NOTE ON AUTOMORPHISMS OF A FREE ABELIAN GROUP

BY

OLGA MACEDOŃSKA-NOSALSKA

Let F be a free group. Denote by $\overline{F} = F/F'$ the quotient group by the commutator subgroup which is a free abelian group. The fact that the natural map from Aut(F) into Aut(\overline{F}) is an epimorphism, in case when F is finitely generated, was known as a consequence of the theory of Nielsen transformations ([2]) Proposition 4.4 and [3] Corollary 3.5.1).

This fact was proved recently by R. G. Swan in [1] for any free group F. We give here a much simpler proof of the theorem for F countably generated with the use of Nielsen transformations. The general case follows from the countable case in the same way as in [1] (except for misprints).

Let x_i , i = 1, 2, ... generate F freely, then the cosets $\bar{x}_i = x_i F'$, i = 1, 2, ... constitute an abelian base in \bar{F} .

THEOREM. Every automorphism of \overline{F} is induced by some automorphism of F.

Proof. Let $\bar{\alpha}$ be an automorphism of \bar{F} . Denote $\bar{\alpha}(\bar{x}_i) = \bar{a}_i$, i = 1, 2, ... The cosets \bar{a}_i , i = 1, 2, ... give us another abelian base in \bar{F} . To show that $\bar{\alpha}$ is induced by some automorphism α of F we shall find a set of representatives $a_i \in \bar{a}_i$, i = 1, 2, ... which freely generate F. Denote

(1)
$$\bar{X}_n = gp(\bar{x}_1, \ldots, \bar{x}_n),$$

(2)
$$\bar{A}_n = gp(\bar{a}_1, \ldots, \bar{a}_n).$$

Let ℓ_i , L_i , $(\ell_1 = 1)$ be successively defined as the minimal numbers satisfying

$$\bar{X}_{\ell_1} \subset \bar{A}_{L_1} \subset \bar{X}_{\ell_2} \subset \cdots \subset \bar{X}_{\ell_k} \subset \bar{A}_{L_k} \subset \bar{X}_{\ell_{k+1}} \subset \cdots$$

We complete each set $\{\bar{x}_1, \ldots, \bar{x}_{\ell_k}\}$ to an abelian base in \bar{A}_{L_k} and each set $\{\bar{a}_i, \ldots, \bar{a}_{L_k}\}$ to an abelian base in $\bar{X}_{\ell_{k+1}}$, $k \ge 1$. Let these bases be fixed. Then

(3)
$$\bar{A}_{L_k} = gp(\bar{x}_1, \ldots, \bar{x}_{\ell_k}, \bar{u}_{\ell_k+1}, \ldots, \bar{u}_{L_k}),$$

(4) $\bar{X}_{\ell_{k+1}} = gp(\bar{a}_1, \ldots, \bar{a}_{L_k}, \bar{v}_{L_k+1}, \ldots, \bar{v}_{\ell_{k+1}}),$

(5)
$$\bar{X}_{\ell_{k+1}} = gp(\bar{x}_1, \ldots, \bar{x}_{\ell_k}, \bar{u}_{\ell_k+1}, \ldots, \bar{u}_{L_k}, \bar{v}_{L_k+1}, \ldots, \bar{v}_{\ell_{k+1}}).$$

Consider that automorphism of $\bar{X}_{\ell_{k+1}}$ which maps \bar{x}_i , $i = 1, 2, ..., \ell_{k+1}$ into the successive generators in (5). By [3] Corollary 3.5.1 there exists a Nielsen

8

Received by the editors June 19, 1978 and, in revised form, January 5, 1979.

transformation N which induces this automorphism and is identical for elements with indices $i \leq \ell_k$. Then

(6)
$$N(x_1,\ldots,x_{\ell_{k+1}}) = (x_1,\ldots,x_{\ell_k},u_{\ell_k+1},\ldots,u_{L_k},v_{L_k+1},\ldots,v_{\ell_{k+1}})$$

for some representatives $u_i \in \bar{u}_i$, $\ell_k + 1 \le i \le L_k$, and $v_i \in \bar{v}_i$, $L_k + 1 \le i \le \ell_{k+1}$. Now (3) and (6) suggest the following definition of inverse-image subgroups for \bar{X}_{ℓ_k} and \bar{A}_{L_k} , $k \ge 1$ in F

(7)
$$X_{\ell_{\iota}} = gp(x_1, \ldots, x_{\ell_{\iota}}),$$

(8)
$$A_{L_k} = gp(x_1, \ldots, x_{\ell_k}, u_{\ell_k+1}, \ldots, u_{L_k}).$$

We then have

(9)
$$X_{\ell_1} \subset A_{L_1} \subset X_{\ell_2} \subset \cdots \subset X_{\ell_k} \subset A_{L_k} \subset X_{\ell_{k+1}} \subset \cdots.$$

To prove the Theorem we will find a set of representatives $a_i \in \bar{a}_i$, i = 1, 2, ...such that its subset $\{a_i, i \leq L_k\}$ freely generates A_{L_k} , $k \geq 1$. We proceed by induction on k. For k = 1 we have by (3) $\bar{A}_{L_1} = gp(\bar{a}_1, ..., \bar{a}_{L_1}) =$ $gp(\bar{x}_1, \bar{u}_2, ..., \bar{u}_{L_1})$. Let N_1 be a Nielsen transformation such that

$$N_1(\bar{x}_1, \bar{u}_2, \ldots, \bar{u}_{L_1}) = (\bar{a}_1, \ldots, \bar{a}_{L_1}),$$

then we apply N_1 to generators in A_{L_1} given in (8) to define $N(x_1, u_2, \ldots, u_{L_1}) = (a_1, \ldots, a_{L_1}).$

Suppose now that a free base $\{a_1, \ldots, a_{L_{k-1}}\}$ for $A_{L_{k-1}}$ has been chosen as required. Now from (8), (6) for ℓ_k , and the inductive hypothesis for $A_{L_{k-1}}$

(10)
$$A_{L_k} = gp(a_1, \ldots, a_{L_{k-1}}, v_{L_{k-1}+1}, \ldots, v_{\ell_k}, u_{\ell_k+1}, \ldots, u_{L_k}).$$

Consider \bar{A}_{L_k} , then it follows from (10) and (2) that there exists a Nielsen transformation N_k , identical for elements with indices $i \leq L_{k-1}$ such that

$$N_k(\bar{a}_1,\ldots,\bar{a}_{L_{k-1}},\bar{v}_{L_{k-1}+1},\ldots,\bar{v}_{\ell_k},\bar{u}_{\ell_k+1},\ldots,\bar{u}_{L_k})=(\bar{a}_1,\ldots,\bar{a}_{L_k}).$$

Using (10) we then define the required abelian base in A_{L_k} of representatives $a_i \in \bar{a}_i$, $i \leq L_k$ by

$$N_k(a_1,\ldots,a_{L_{k-1}},v_{L_{k-1}+1},\ldots,v_{\ell_k},u_{\ell_k+1},\ldots,u_{L_k})=(a_1,\ldots,a_{L_k}).$$

Thus we have defined the set $\{a_i, i = 1, 2, ...\}$ of representatives in \bar{a}_i , i = 1, 2, ... which by (9) generate F freely. Hence the mapping $\alpha : x_i \rightarrow a_i$, i = 1, 2, ... defines the required automorphism on F. The Theorem is proved.

REFERENCES

1. J. M. Cohen, Aspherical 2-complexes, Journal of Pure and Applied Algebra, 12 (1978), 101-110.

2. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin Heidelberg New York, 1977.

1980]

3. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.

Instytut Matematyki, Politechnika Śląska, Zwycięstwa 44–100 Gliwice, Poland.