
J. Austral. Math. Soc. 19 (Series B), (1976), 259-288.

A TRANSFORMATION OF COOKE'S TREATMENT OF
SOME TRIPLE INTEGRAL EQUATIONS

E. R. LOVE and D. L. CLEMENTS

(Received 19 June 1975)

Abstract

The reduction of an important class of triple integral equations to a pair
of simultaneous Fredholm equations has been carried out by Cooke [1]. In
this paper, Cooke's equations are transformed to new uncoupled Fredholm
equations which, for certain important cases, are shown to be simpler than
Cooke's and also superior for the purposes of solution by iteration.

1. Introduction

Cooke [1], using the method of Noble [2] for dual integral equations,
reduced the triple integral equations (1.1), (1.2) and (1.3) below to two
simultaneous Fredholm equations of the second kind. These integral equa-
tions occur in potential problems with different boundary conditions on an
annulus a < r < b, its inside 0 < r < a and its outside b < r <<*>. The triple
equations are

A(X)Jn(r\)d\=q,(r) for r < a, (1.1)

A 2°A (A )/„ (rX) dX = po(r) for a < r < b, (1.2)

A(A)Jn(rA) d\ =q2(r) for r > b, (1.3)

where everything is known except the function A (A). They constitute
essentially a Fredholm equation of the first kind but on a semi-infinite
interval. The constants n and a are restricted only to satisfy n g 0 and
0 < a < 1 or — l < a < 0 . The cases n positive integral and a = ±k are
important; and probably the axisymmetric case n = 0 is the most important.
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260 E. R. Love and D. L. Clements [2]

In this paper we transform Cooke's integral equations of the second kind,
for all n § 0 and either 0 < a < 1 or - 1< a < 0, into a pair of uncoupled
integral equations of the second kind. For 0< a < 1, the new equations are
shown to be satisfactory for solution by iteration for all a/b sufficiently small.
For values of a not too near to 1, alb may in fact be as large as 1; and in most
cases (see Tables A and B) it may be much closer to 1. For comparison we
examine also the effectiveness of iteration of Cooke's equations.

The known terms in our equations, that is, the terms involving p0, qi and
q2, are simpler than those in Cooke's, involving single integrals rather than
double. The kernels are less simple than Cooke's, except in the case n = 0,
when they are even simpler. In the general case they involve a hypergeomet-
ric function. In the important case n =0 the equations are

, , . , 2sin m f" s , , , . . . , , ,, A.
/,(r) + — — -r—-2f2(s) ds = gl(r) for r < a, (1.4)

** J b " '

\ 72—^T2=7i(s)«k = g?(r) for r>b, (1.5)
Jo 1 $ S

2 sin TTO

where fx and f2 are unknown while g, and g2 are known functions which
assume different forms in the intervals — 1 < a < 0 and 0 < a < 1.

We further reduce our equations to two uncoupled equations. These are
proper Fredholm equations of the second kind on a finite interval, with
bounded kernels. In the important case n = 0 these equations are

g_(jc) for 0 < x < k ( 1 7 )

where /* are unknown and g^ are known functions, and k = V(a/6), so that
0<fc < 1 .

Our analysis is formal, except that assumptions are made explicit in two
cases where they are clearly necessary. An example of the risks in formal
analysis is seen in §5, where the expression for the value of an integral needs
an unexpected modification when n - 0. It is interesting to see how this
exception disappears in the final transformed equations; if there had been no
exception in §5, there would have been one in the final equations.

Finally, before proceeding with the analysis, we note that a number of
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[3] A transformation of Cooke's treatment 261

authors (for example, Gubenko and Mossakovskii [3], Williams [4] and
Clements and Love [5]) have studied boundary-value problems within the
class considered in this paper but with less generality and from other starting
points. The work of these authors does, in special cases (notably when n = 0
and a = ±|) , have points of contact with the present work.

2. Cooke's equations

A Fredholm equations for I \2aA(\)Jn(Xr)d\.
Jo

In [1,§4] Cooke obtains equations for the two unknown functions

Pi(r)= ( A2"A(\)Jn(\r)d\ for r < a, (2.1)
Jo

P2(r)=( \2aA(\)Jn(\r)d\ for r > b, (2.2)
. Jo

when /4(A) is required to satisfy the triple equations (1.1) to (1.3).
We always suppose r g 0. We have made changes in Cooke's notation for

various minor reasons, including the desirability of using the same letter p in
(1.2), (2.1) and (2.2). It will in fact be convenient to write

P(r) = Pi(r) for r<a,

p(r) = po(r) for a < r < b, (2.3)

p(r) = pi(r) for r > b.

Thus we write plt p0, p2, q\ and q2 for Cooke's fu g, f2, f and h respectively.
For the case 0 < a < 1, Cooke's equations for pt(r) and p2(r) are

, x , 2sin7TO f" r"s~"+t (s2- a2)"

= k1(r)+h,(r) for r < a, ( 2"4 )

= k2(r) + h2(r) for r > b,

where k,, h,, k2, h2 are the known functions

, , . 2sin7ra f r"s~n+' (s2 - a2)
(2.6)

2sinirarbr-"s''+'(b2-s2r . . .
2( >~ ~ ) a r2- s2 ( r 2 - b2)- P o ( 5 ) '
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262 E. R. Love and D. L. Clements [4]

22°r"-< d C" 5-2-+2o
l ( r ) ~ ~T(1 -a)2~d~r}, {s2-r2)a

(2-8)

-s2)"

For the case - 1 < a < 0, Cooke's equations are exactly (2.4) and (2.5)
except that h, and h2 are given by

2-s2)'-»(r2-s2) '-»ds

We have put a = — /3, so that 0 < (3 < 1; this is intended to help in checking
convergence of the integrals.

B Fredholm equations for A(X)Jn(r\) dX.
Jo

In [1, §5] Cooke obtains equations from which the unknown function

q(r)=( A(\)Jn(r\) d\ for a<r<b (2.12)
Jo

can be found when A (A) is required to satisfy (1.1) to (1.3). To do this he
replaces the unknown function A (A) by two more, Ai(A) and A2(A), whose
sum is A (A). Another relation is imposed on A,(A) and A2(A) later; this
relation is implied in the equations [1, (30) and (31), or (32) and (33)]. We do
not need the details of it here; we need only the transforms

q3(r)=( A,(A)Jn(A/-)dA for r < b, (2.13)
Jo

q,{r)=\ A2(A)Jn(Ar)dA for r > a. (2.14)
Jo
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[5] A transformation of Cooke's treatment 263

For the case 0 < a < 1, Cooke shows that q3 and q4 satisfy the simultane-
ous integral equations

, . , 2sin Tta f~ r"s'"" (b2- r2)"

= e,(r) for r < b, (2.15)

2sin7

= e2(r) for r > a, (2.16)

where e, and e2 are known functions which take the forms

22"2" f
( )

2.18)

Here p, and p4 are known functions such that p3(t) + pt(t) = pa(t) for
a < t < b. They are defined by some dissection such as (1, §2, where g, and g2

are the counterparts of p3 and p4] or [5, §5, where V3 and V4 are the
counterparts of p3 and p4].

For /he case - 1 < a < 0, Cooke's equations are exactly (2.15) and (2.16)
with e, and e2 given instead by

-2~2V~'
( )

3. Reduction of Cooke's second pair of equations

We now show that we need only consider the pair (2.4) and (2.5), because
the pair (2.15) and (2.16) can be transformed into equations like (2.4) and
(2.5).

First, (2.15) and (2.16) need only be solved in r < a and r > b respec-
tively, because back substitution of q3(s) in s < a and q*(s) in s > b into the
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264 E. R. Love and D. L. Clements [6]

integrals in (2.15) and (2.16) would then give q3(r) and qa{r) in a < r < b.
Putting

Ti(r) = qi(r)-q,(r) in r<a (3.1)

and

T2(r)=q4{r)-q2(r) in r > b, (3.2)

(2.15) and (2.16) become

= el(r)-ql(r) for r < a, (3.3)

= e2(r)-q2(r) for r > b. (3.4)

We define new unknown functions 4>\{r) and </>2(r) by

<t>l(r)=[(a2-r2)(b2-r2)]-°Tl(r) for r < a, (3.5)

^2(r) = [(r2-a2)(r2-fe2)]-T2(O for r > b. (3.6)

Use of these expressions in (3.3) and (3.4) yields

""+l ( s 2 - a2)

for r<a, (3.7)

Except for the known functions on the right, equations (3.7) and (3.8) are
identical with (2.4) and (2.5). Hence, in the subsequent analysis, we shall
concentrate on the pair (2.4) and (2.5).

The integrals occurring in (2.4) and (2.5), and in (2.15) and (2.16), are
either infinite or have unbounded integrands, so that they may involve
computational hazards. The transformation described in this paper produces
equations with continuous kernels on a finite interval, except if n + \ < a, as is
seen in (9.7) to (9.9) and in (1.6) to (1.7).
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[7] A transformation of Cooke"s treatment 265

4. An integral

/ / 0 < a < l , n g 0, s > r > 0 and F is the hypergeometric function,

r

To prove this, we first perform the differentiation and then make the
substitutions r = l/u, s = 1/v, t = 1/w. The integral becomes

2 ^ n(t2-r2)+^-a)t2
d[

= -2u2-2a~2a < " ' w ( t < 2 ~ w2)+(l-a)u2--.= 2 . f "
Jo ^

2r(n+2-a)

(n + \)T(\-a)r2

T ( n + 2 - a ) s2

This gives (4.1) by use of [6,2.8(22)]. At (4.2) we have put w = vVx and then
used Euler's integral [6,2.1(10)].
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5. Another integral

7 / 0 < a < l , n >0, r > s >0 and F is the hypergeometric function,

Y{n + l)r(l - a)s2-** ^(, s2\
= Y(n + l - « ) ' ^ F ^ - ^ n + Un + l-a;^); (5.1)

while if n = 0 this equation holds with an extra factor s2/r2 on the right.

For the case n = 0 we may change to a variable u by the substitution

(s
\-u2

The integral becomes

this is the result stated, because the hypergeometric function in (5.1)
degenerates when n = 0 to r2/(r2 — s2).

Now suppose that « > 0 . Using Euler's formula for homogeneous
functions and then the substitution t = s\/u, the integral is equal to

Jo

n-l + a (x un-'(]-uT
J

+ —
s' - 2 " r 2 - 2 a Jo { l - i

n - 1 + a T(n)r(l - a)
l - a)
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[9] A transformation of Cooke's treatment 267

and (5.1) follows from this. For (5.3) we have used Euler's integral [6, 2.1(10)];
and for (5.4), [6, 2.8(32)].

6. Transformation of (2.4) when a is positive

We change to new unknown functions /, and f2 related to the old
unknown functions px and p2 in (2.4) and (2.5) by

^ for r>b. (6.2)

We rewrite (2.4), using (2.3) and (2.6), as

i / \ / \ 2simra f" p"s~"*' (s2- a2)' . . , ,
J«I(P)-PI(P) = — - — J s* - p* (a* - p y PW ds f o r

Then by (6.1)

— dp

(6.3)

where

Formally changing the order of integration, and using (A2), (6.3) gives

? r / \ r i \ 2s inT7af* s~"+'p(s) ,
Wi(r) - /•(/•) = 7-i—*±± ds

77 J a (S — a )

X l (s2-p2Ha2-p2r(p2~r2y-"

Ja (s2-r2)'~a

T~2—2\i-i ds for r < a. (6.5)
Jb (s — r )
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268 E. R. Love and D. L. Clements [10]

Inverting (6.2) by (Al), and substituting the result in the last term of (6.5),
appropriately since s > b, we obtain

sT'P22\s) J±

2sin7ra f" s~2" I d f tUt)

integrating by parts and assuming that the integrated terms vanish. This
assumption is easily seen to be correct if f2 is bounded and n is positive; but it
is false if f2(t) = (t2- b2)"'1, for instance.

Formally changing the order of integration, and using (4.1) with s and /
interchanged, the right side of (6.6) is equal to

2 sin na

Before rewriting (6.5) we simplify H,. We continue to keep r < a as we
have already done throughout this section. Writing

for s <a, (6.8)
> vj • )

we have, by (6.4) and (2.8),

1 j '

this simplification following from (Al) with b, s, t replaced by a, p, s. Finally,
by (6.6), (6.7), (6.8) and (6.9), (6.5) becomes

L (t2-r2y-°dt+ r(l-a)r dr)0(r
2-t2r ' ( ' 0 )

to hold for r < a.
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[11] A transformation of Cooke's treatment 269

In the axisymmetric case n = 0, equation (6.10) reduces to

, . . , 2 sin ira f" s

P tPa{t) dt i r ( a ) (2,v-' d [' lqi(t) dt ram
" L (t2-r2)>-° dt + V(l - a){2r) drj0 (r2-t2)"dt- ( 6 l l l )

7. Transformation of (2.5) when a is positive

As in §6 we transform to the new unknown functions / , and f2 defined by

(6.1) and (6.2). But we keep r>b throughout this section; and we also

suppose that n > 0. We rewrite (2.5), using (2.3) and (2.7), as

. . . 2sin7ra f" p " " 5 " " (b2 - s2)a . . . . ^ , ._ , .
h2(p)-p2(p) = —-—Jo p2_s2^p2_biLp(s)ds for p>b. (7.1)

Then by (6.2)

where

H*r) = [ ( ? - h p y - - d p for r>/)- (73)

Formally changing the order of integration, and using (A2), (7.2) gives

2s\mra(b s"+'p(s) f' pd£
TT Jo (b2-s2r ds\b (p2-s2Hr2-P

2y-

"Jo (r2-s2)-»d 5

Inverting (6.1) by (Al), and substituting the result in the first term of (7.4),

2Sin'uu \ I u J 1 , 1 IMHJ • fi c\

https://doi.org/10.1017/S0334270000001156 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001156


270 E. R Love and D. L. Clements [12]

integrating by parts and assuming that the integrated terms vanish. As in §6
this is correct if f\ is bounded, but may not be otherwise. But also it would be
quite improbable that the integrated term would vanish at the lower terminal
if n were permitted to be 0.

Formally changing the order of integration, and using (5.1) as we may
since n > 0, the right side of (7.5) is equal to

2 sinin Ira f" , . , f' 1 d ( s2"

s—Jo tmd'l v^w^((r-sT

) (7.6)
r i

Before rewriting (7.4) we simplify H2. Writing

(t-s) f o r s>b' ( 7 7 )

we have, by (7.3) and (2.9),

this simplification following from (Al) with a, s, t replaced by b, p, s.
Finally, by (7.5), (7.6), (7.7) and (7.8), (7.4) becomes

C I s2\s2n + '~2a

F[\-a,n + l;n + \-a;i
1) 2-2a f,(s) ds

Jo \ r I r

dt

22"-T(a) Io.2n_, d f - r -g2(f)
Rl-a) ' dr), (r-r2)" dU

to hold for r > b.
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[13] A transformation of Cooke's treatment 271

8. The axisymmetric case when a is positive

The transformed equation (6.10) has been demonstrated in §6 to hold in
the axisymmetric case n = 0, but this case was excluded in §7 to avoid the
exception to the integral (5.1) in §5. However, nearly all of §7 still holds if
n = 0, and we now consider what remaining adjustments are needed in that
case.

The hypergeometric function in (7.6) simplifies, when n = 0, to
r2l(r2- t2). But because of the rider to (5.1) it must be replaced by t2/(r2 - t2).
So it appears that (7.9) needs correcting when n = 0. However another
correction is also needed. In the integration by parts which gives (7.5), the
integrated terms which we have assumed to vanish are

_2sin_7ra|
IT

Still assuming that this vanishes at the upper terminal, its value at the lower
when n = 0 is

2*n j ra_ l_ r ,_2

whereas for n > 0 this value is annulled by the factor s2". Thus, when n = 0,
(7.6) must be corrected both by changing the hypergeometric function to
t2/(r2- t2) and by adding (8.1). It thus becomes

r(l-a)r(
2sin

[" t2 t'~2a

a)Jo r
2-t2r2-2°f'{t)dl

2 sin rra
TT

f r2 t'~2a

-^-p^MOdt, (8.2)
Jo r — i r

and this must replace the integral term on the left of (7.9) when n = 0. But
(8.2) is exactly what the integral term on the left ot (7.9) reduces to when
n =0! So that, after all, (7.9) still holds in the axisymmetric case.

9. Further reduction of the equations

We rewrite (6.10) and (7.9) thus:

5TT/2(s)dj = gI(r) for r < a, (9.1)

^f,(s)ds = g2(r) for r > b. (9.2)
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272 E. R. Love and D. L. Clements [14]

Here g, and g2 are the known right sides of (6.10) and (7.9), F(n,a) is the
reciprocal of B(n + 1 - a, a), and we have temporarily suppressed mention of
the three parameters I- a, n + l,n + l - a i n the hypergeometric function F.

Let c = V(ab) and k = V(a/b); so that a <c <b and 0 < k < 1.
In (9.1) put r = ex and s = c/t; obtaining for 0 < x < k,

fl(cx) + 2r(n,a) f F{x2t2)c-2"t2"~lf2(clt)dt = gl(cx).
Jo

In (9.2) put r = c/x and s = ct; obtaining, also for 0 < x < k,

f2(c/x) + 2r(n,a) f F(x2t2)c2"x2-2at2"+'-2af,(ct) dt = g2(c/x).
Jo

With suitable multipliers these equations become

2t2)(xt)"+'-ac-''t"-^af2(c/t) dt

= c"x"+'-"g1(cx), (9.3)

(n,a) f F(x2t2)(xt)n+'-"cntn+>-'fl(ct) dt

(n,a) f
Jo

= c "x" ^ag2(c/x). (9.4)
Adding and subtracting (9.3) and (9.4), and writing

f*(x) = cnxl"l-ft(cx)±c-nxH-*>°f2(c/x), (9.5)

g4x) = cnx"+>-agt(cx)±c-"x''-l+ag2(c/x), (9.6)

we obtain uncoupled equations for /+ and /_:

A(JC)+ f K(x,t)f+(t)dt = g+(x) for 0<x<k, (9.7)
Jo

/ _ ( * ) - [ K(x,t)f-(t)dt = g.(x) for 0<x<k, (9.8)
Jn

where

K(x, t) = 2V(n, a)F(x2t2)(xt)''^-a (9.9)

-xV

-a; x2t2) (9.10)

; j t V ) . ( 9 . H )

Here (9.11) is got from (9.10) by use of [6, 2.9(2)].
This kernel K is positive and symmetric, on the square {OSx S k and

OSf^fc}, for n i£ 0 and 0 < a < l . The positiveness is seen from the
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[15] A transformation of Cooke's treatment 273

hypergeometric series arising from (9.10), in which all the coefficients are
positive. The kernel is also continuous on the square if n + {— a S 0; if not, it
is in L2 as (10.2) shows.

10. Effectiveness of iteration for (9.7) and (9.8)

When g . E L 2 , a sufficient condition for iteration of (9.7) and (9.8) to
converge is that || K || < 1, where || K || is the L2 norm

. (10.1)

This condition is also sufficient for existence and uniqueness of solutions in L2.
The hypergeometric function in (9.11) is positive because that in (9.10) is

positive; and it is a decreasing function of x2t2 since all coefficients in its
power series, except the constant term 1, are negative because of the factor
- a . So

1 - A : 4 n + l - a
( , 0 2 )

For iteration to be effective it is thus sufficient if the right side of (10.2) is less
than 1. Given n and a such that n g O and 0 < a < 1, then, it is evident that
iteration is effective for sufficiently small k; for the majorant in (10.2) is an
increasing function of k which tends to nought as k—>0 and to infinity as
Jfc->1.

For quantitative estimates of the effectiveness of iteration some less
crude inequality than (10.2) is desirable, particularly when n and 1 -a are
small. We establish one inequality as follows. By (9.9) and (10.1),

= 4r(n,a)2 f* dx f * (xt)2n*'-2aF(x2t2)2 dt
JO Jll

2) dt (10.3)f
o

(10.4)

In (10.3) we have used the fact that the hypergeometric function in (9.10) is an
increasing function of its fourth variable because the corresponding
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hypergeometric series has positive coefficients. Equally the hypergeometric
function in (10.4) is positive, and so

\\K\\^2r(n,a) \ x2n+l-2aF(l - a, n + 1; n + l - a ; k2x2)dx
Jo

= 2T(n, a) P ^"*\\ F( - a, n; n + 1 - a; k2x2) dx (10.5)
Jo I — K X

using [6,2.9(2)]. By the hypergeometric series we have, since k2x2< 1,

F(-a,n; n + l-a;
n + l - a

k2x2

whence (10.5) gives

n + l - a

?

The fact that 2n + 2 - 2a > 0 is essential in (10.6), both for the inequality that
gives the second term and for the convergence of the integral of the first term.
We thus obtain the inequality sought, namely

Table A shows values of a/b = k2 such that iteration converges for these
and all lesser values. Only two-decimal-place values are considered.

TABLE A

(for (9.7) and (9.8) using (10.7))

NvOf

n ^ ^

0

0.5
1

1.5
2

0.1

0.99
0.99
0.99
0.99
0.99

0.3

0.96
0.96
0.96
0.96
0.96

0.5

0.86
0.89
0.90
0.91
0.91

0.7

0.76
0.84
0.86
0.87
0.87

0.9

0.66
0.84
0.87
0.88
0.89
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There is no certainty that the entries would continue to increase with n if
this table were prolonged. For larger values of n we use (10.9), a different
inequality from (10.7), found by replacing (10.6) by (10.8) as follows.

r(n + l) / k2n+2~2a k2n+"-2a (w+ ! ) ( ! - a ) k2 \
r ( n + l - a ) r ( a ) U + l - a n + 2-a n + l - a 1 - f c 4 /

= (T{n1a) r(fi + l , a ) k<
U + l + 2 U " ' l

The expression F(n, a)/(n + 1 — a) is a decreasing function of n in n g 0
because the derivative of its logarithm is

^ t o 8 l + = ^ ( H + 1 ) " ^ ( w + 2 " t t ) < 0

the i/»-function being increasing. Thus the main bracket in (10.9) is decreasing
in n SO. So also is the other factor jfc2<»+1-»>. Consequently (10.9) itself is a
decreasing function of n in « § 0 .

Table B, like Table A, shows two-decimal-place values of a/b such that
iteration converges for these and all lesser values.

TABLE B

(for (9.7) and (9.8) using (10.9))

a

n S 2

0.1

0.98

0.3

0.95

0.5

0.92

0.7

0.90

0.9

0.90

No doubt improved values of a/b could be calculated from (10.9) for
larger values of n in this table, because of the monotony established above.
But it may be noted that (10.9) is no substitute for (10.7) for the smaller values
of n in Table A; for instance, for n = 0 and a =0.5 calculation from (10.9)
gives 0.68 instead of the entry 0.86 in Table A.

11. Iteration of Cooke's equations

In order to discuss the prospects of iteration of Cooke's equations (2.4)
and (2.5), we first reduce them to uncoupled equations by the method of §9;
compare also [1, §7]. Following the procedure of §9, we put r = ex and s = c/t
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in (2.4), and then r = c/x and s = ct in (2.5); this gives, corresponding to (9.3)
and (9.4),

• <»••>

where /, = fci + hx and i2
= fe2+ ^2. Denning p+ and p_ by

p4x) = xJp.(«) ± x- 2 -^ 2 (c /x) , (11.3)

and i'+ and i_ similarly, we obtain the two uncoupled equations

p4x)±( K,(X, t)p*(t)dt = L(X) for 0<x<k; (11.4)
Jo

where

for 0 < x < k and 0 < t < k.

12. Effectiveness of iteration with equations (11.4)

Assuming that L £ L2, convergence of iteration of both equations (11.4)
is assured if \\K,\\ < 1; the meaning of \\K,\\ being given by (10.1) and (11.5).
We now discuss whether this condition is satisfied.

When a s \ the condition || K, || < 1 is never satisfied, whatever the values
of k and n such that 0 < k < 1 and n ^ O . We prove this simply by showing
that || K, || = <» in all these cases. By (11.5), \\K, f is a positive multiple of

(i-kyak2n*2 p x2""' J . . ^ ,
= rrTp (IC2-X2Y°

 dx=°° S l n c e 2 « = 1 •

In particular, the proposed condition is not satisfied in the important case
a - \.

When 0<a <{, on the other hand, iteration of (11.4) converges for
sufficiently small k. To show this, we obtain an inequality for || K,|| as in §10.

From (11.5) we have, for 0 Si x =i k,
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sin

a 4J
Jo

(xQ2"+1 (l-x2f2)2°
o (l-xV)2(fc2-X2)2"

4x2

"Jo (1 - xV)2-2° dt

Putting x = fcVu and remembering that 2a < 1, we now have

77- \ 2 ?Ar fk (ICYY"*'

\mra) ' ~~ n + 1 Jo (fc2— x2)2a(l — k2x2)2'2"

!du

(12.2)

_ , r ( n + 2 - 2 a ) r ( l )
; T( + l ) r ( 2 - 2 a )

1-A:4 "

At (12.1) we have used Euler's integral for the hypergeometric function [6,
2.1(10)] and at (12.2) the relation [6, 2.9(2)]. The hypergeometric function in
(12.2) is an increasing function of its fourth variable k", since the correspond-
ing hypergeometric series has positive coefficients; so in its next appearance
we have replaced k* by 1 and written the value of the hypergeometric
function given by [6, 2.1(14)]. We now have the desired inequality

«l'n TT/V 1 r 2(1 + 1-a)

" " a g 2 . ) i t ( i - t ' ) l - <123>

Table C, like Tables A and B, shows two-decimal-place values of alb
such that iteration converges for these and all lesser values. But of course this

https://doi.org/10.1017/S0334270000001156 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001156


278 E. R. Love and D. L. Clements [20]

table refers to iteration of equations (11.4), and therefore of (2.4) and (2.5);
and it is necessarily restricted to 0< a <{.

TABLE C

(for (11.4) using (12.3))

n ^—

0
0.5
1

1.5
> 2

0.1

0.99
0.99
0.99
0.99
0.99

0.2

0.97

0.98
0.98
0.98
0.99

0.3

0.92
0.94'

0.96
0.97
0.97

0.4 &0.5

0.80
0.87

0.91
0.92
0.94

Notice that Table C differs from Tables A and B in layout, as it contains
columns for a = 0.2 and 0.4. Notice also that the entries for n = 2 serve also
for n > 2; this is because the right side at (12.3) is a decreasing function of n.

13. Iteration of (11.4) with another norm

A norm which is sometimes more accommodating than (10.1) is

||K-||,= sup V \K(x,t)\dt; (13.1)
0<*<kJO

and if i~ are bounded, another sufficient condition for convergence of
iteration of equations (11.4) is that ||K\||* < 1. However, this condition is not
satisfied for any of the values of k, a and n contemplated, namely 0 < k < 1,
0 < a < 1 and n g 0. For

•n

2sin \K,(x, t)\dt=
(k - x 2i

— xt

1 " • ~ i 3 111 2\a >

n +i (k - x )
the last expression is unbounded on 0< x < k, so that ||K"i||* is infinite. Thus
convergence of iteration when a S \ is not assured with this norm either.

Of course the condition ||.Ki||, < 1 may not be necessary for convergence
of iteration; it is only known to be sufficient. But the failure, when a S | , of
both the tests we have applied suggests no great likelihood that iteration with
K, is effective in any practical sense.

Plainly the denominator factor (k2 - x2)" in (11.5) is the main cause of
this trouble. There are of course other sufficient conditions for convergence of
iteration, and it is conceivable that iteration with an Lpq norm such as
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U k I f k K p/q -I Up

. (Jo \K^x,t)\"dt) dxj , (13.2)where p g l and q g 1, might converge if 0 < a < 1/p; at least (13.2) is finite
under this condition.

14. Transformation of (2.4) and (2.5) when a is negative

In this section we show how (2.4) and (2.5) can be transformed to
equations of the type of (6.10) and (7.9) when - 1 < a <0. In this case the
transformed equations may, in general, be no better than (2.4) and (2.5) for
numerical computation by methods other than iteration; for, when - 1 < a <
0, the latter equations have positive continuous kernels and hence should be
quite satisfactory for the calculation of pi(r) and pi(r). However, in the
important case n = 0 the transformed equations have kernels which are
simpler than those in (2.4) and (2.5). Also, the right hand sides of the
transformed equations are simpler than the corresponding terms in (2.4) and
(2.5), whatever the value of n.

Putting a = — (3 in (2.4) and (2.5) we obtain

' + ' In2 - r2V

= kl(r)+hl(r) for r < a, (14.1)

2sin7r/3 f r~"sn+l {r2 - b2f
M r ) ^ l f s l b

= k2(r)+h2(f) for r > b, (14.2)

and 0< /3 < 1. Transforming these equations by the Abel equations

for r<a, (14.3)

f o r r > b ( 1 4 5 )

f o r r>b>

it follows that
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2sin7r/31 d f° (a2- pYpdp
TT r dr ) , (p2 — r2)"

f"a'-(52-aV
J> * 2 - p 2

2sin-7r/31 d fr ( p 2 -

[22]

for r<a, (14.7)

1 d (' (p2 — b2)ppdp
rdr)b (r2-Py

f s'+"(b2- s2)~"
4 TJ—pl(s)ds = d2(r) for r>b, (14.8)

Jo P s

7T

f s'+"(b2

4
where

r dr ) , ( p 2 ~ r2 dp for r < a , (14.9)

for r>b. (14.10)

Changing the order of integration in (14.7) and (14.8) and using (A2) we
obtain

g,(r)-rf,(r)= - 2 p f . 2
S

 2V+Iip2(s)ds for r < a, (14.11)
Jb (s - r )

g 2(r) - d2(r) = 2/3 f 2 for r > 6. (14.12)

Substituting for p,(r) and p2(^) from (14.4) and (14.6), changing the order of
integration and using (A2) we may write (14.11) and (14.12) in the form

gi(r)-d,(r)

4/3 sin 7T

4/3 sin

for r<a, (14.13)

/1+2n

for (14.14)
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We now consider the functions d^r) and d2{r). From (2.6) it follows that

1 d {" p-""fc,(p) _, 2sin TT/31 d f° (a2~pY

f s~n+'(s2- a2Yp

i s 5 \ _ " ' po(s)ds for r<a.

Changing the order of integration and using (A2)

Also, using (2.10)

rdr]r

-2fi \ d\ d [" p
V{fi)2~rdr), (p>-r2r

x \ \ , r 1,-^,(1) dt (14.16)
Jo ^ — I )

where (Al) has been used to obtain (14.17) from (14.16). Use of (14.9), (14.15)
and (14.17) now yields, for r < a

rb j -n + l

d,(r) = 2aj ^2 _.rzy-a po(t)dt

^ ^ ' ^ l ' ^ ^ ) * (14-18)

where we have replaced /3 by — a.
Similarly, from (2.7) and using (A2)

2 sin 77/31 d f *, , , * , . , , „ „ , . . .
po(s)d577

= 2 / 3 I (r2-52)'*gPo(

Also, using (Al) and (2.11)
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[' pt+"Hp)

( 1 4 2 0 >

Hence, using (14.10), (14.19), (14.20) and replacing /3 by - a, for r > b

d2(r)= -2aj 2_ f2 ,_„ po{t) dt

? H h « r ( i + a) 2n+2o r <-"" M , , n
2 T ( l - a ) ' Jr 0 2_ r 2 ) 1 + .9 2 (0*, (14.21)

Finally, in equations (14.13) and (14.14) we put /3 = - a, g,(r) =
- 2a/,(r) and g2(r) = 2a/2(r) to obtain

f o r r < f l ' ( 1 4-2 2 )

It is apparent that, except for the final terms on the right sides, these
coupled Fredholm equations are identical with the pair (6.10) and (7.9). When
n = 0 they reduce to

^ for r<a' (14"24)
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\a (r2-t2)'-adt

_2jr(l + a}^ f t
2v+aq2{t)dt for r > b. (14.25)

r ( l - a ) Jr (f - r )

Thus, in the important case « = 0, equations (14.22) and (14.23) have kernels
which are simpler than the kernels in (2.4) and (2.5). Also their right hand
sides are simpler than those of (2.4) and (2.5), whether n = 0 or not.

15. An application — the annulus crack

In order to demonst ra te an application of equations (6.10) and (7.9) we

consider the problem of determining the stress field in an infinite homogene-

ous isotropic material with a circular annulus crack. Referred to axisymmetric

cylindrical coordinates r, z we suppose the crack occupies the region a < r <

b on z = 0. Because of the symmetry involved, we need only consider the

upper half-space z > 0 . The components of stress and displacement may be

expressed in terms of one harmonic function <t>(r, z ) (see Green and Z e r n a [7],

page 171). In particular, the components of displacement and stress uz and crzz

are related to <t> by the equat ions

2fiuz = z——5-— 2(1 - 17)——, (15.1)

33<t> <?24> ,.r^

where /x is the shear modulus and 17 is Poisson's ratio. The boundary
conditions on z = 0 are

uz = 0 for r < a and r > b, (15.3)

(rzz = - po(r) for a < r < b, (15.4)

where po(O is given. Also all components of stress and displacement must
vanish as (r2 + z2)'—»°°. Hence we need to find a harmonic function, vanishing
at infinity and such that, on z = 0,

4 ^ = 0 for r<a and r > b, (15.5)

^=po(r) for a<r<b. (15.6)
oz
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A suitable choice of <t>(r, 2) is

<P(r,z)=\ X-'e-A'A(\)J0(\r)d\, (15.7)

where A (A) is a function to be determined, of suitable behaviour near 0 and 00
to ensure convergence. With this choice of 4> the condition at infinity is
automatically satisfied while the conditions (15.5) and (15.6) yield

A(\)J0(Ar)d\ =0 for r < a, (15.8)

\A (A)Jo(Ar) d\ = po(r) for a < r < b, (15.9)

A(A)/0(Ar)dA = 0 for r > b. (15.10)

These equations are the case of (1.1) to (1.3) with n = 0, a = k, qx(r) = 0 and
q2(r) = 0, so that the relevant results of the previous sections are applicable.

The physical quantity of greatest interest in this problem is the normal
stress azz on the plane 2 = 0 near the crack edges at r = a and r = b. Now azz

on the plane 2 = 0 is given by the expression

azz=-\ AA(A)J0(Ar)dA, (15.11)
Jo

and hence we require information about the value of this integral as r—* a -
and r—» b + . Referring to (2.1) and (2.2), this depends on the behaviour of
p,(r) as r —* a — and of p2(r) as r—* b + .

This information is most readily obtained from the transformed coupled
Fredholm equations (6.10) and (7.9) since, using (6.1), (6.2) and (Al), we
obtain, when n = 0 and a = |,

n ( a 2 - r 2 ) > i r r d r ) , ( t 2 - r2f> dt fOT r<U

a n d
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assuming the existence oi f,(a) and f2(b), which will be established presently.
In view of (2.1), (2.2) and (15.11) to (15.13) it is likely, and will also be justified
below, that, on z = 0,

<r,,~ - - ft*L as r^ fc+ . (15.15)
TT (r — o y

Hence it is apparent that the Fredholm equations (6.10) and (7.9) immediately
give the asymptotic behaviour of the stress field near the edges of the crack.

In the important case of constant applied normal stress po(r) = p0 (this
case is important because, by superimposing a uniform stress field CTZZ = p0 we
may obtain the stress field round a stress free annular crack which is being
opened by a uniform normal tension p0 at infinity) equations (6.10) and (7.9)
simplify to

for r<a, (15.16)

for r>b (15.17)

and the corresponding uncoupled equations are

for 0<x<k, (15.18)

for 0<x<k, (15.19)

where r = ex and s = c/t have been substituted in (15.16), and r = c/x and
5 = ct in (15.17) and

C'X) (15.20)
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SO that

fc)-/-(*)}. (15.21), (15.22)

Since 0 < k < 1, the kernels of (15.18) and (15.19) are continuous; and it
is easily seen by power series expansions that their right hand sides are also
continuous i n O ^ x g f c if suitably defined at x =0. These equations conse-
quently have unique continuous solutions for /+(*) and f-(x) in O^x^k.
This with (15.21) and (15.22), justifies the existence of fi(a) and f2(b) assumed
in (15.12) and (15.13), and also proves the continuity of /+ and /_ and of f, and

h-
To justify (15.14) and (15.15) as valid deductions from (15.12) and (15.13),

we need to know that /i(r) and /2(r) have continuous derivatives in half-
neighbourhoods of a and b respectively. This property follows from the
continuous differentiability of /+(*) and /-(*) m a half-neighbourhood of k,
which is apparent from (15.18) and (15.19).

We can now justify (15.14) by showing that the last term in (15.12) tends
to 0 as r —* a - . Integrating by parts,

rdr), (t2-r2y

using the boundedness of /!(f). The last expression tends to 0 as r—*a —
justifying (15.14). A similar justification for (15.15) could be given.

Appendix: evaluations of integrals

Al. Abel's Integral Equation. Standard pairs of inversion formulae, sup-
posing that 0 < a < 1 and 0 g a < r < i > § ° ° , are:

a d

A , -, 2sin7ro d f"and g ( r ) = ^

From these follow
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ff(r)
d

287

2 sin Trap 1 [d f'

2sin7ra f 1 j d (

2 sin-

A2. If 0 < a < 1, s g 0 and 0 < a < b < <*> then

f -pdp =

v

- 7 7

L 2 sin

if s > b,

if s < a.

/P2-p2Y
2 sin

. 2 sin -

2 sin

if s< a.

_ 7 L _ r i / a 2 - 5 2 \ ° l .,
T-: 1 - (TI j if S < a.
2s\nna I \b - s / J

The first pair of these formulae can be obtained by the substitutions

P 2 =a 2 + ( f o 2 - a > , U=Y^, t> = ^2_Q2*v.

In the second pair we write y = 1 - a, and use

(ft2 - Pr = ( ^ - Py-y=Kb2 - s2)+(s2 - P
2)}(b2 - p2r.

This gives the sum of two integrals, one of which is evaluated immediately
from the first pair of formulae and the other from the beta-gamma relation.

The third pair can be treated similarly.

A3. If a > 0, s > r > 0 and n > - 1,
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I U2n+\r2 - U2)"~\s2 - U2)'<l+a> du
Jo

f" (r2 -

a) \ sa-A) if
s /

The first of these integrals follows immediately from Euler's integral for
the hypergeometric function. The second can be obtained from the first by
making the substitution u — rs/t.
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