conjecture B 
under the additional assumption that p and (p - l ) /2 are primes. 
"Professor Siegel, to whom I showed my proof, proved the result" 
in the form of Conjecture B[ l , p. 300]. Apparently they implicitly 
imposed further restrictions on f, for we show that, as a matter 
of fact, Conjecture B is false for p> 3 (Corollary 2. 2). 

The number-the ore tic functions of most interest are 
multiplicative. In view of the results already mentioned, we are 
naturally led to 

CONJECTURE C. Let p be a positive integer and f 
a (real- or complex-valued) multiplicative number-theoretic 
function of period p. If f(n) # 0 for some positive integer n, 

00 

then S , f(n)/n # 0 whenever the series is convergent. 
n = i - . » 2 . 

But even this conjecture, though true for prime periods p 
(Theorem 3.1), is almost always false (Corollary 3.2). 

Having come this far, we might just as well combine the 
assumptions of Conjectures B and C and set forth 

CONJECTURED. Let p be a positive integer and f ja 
(real- or complex-valued) multiplicative number-theoretic 
function of period p , for which f(p-n) = - f(n) (n = 1,2, . . . , p-1). 
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00 

If f(n) i 0 for some n , then 2 f(n)/n i 0 whenever the 
•— n = i 
s e r i e s i s convergent . 

Again, this Conjecture suffers the same fate a s the e a r l i e r ones: 
It i s s o m e t i m e s true , s o m e t i m e s fa l se (Theorems 4. 1 and 4. 2). 

REMARK. It i s perfect ly c l ear that T h e o r e m s 1. 1 and 
00 

1. 2 are equally val id for s e r i e s 2 , a f(n) if the sequence 
n=l n 

oo 
{a } i s sufficiently manageable; for example , if a < a 

n 1 n+1 n 
(n = i , 2 , 3, . . . ) and l i m a = 0 . We see no point in formal iz ing 

n-*oo n 
these r e s u l t s . 

2. Conjectures A and B. A number- theore t i c function 
i s nothing m o r e nor l e s s than a (rea l - or complex-va lued) 
sequence. Consequently, with the exception of Coro l lar i e s 2. 1 
and 2 . 2 , we formulate our s ta tements in t e r m s of s equences . 

We need the m o r e or l e s s obvious 

, 0 0 . , ^ 0 0 
LEMMA 2 . 1 . Let {a } . and {b } J be (rea l - or 

n 1 n 1 
complex-valued) sequences and p a posi t ive integer greater 
than 1. If l i m a = 0 , 

— n-*oo n 

oo 

a = 2 {a - a } (r = 1, 2 , . . . , p-1) 
r npfr np+r+1 

n = 0 

p 
i s convergent , b = b (n = 1, 2 , 3 , . . . ), and 2 b = 0 , 2 n4-p n k=l k 
then 

oo p - 1 

S a b = S « B , 
. n n . k k 

n = l k = l 

where B, = 2 . M b. . 
k j=l j 

00 

Proof. It i s c l ear that the periodic i ty of { b } and the 
n 1 
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p 
condition Z, , b = 0 imply that B , = B, for k = l , 2 , . . . , p 

k=i k mp+k k r 

and m = 0 , 1 , 2 Writing M . = a . - a, M, we therefore 
J J 3+1 

obtain 

mp+r p-1 m - 1 r 
2 B Aa = 2 B, 2 Aa. + 2 B, Aa. , 

n = l n n k = i k j = 0 >*+r k * i k J P + k 

by e x p r e s s i n g the sum on the left a s a sum over in terva l s of 
"length" p plus a res idua l , making the obvious change of 

00 

summing index, and using the per iodic i ty of {B } and the 
n 1 

fact that B = 0 . Summing by parts , we then find that 

mp+r mp+r 
2 a b = a B + 2 B Aa 

n n mp+r+i mp+r A n n 
n = l r r n = l 

p m - 1 r 
= a _ i i . B + 2 B . 2 Aa. . + 2 B. Aa. _ 

mp+r+1 r fc=1 k j = Q jp+k ^ ± k jp+k 

P P-1 

~\V k B k %V k B k 

k = l k = l 
as m - * < » ( l < r < p ) , s ince a , and hence Aa , tend to z e r o 

— — n n 
as n -*• co . 

> co 
THEOREM 2. 1. Let {a } be a ( rea l - or c o m p l e x -

n 1 
valued) sequence and p a posit ive integer greater than 2 . 
If l im a = 0 and 
— n-*-«o n 

a = 2 (a - a ) (r = 1, 2 , . . . , p-1) 
r np+r np+r+1 

n = 0 

i s convergent , then there i s a n o n - z e r o (rea l - or c o m p l e x -
00 

valued) sequence {b } M for which b = b (n = 1 , 2 , 3 , . . . ) » 
n 1 n+p n 
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2 P b = 0 and 2 * a b = 0 . 
n=l n n=i n n 

Proof. Take any v e c t o r (B . B ^ , . . . , B J ^ (0, 0, . . . , 0) 
i c p-1 

which i s perpendicular to ( a . , o , . . . , Û ) in ( p - 1 ) - s p a c e . 
1 Z p- i 

(There are at l e a s t p-2 l inear ly independent such v e c t o r s . ) 

Next , define {b } M in the obvious way: b = B . , b = - B , , 
n i 1 1 p p-1 

b = B - B, ( k = 2 , 3 , . . . , p - l ) , 
k k k-1 

and 

b = b (n = 1 , 2 , 3 , . . . ) . 
n+p n 

(In the c o m p l e x c a s e , B i s used in place of B in prescribing 
n n 

b . ) It i s immedia te ly evident that b # 0 for at l e a s t one n. 
n n 

Now appeal to L e m m a 2. i , 

COROLLARY 2. 1. Conjecture A i s fa l se for p > 2 : 
Given a posi t ive integer p greater than 2 , there i s a non-
tr iv ia l number - theore t i c function f with period p for which 

S°° f(n)/n = 0 . 
n=l 

Proof. Take a = i / n in T h e o r e m 2. 1, and set f(n) =b 
n n 

LEMMA 2. 2. J £ p i s a pos i t ive integer greater than 1 
and b , b _ , . . . , b are (rea l or complex) numbers for which 

\ c p • J • — „.. ' 

iibk = 0" £22. 

b _. = - b . (j = l , 2 , , p-'l) 

if and only if b = 0 and 
p 

B k = B p - k - l (k = l , 2 , . . . , p - 2 ) , 

418 

https://doi.org/10.4153/CMB-1965-029-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1965-029-2


k 
where B = 2 b , in which c a s e b , = 0 if p i s even. 

k n=l n p /2 — — 

Proof. For the ! ,oniy if", we have 

P P-1 
0 = B = B + 2 b = B, + b - S b 

P * , A k k p , M p-n 
r n=k+l r n=k+l ^ 

p -k -1 
= B + b - 2 b = B, + b - B , J k p J m k p p-k-1 

and, hence, 

B T + b = B u 4 (k = l , 2 , . . . , p - 2 ) . 
k p p - k - 1 

For p = 2q+l , it fo l lows that B + b = B and, h e n c e , that 
q p q 

b = 0 . If p = 2q, we find that 
P 

B + b = B and B + b = B M , 
q - i p q q p q - i 

whence B - B , = 0 and, then, b = 0 . 
q q - i p 

For the c o n v e r s e , 

b = B - B = B - B = - b 
k k k-1 p -k -1 p-k p-k 

for k = 2 , 3 , . . . , p - 2 , while 

b = B , = B ^ = B - b j = - b M 

1 1 p-2 p-1 p-1 p-1 

(B M = 0 s ince b = B = 0 î ) . 
p-1 p p 

THEOREM 2. 2. I^et p be a pos i t ive integer greater 
00 

than 4 and {a } M a r e a l - v a l u e d sequence for which 
nJ 1 » 

l i m a = 0 and 
n 

n-* « 
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00 

Q, - 2 (a - a ) 
k ^ np+k np+k+1 

n = 0 r r 

is convergent; (k = 1, 2, . . . , p- 1). Then there is a non- zero 
oo 

(real- or complex-valued) sequence {b } for which b = b 
n 1 n+p n 

(n = 1 , 2 , 3 , . . . ) , b = - b (k = l , 2 , . . . , p - l ) , z ? b. =0 , 
p-k k j=l j 

oo 
and 2 t a b = 0 . 

n=i n n 

Proof. In view of the assumptions on {b } , Lemmas n 1 
2. 1 and 2 .2 te l l us that B = B , A (k = 1, 2, . . . , p-2) , 

k p -k-1 
b =B M = 0 , and 2 °°j a b = I&~2 a Bn , where 

p p-1 n=l n n k=l k k 

B, =2 . , b . . If p is even, then 

p-2 
S a B 

k=p/2 k k 

(p-2)/2 

n = l 
p -n-1 p-n-1 

(p-2)/2 
2 a 

n = l 
p -n-1 n 

while, for p odd, 

p-2 

k = (p+l)/2 

(p-3)/2 
2 a 

n = l 
, B p -n -1 n 

Consequently, 

00 '¥> 
S a b 

. n n , k k 
n = l k = l 

with P k = a k + û r _ for k = l , 2 , . . . ( [(p-3)/2] and 

[(P-D/2) = 
' [ (p- l ) /2] + a [ ( P + l ) / 2 ] ' P S V e n 

I "[<P-l)/2] ' P °d d 
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The construction of a sequence {b } satisfying the 

requirements of the Theorem proceeds somewhat as in Theorem 
2 .1 . Letting q = [ ( p ~ t ) / 2 ] , choose any vector ( B , , B _ , . . . , B ) 

1 2 q 
^ ( 0 , 0 , . . . , 0 ) which is perpendicular to (P . » P-»> • • • # P ) in 

1 2 q 
(real or complex) q-space. (There are at least q-1 linearly 
independent such vectors. ) Then define B , B , . . . , B 

q+i q+2 p-2 
by means of the formula B, =B , . set B = B =0, and 

k p-k-i p- i p 
prescribe b_>b ,b , . . . in the obvious way (using B instead 

1 2 3 n 
of B for the complex case). It is apparent that not ail the 

n 
b ! s are zero. Finally, Lemma 2.2 guarantees that 
b _ =-b (k = l , 2 , . . . , p - l ) . 

p-k k 

COROLLARY 2. 2. Conjecture B is false for p > 4 : 
Given a positive integer p > 4 , there is a non-trivial number-
theoretic function f with period p for which f(p-n) = - f(n) 

(n = 1,2, . . . , p-1) and 2 f(n)/n =0 . 
n=l 

Proof. Take a = 1/n in Theorem 2.2 and set f(n) =b . 
n n 

3. The Multiplicative Case. This section is devoted to 
the discussion of Conjecture C. The number-theoretic functions 
of interest are accordingly multiplicative: If a and b are 
positive integers for which (a,b) = 1 , then f(ab) =f(a) f(b). 

LEMMA 3. 1. Let p be a positive integer and f a 
(real- or complex-valued) multiplicative number-theoretic 
function with period p . Then 

(i) f(ab) =f(a) f(b) whenever ( a , p ) = l or (b, p) = i . 

(ii) Jf f(p) # 0 , then f(a) = 1 whenever (a, p) = 1 . 

Proof. Suppose that a and b are positive integers 
with (a, p) = 1 . For a quick proof of the first assertion, 

00 

Theorem B tells us that {a + np} contains arbitrarily large 
n=l 

primes and, hence, that (a + np,b) = 1 for some positive 
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i n t e g e r ru vSince f h a s p e r i o d p , 

f(ab) = £{{a inp)b} = f(a+np) f(b) = f(a) £(b) . 

which i s what we w i shed to p r o v e . 

Leo M o s e r po in t s out t ha t the v e r y d e e p T h e o r e m B can 
be avo ided in the v e r i f i c a t i o n of t h i s f i r s t a s s e r t i o n , and we 
r e p r o d u c e ( e s s e n t i a l l y ) h i s v e r y s i m p l e a r g u m e n t h e r e . 

Le t p denote a p r i m e d i v i s o r of b . If p | p and 
p | ( a+np ) , then (3 | (a ,p) . S ince ( a , p ) = 1 , it fo l lows tha t 
(a+np, (3) = 1 for e a c h c o m m o n p r i m e d i v i s o r of b and p and 
e a c h pos i t i ve i n t e g e r n . F o r the r e m a i n i n g p r i m e d i v i s o r s 
of b (if t h e r e a r e a n y ) , define TT by pir = 1 (mod n p). 

PtP 
By the C h i n e s e R e m a i n d e r T h e o r e m , t h e r e i s a pos i t i ve i n t e g e r 
n such tha t n = *rr(i-a)(mod p), p fp . It fo l lows tha t 
a + pn = 1 (mod p) o r (a+pn, P) = 1 for e a c h such p . But t hen 
(a+np ,b) - 1 for t h i s n . 

The second a s s e r t i o n of L e m m a 3. 1 fol lows e a s i l y f r o m 
the f i r s t and the p e r i o d i c i t y of f . 

T H E O R E M 3. 1. C o n j e c t u r e C i s t r u e when p i s a p r i m e . 

Proof» Our a s s u m p t i o n s a r e t h a t f i s m u l t i p l i c a t i v e 
wi th p e r i o d p , p i s a p r i m e , f(n) # 0 for s o m e pos i t i ve 

p 
i n t e g e r n , and 2 , f(k) = 0 . 

k=l 

If f(p) # 0 , L e m m a 3. 1 (ii) t e l l s u s tha t f(k) = 1 for 

k = 1 ,2 , . . . , p - l . S ince 2 ^ f(k) = 0 , i t fo l lows tha t f(p) = 1-p 

It i s t h e n a p p a r e n t t h a t 

f n ) , 1 1 1 p - l 
2 —i—- = 2 (— + — + + — ) > 0 

n = 1
 n

 k = 0 P k + 1 P k + 2 ' " pk+p-1 pk+p 

If f(p) = 0 , t hen f(a) = 0 w h e n e v e r ( a , p ) = 1 b e c a u s e of 
the p e r i o d i c i t y of f and the a s s u m p t i o n tha t p i s a p r i m e , 
whi le f ( l ) # 0 b e c a u s e of the m u l t i p l i c a t i v i t y . T h i s and 
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Lemma 3. 1 (i) show that f is a charac te r modulo p [3, p. 83]. 
p 

Finally, the condition Z, . f(k) =0 guarantees that f is not 

the principal charac te r [3 , p. 84], Now, appeal to Theorem A. 

(It is unfortunate that our proof of Theorem 3. 1 depends 
upon Theorem A. If it did not, we would of course have a new 
proof of Theorem A for the case where p is a p r ime . What 
has actually been proved is that Conjecture C and Theorem A 
a re equivalent when p is a p r ime . ) 

ir. r i LEMMA 3. 2. Suppose that p = IT p. with 
— ]c = r£ 1 

Pj»P-»*-**»P distinct (when r > 1) p r imes and ir . ir . . . . , ir 
1 £ r 1 2 r 

positive in tegers . For 0 < a < p , let 

( r a. 
0 if (a,p) = n p. and 0 <a. < ir. for some j , 

— i — J 3 i = l 
f{a) W 

r a. 
U x. if (a, p) = H P and or. = 0 or ir. for each j , 

, . \ i . • - . . . * - ' - > — 

where x , x , . . . , x are any (real or complex) numbers (and 
— — 1 2 r • • i . — — • ' 

the empty product has its usual meaning); define f(n+p) = f(n) 
for n = 1 , 2 , 3 , . . . . Then f is a non-zero multiplicative 
number- theore t ic function with period p . 

Proof. That f is a non-zero number- theore t ic function 
with period p is c lear , so we concentrate on the multiplicativity. 
To this end, suppose that a and b a re positive integers and 
that A, B, and C a re the least positive res idues modulo p 
of a, b , and ab , respect ively. Then 

r a. r p. r ar.+ p. 
(A,p) = n p.1, (B,p) = n P . 1 , (c,p) = n P.1 

i = l X i s i x i = l l 

with a.8. = 0 . 
i i 
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Case i: 0 < a. < ir for some j . Since Û 6 S 0 for 
J j l l 

each i f 0 < a + B. * a. < ir.t so that f(A)~f(C) = 0 and, hence, 
J J J J 

£(ab) = f(C) = 0 = f(A) = f(A)f(B) = £(a)f(b) . 

A similar argument subsists if 0 < (3 < TT for some k. 
k k 

Case Z: a = 0 or IT , and 6 = 0 or IT for each i . 
i i i i 

Then cr + p =0 or IT because a p = 0 , and 
i i i i i 

f(C) = n x. = ( n x.) n x. = f(A) f(B) . 
p I C X p lA x p IB J 

This completes the proof that f is multiplicative. 

THEOREM 3. 2. Jbet p be a composite positive integer 

and {a } a real»valued sequence for which lim a =0 
n 1 ! ———— —-—•• — — n - * ^ o n 

and 

00 

k np+k np+k+1 

is convergent (k = l , 2 , . . . , p - l ) . If a does not change sign 

for k = 1,2,. . . , p-1 , then there is a non-zero multiplicative 
number-theoretic function f with period p for which 

Z* , a f(n) = 0 . 
n=l n 

Proof. If a = a ^ = . . . = a = 0 , we may take f to be 
1 2 p-1 

any multiplicative function of period p (in particular, any 
oo p - 1 

character modulo p) since 2 a f(n) = 7f a F(k) = 0 by 
, n=4 n k=l k 

JLemma 2. 1, where F(k) =2 f(j} • We therefore assume 
henceforth that a. # 0 for at least one i . 

i 
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IT. 

Case 1: p = IT. , p. with r > 2 , P.»P^#*-*»P dist inct 
i=l l — 1 2 r 

p r i m e s , and IT .IT , . . . f i r posit ive in t egers . JLet £ be the 
1 2 r 

function defined in Lemma 3. 2. According to L e m m a 2. 1. , 
oo p - 1 

S a f(n) = 2 , a? F(k) if the s e r i e s i s convergent , where 
n=l n k=l k 

k p-1 
F(k) = 2 . M f(j) . The conditions F(p) = 0 and S f i <* F(k) = 0 

j=l k=d k 
become 

s ( s i) n x.J J = o , , > 

S k<p j = l 
p -

r a. 
(k, p) = n p. 

i=i * 
p-1 r ûryir. 

2 { 2 a ( 2 1)} II x.J j = 0 ., 
T n=4 n k<n j=d J 

? " r «i 
(k, p) = n p. 

i=4 

where each a. i s 0 or IT. , S = { ( * , . . . , € ) ( € = 0 or 1} , 
. i l p 1 r » i 

and T = S - { ( ! , . . . , 1)} . The left m e m b e r s here are poly-
P P • 

nomia l s in x , x , . . . , x , the f irs t of degree r and the second 
x c* r 

of degree r - 1 . It fo l lows that the equations have a solution. 
For example , taking x = x = . . . = x = 1 g ives a quadratic 

and a l inear polynomial equation in x and x . 
1 Ca 

a 
Case 2: p = q , q a pr ime and a a pos i t ive in teger 

greater than 1. We define 

f(a) = < x , q 

( y , a = p • 

£(n+p)=:£(n) (n = 1 , 2 , 3 , . . . ) 
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That f is a non-zero number- theore t ic function with period p 
is clear» and an argument somewhat redolent of that in the 
proof of Lemma 3. 2 shows it to be multiplicative. 

Set F(n) = Z*1 f(k) . The conditions F(p) = 0 and 
tel 

P-1 IT a F{n) = 0 become 
tel n 

4>(p) + {p-l-4>(p)}x+y = 0 . 

p-1 p-1 
2: a Z 1 + ( Z a Z l )x = 0 , 

n==l k<n n = l k<n 
(k.p)=* (k.p)>l 

for which it is obvious that there is a solution (x,y) . Now 
appeal to Lemma 2. 1. 

COROLLARY 3.2 . Conjecture C is false when p is 
composite: If p is composi te , there is a non-tr ivia I mul t i 
plicative number- theore t ic function f with period p for which 

Z°° f(n)/n = 0 . 
n=l 

Proof. Take a = 1/n in Theorem 3. 2. — n 

4. Odd Multiplicative Functions. Our concern now is 
Conjecture D, so the functions f to be considered a re mult i
plicative, have a positive integer period p , and satisfy 

f(p-n)=-f(n) (n = 1 , 2 , . . . , p-1) and Z P f(n) = 0 . 

It is easy to see that f(l) = f(3) = 1 , f(2) and f(4) 
a rb i t r a ry , and g a charac te r modulo 4 give the only mult i 
plicative number- theore t ic functions with period 4 . This 
observation, the condition f(p-n) = -f(n) (n = 1,2, . . -»p- l ) , 
and Theorem 3. 1 prove 

THEOREM 4 .1 . Conjecture D is t rue when p = 4 JDT p 
is a pr ime. 
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It is easy to construct examples for p = 6,9, 10, 14, and 
15 to demonstra te that Conjecture D is false for these composite 
periods. The author feels that this conjecture is indeed false 
for any composite period other than p = 4, but he is able to 
offer only one general resul t , namely, 

THEOREM 4. 2. Conjecture D is false when p = 4q, 
q an integer greater than 1: There is a non-tr ivia l mult ipl ica-
tive number- theore t ic function f with period p = 4q, q > 1, for 
which f(p-n) = -f(n) (n = 1, 2 , . . . , p- 1) and 

Z * \ f(n)/n = 0 . 
n=i 

f(n+p) * f(n) ( n 8 i f 2 , 3 M . . ) . 

The condition f(p-n) = -f(n) is clear for n = q and n = 3q. 
For {n,p} s 1 , we have (p-n,p) = 1 and 

p-n-1 4q-n- l n+1 n-1 

f (p -n )= ( - l ) 2 = ( - i ) Z = ( - t ) 2 = - M ) 2 = - f ( n ) ; 

while if (n, p) > 1 but n # q and n $ 3q , then the same is 
true of (p-n,p) and n-p , and so f(p-n) =0 = - f(n) even for 
this situation. 

We show next that f is multiplicative. Suppose that 
(a,b) = 1 , and let A, B, and C be the least positive residues 

IT 

of a, b, and ab, respectively. Writing q = 2 n . . P. 
1=1 i 

where f is a non-negative integer, p , p , . . . , p are distinct 
\ & r 

(if r > 1) odd primes, and w , w , . . . , ir are positive integers 
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(the e m p t y p r o d u c t is 1, a s u s u a l ) s we have 

r a. r p . r a .+P. 
(A, P )=2 a n P / * ( B , P ) - 2 P n P . 1 , (c,p) = 2a*p n P . 1 x 

1=1 1=1 1=1 

with G f 8 = a B = 0 , 0 < a, p < 2 + ir, and 0 < a , p < TT . 
i i — — — i l — i 

C a s e l : 0 < a + p < TF o r a -f p = TT + 1 o r a + p = ir + 2 
o r 0 < of, •}• 8. < TT. fo r s o m e j , or o + 8 = 0 and a. + p. = u. 

J J J i i i 
for e a c h i , o r a + p = r and a.. + p. = 0 for e a c h i . H e r e 

( C , p ) > 1 bu t C £ q and C £ 3q, and the s a m e i s t r u e of one 
of A and B . R e f e r r i n g to the def in i t ion of f, we s ee tha t 
f(C) and one of f(A) and f(B) i s z e r o , so t ha t 
f(ab) = f(C) = 0 = f(A)f(B) = f(a)f(b) . 

C a s e 2: a + p = a + 8 = 0 (i = 1, 2 , . . . , r ) . In t h i s c a s e , 
i i 

(A, p) = ( B , p ) = (C, p) = 1. Since A and B a r e odd, 
(A-1) (B-1) = 0 (mod 4) . T h u s , m o d u l o 4 , 
0 = A B - A - B + 1 = C - A - B + 1 = C - 1 - (A + B - 2) , and 
so 

C - l A + B - 2 A - l B - l 

f ( C ) = : { - l ) 2 = ( - 1 ) 2 = ( - 1 ) Z (-1) 2 = f ( A ) f ( B ) . 

C a s e 3: or + p = ir and a + p =TT for i = 1, 2, . . . , r . 
i i i 

We have C = q o r C = 3q and ( A , p ) = q o r ( B , p ) = q , but 
not both ( s ince (A ,B) = 1). We m a y a s s u m e tha t (A,p) = q and , 
h e n c e , t h a t A = q or A = 3q. 

Take f i r s t the c a s e w h e r e C = q. If A = q , then 
AB = q B = C = q (mod 4 ) , so t h a t B = l ( m o d 4) . 

B - l 

T h u s , f(C) = x = x ( - l ) 2 =f(A)f(B) . On the o t h e r hand , if 
B - l 

A = 3q, t hen B = 3 (mod 4 ) , and f(C) = x = ( - x ) ( - l ) 2 = f(A)f(B). 

A s i m i l a r a r g u m e n t t a k e s c a r e of the s i t ua t ion when 
C = 3q , and the proof of the m u l t i p l i c a t i v i t y i s now c o m p l e t e . 
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„n Writing B - X f(k), the requirement that B = 0 i s 

automatic: 

k - i , 
p 2q 

B = x + {-x) + X (-1) 2 = 2 (-i)1"1 

P k = l j = l 
(k, p)=l 

We find that 

= 0 

k-1 

B n - < 

2 (-1) 
k<n 

( k , p ) = l 

k-1 

S (-1) + x 
k<a 

V(k,p)=l 

(1 < n < q ) 

(q < n < 2q) . 

Referr ing to the proof of Theorem 2 . 2 , we there fore have 

k-1 
00 

f(n) 2 q - l 2 q - l 
= X p B = £ p 

n = l n n n 
n = 1 n = 1 k<n 

2 q - l 
(-1) * + x X pr 

n = q 
( k , p ) = l 

with p > 0 (n = 1 , 2 , . . . , 2 q - l ) . It i s immediate that x m a y 
n 

00 

be chosen so that X f(n)/n = 0 . 
n=l 

REMARK. It i s of course c l e a r that the s a m e function 
00 

(with x chosen suitably) wi l l a l s o make 2 a a f(n) = 0 if 
n=l n 

00 

l i m a = 0 and or = X fa „ - a , , ) i s convergent 
n-*co n k n=0 np+k np+k+1 & 

(k = 1 , 2 , . . . , p - l ) . 

5. Erdos* Conjecture . Written communicat ion with 
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Erdos brought forth the statement: !fIf I remember correctly, 

when I made the conjecture, I assumed that f(n) = - 1 and 

f(m) = 0 if m =L0 (mod p).ft Formally, then, we have the 

CONJECTURE (Erdos). U p is a positive integer and 
f is a number-theoretic function with period p for which 
f(n) * {-1,1} when n = 1, 2, . . . , p- 1 and f(p) = 0, then 

00 

S f(n)/n 4 0 whenever the series is convergent. 
n = l — • — 

The author is unable to settle the truth status of this conjecture. 
About all that he can say is that Erdos1 conjecture is true if 

. *""* - 2TT % ,-* . (P-I)TT , 
ir, I n(2 s in - ) , 1 n(2 s in— ), . . . , ! n(2 sin i y ^ —) 

p p 2p 

when p is odd, and 

#-> ^x / ^ 2 IT . (P-2)TT. 
ir, i n Z sin —), i n(2 sin — ), . . . , £ n(2 sin — ), I n 2 

P P 2p 

when p is even, are linearly independent over the algebraic 
numbers. (As a matter of fact, this linear independence would 
prove Erdos1 Conjecture under the weaker assumption that 
f(p) = 0 and f(n) is algebraic (n = 1, 2 , . . . , p-1) . ) 

To see this, recall that 

00 

1 1 1 
2 ( —) = 7 + - + iKz) 

. n n+z z 
n = l 

for z f 0, - 1 , -2, . . . , where y is the Euler-Mascheroni 
constant and +(z) =r f(z)/r(z) [4, p. 247]. It follows that 

00 

p
n f 0

( ^ k - ^ î , - + ( J T > - ^ <* = i.2.....P-n 

and, hence, that 
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oo p - 1 

Z - ^ = F(p-1)4>(D- 2 f(k)4-(-) . 
n = l D k = l P 

But now 

+(-) = WD - -J c o t — - i n p l S (k) (k = 1 , 2 , . . . , p-1) , 
P 2 p p 

where 

P j = 1 P P 2 

[2, pp. 34-35], so that 

oo p - 1 

Z f(n)/n = - Z f(k) c o t — + F(p-l) i n p 
n=i 2 k = l P 

P-1 [(P-D/2] 
- Z f(k) Z cos =-±- I n(4 sin ^ - ) - T 

k=l j = l P P P 

with T =0 if p is odd, and 
P 

p - 1 k 
T = ( i n 2) Z (-1) f(k) (p e v e n ) . 

P k = l 

If now f(p) = 0 (and, of course , F(p) = 0), then the t e r m 
involving £ n p vanishes . Since the factors cot kir/p and 

oo 
cos 2kj7r/p a re a lgebra ic , we see that then 2 f(n)/n is 

an algebraic l inear combination of IT, 1 n(2 sin ir/p), 
£ n(2 sin 2TT/P), . . . , i n(2 sin [ (p- l ) /2] ir/p) (and i n 2 if p is 
even). 
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