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First we give a counterexample showing that recent results on separate order
continuity of Arens extensions of multilinear operators cannot be improved to get
separate order continuity on the product of the whole of the biduals. Then we
establish conditions on the operators and/or on the underlying Riesz spaces/Banach
lattices so that the extensions are order continuous on the product of the whole
biduals. We also prove that all Arens extensions of any regular multilinear operator
are order continuous in at least one variable and we study when Arens extensions of
regular homogeneous polynomials on a Banach lattice E are order continuous
on E∗∗.
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1. Introduction

The second adjoint u∗∗ of a linear operator u, which is a bidual extension of u,
is a powerful tool in several areas of mathematics. For multilinear operators, this
role has been played by Arens extensions. This has been extensively studied over
the past 70 years since its introduction by Arens in his seminal paper, [3]. In
order to state the two recent results that have motivated our work, let us fix some
notation. By E∼ we denote the order dual of a Riesz space E, hence E∼∼ = (E∼)∼

denotes its second order dual. For a Banach lattice E, E∗ denotes its topological
dual, hence E∗∗ stands for its bidual. The symbols (E∼)∼n and (E∗)∗n stand for the
corresponding subspaces formed by the order continuous functionals. The results
that motivated our research are the following:

• Buskes and Roberts (2019) [10, Theorem 3.4]: If A : E1 × · · · ×Em −→ F is an
m-linear operator of order bounded variation between Riesz spaces, then its Arens
extension A∗[m+1] : E∼∼

1 × · · · ×E∼∼
m −→ F∼∼ is separately order continuous on

(E∼
1 )∼n × · · · × (E∼

m)∼n .
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2 G. Botelho and L. A. Garcia

• Boyd, Ryan and Snigireva (2021) [7, Theorem 1]: If A : E1 × · · · ×Em −→ F is
a regular m-linear operator between Banach lattices, with F Dedekind complete,
then its Arens extension A∗[m+1] : E∗∗

1 × · · · ×E∗∗
m −→ F ∗∗ is separately order

continuous on (E∗
1 )∗n × · · · × (E∗

m)∗n.

The obvious question is whether or not these results can be improved to get order
continuity on E∼∼

1 × · · · ×E∼∼
m and E∗∗

1 × · · · ×E∗∗
m , respectively. By means of a

simple but efficient counterexample we show that this is not the case (cf. Section 3).
Actually the counterexample, which is the bilinear form A on �1 × c0 given by the
duality c∗0 = �1, discloses an interesting phenomenon: its Arens extension A∗∗∗ is
not separately order continuous on �∗∗1 × c∗∗0 (more precisely, it is order continuous
in the first variable but not in the second one), while the other Arens extension of
A is. We then proceed to find conditions on the operator and/or on the underlying
spaces so that all Arens extensions are separately order continuous on the product
of the whole of the biduals. In § 4 we prove that this holds for finite sums of
multiplicative operators from Riesz spaces to Archimedean f -algebras, in particular
for operators of finite type between arbitrary Riesz spaces. The main result of
§ 4 (Theorem 4.6): (i) implies that all Arens extensions of any regular multilinear
operator between Riesz spaces are order continuous in at least one variable, (ii)
implies that all Arens extensions of a regular homogeneous polynomial from the
Riesz space E to a Riesz space F are order continuous at the origin on E∼∼, (iii)
improves the results of Boyd, Ryan and Snigireva and of Buskes and Roberts for
regular operators (see Remark 4.7). In the final § 5 we give sufficient conditions on
the Banach lattices E1, . . . , Em so that Arens extensions of any regular m-linear
operator from E1 × · · · ×Em to an arbitrary Banach lattice F are separately order
continuous on E∗∗

1 × · · · ×E∗∗
m ; and conditions so that Arens extensions of regular

homogeneous polynomials on a Banach lattice E are order continuous on E∗∗.
In § 2 we discuss briefly the notion of order continuity of linear operators and

recall the characterization of the Arens extensions of regular multilinear operators
between Riesz spaces that shall fit our purposes. Although these extensions are usu-
ally called Aron-Berner extensions in the case of operators between Banach spaces
(see [4, 13]), for simplicity we shall refer to Arens extensions even for operators
between Banach lattices.

2. Background

Our references to Riesz spaces, Banach lattices and regular linear operators are the
canonical ones [2, 17, 19].

The following three definitions of order convergence can be found in the literature
(see [1]). A net (xα)α∈Ω in a Riesz space E is said to be:

• order convergent to x ∈ E if there is a net (yα)α∈Ω in E such that yα ↓ 0 and
|xα − x| � yα for every α ∈ Ω.

• 1-convergent to x ∈ E if there are a net (yα)α∈Ω in E and α0 ∈ Ω such that
yα ↓ 0 and |xα − x| � yα for every α � α0.

https://doi.org/10.1017/prm.2023.89 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.89


Order continuity of Arens extensions of regular multilinear operators 3

• 2-convergent to x ∈ E is there are a net (yβ)β∈Γ in E such that yβ ↓ 0 and for
every β ∈ Γ there exists α0 ∈ Ω such that |xα − x| � yβ for any α � α0.

If E is Dedekind complete, then the notions of 1-convergence and 2-convergence
coincide [1], but otherwise they may be different (see [1, Example 1.4]).

Order continuity can be considered with respect to any of these three notions
of order convergence: a linear operator T : E −→ F between Riesz spaces is said
to be order continuous (1-order continuous, 2-order continuous, respectively) if
(T (xα))α∈Ω is order convergent (1-convergent, 2-convergent, respectively) to zero in
F whenever (xα)α∈Ω is order convergent (1-convergent, 2-convergent, respectively)
to zero in E.

The following coincidences are known (see [2, Theorem 1.56] or [17, Proposition
1.3.9]):

• If F is Dedekind complete, then T is order continuous if and only if T is 1-order
continuous.

• If E and F are Dedekind complete, then T is order continuous if and only if T
is 1-order continuous if and only if T is 2-order continuous.

In most cases in this paper we will investigate the order continuity of regular
linear operators from E∼∼ to F∼∼, where E and F are Riesz spaces, or from E∗∗

to F ∗∗, where E and F are Banach lattices. Since all these spaces are Dedekind
complete, we are free to use any of the three notions of order continuity. We shall
denote the order convergence by xα

o−→ x.
For the theory of regular multilinear operators and regular homogeneous poly-

nomials we refer to [9, 10, 16]. An m-linear operator A : E1 × · · · ×Em −→ F
is separately order continuous (separately 1-order continuous, separately 2-order
continuous) if for all j ∈ {1, . . . , m} and xk ∈ Ek, k = 1, . . . , m, k �= j, the linear
operator

xj ∈ Ej �→ A(x1, . . . , xm) ∈ F

is order continuous (1-order continuous, 2-order continuous). For the definition of
joint order continuity see [7, p. 234]. If A is a regular operator between Banach
lattices with F Dedekind complete, then A is separately order continuous if and
only if A is jointly order continuous [7, Theorem 2].

Now we recall the description of the Arens extensions of regular multilin-
ear operators between Riesz spaces as presented in [6]. By JE : E −→ E∼∼ we
denote the canonical operator (JE(x)(x′′) = x′′(x)), which happens to be a Riesz
homomorphism.

Given Riesz spaces E1, . . . , Em, F , the space of regular m-linear operators from
E1 × · · · ×Em to F is denoted by Lr(E1, . . . , Em;F ). When F is the scalar field we
write Lr(E1, . . . , Em). We use Sm to denote the set of permutations of {1, . . . , m}.

Let m ∈ N and ρ ∈ Sm be given. For an m-linear form C : E1 × · · · ×Em −→ R,
define the m-linear form

Cρ : Eρ(1) × · · · ×Eρ(m) −→ R, Cρ(x1, . . . , xm) = C(xρ−1(1), . . . , xρ−1(xm)),
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where xj ∈ Eρ(j), j = 1, . . . , m. Furthermore, for each i = 1, . . . , m− 1, and
x′′ρ(i) ∈ E∼∼

ρ(i), consider the regular linear operator

x′′ρ(i) : Lr(Eρ(i), . . . , Eρ(m)) −→ Lr(Eρ(i+1), . . . , Eρ(m)), x′′ρ(i)(B) = x′′ρ(i) ◦Bi,

(2.1)
where Bi : Eρ(i+1) × · · · ×Eρ(m) −→ E∼

ρ(i) is given by

Bi(xi+1, . . . , xm)(xi) = B(xi, xi+1, . . . , xm), for all xj ∈ Eρ(j), j = i, . . . ,m.

In the case i = m we define x′′ρ(m) : E
∼
ρ(m) −→ R by x′′ρ(m)(xρ(m)) = x′′ρ(m)(xρ(m)).

The Arens extension of the regular m-linear operator A : E1 × · · · ×Em −→ F is
the regular m-linear operator ARρ

m(A) : E∼∼
1 × · · · ×E∼∼

m −→ F∼∼ given by

ARρ
m(A)(x′′1 , . . . , x

′′
m)(y′) =

(
x′′ρ(m) ◦ · · · ◦ x′′ρ(1)

)
((y′ ◦A)ρ),

for all x′′1 ∈ E∼∼
1 , . . . , x′′m ∈ E∼∼

m and every y′ ∈ F∼. Although the notation is a
bit different, these are exactly the Arens extensions studied in [6].

According to [6, Theorem 2.2], ARρ
m(A) is a regular m-linear operator

that extends A in the sense that ARρ
m(A) ◦ (JE1 , . . . , JEm

) = JF ◦A. Moreover,
ARρ

m(A) is positive for positive A.
The extension A∗[m+1] from [7, 10] is recovered by considering the permutation

θ(m) = 1, θ(m− 1) = 2, . . . , θ(2) = m− 1, θ(1) = m, that is, ARθ
m(A) = A∗[m+1].

In particular, ARθ
2(A) = A∗∗∗ in the bilinear case m = 2.

3. The counterexample

Consider the positive bilinear form given by the duality bracket (c0, �1):

A : �1 × c0 −→ R, A((xn)∞n=1, (yn)∞n=1) =
∞∑

n=1

xnyn.

The two Arens extensions of A shall be denoted by A∗∗∗ = ARθ
2(A) and ARid

2 (A),
where id is the identity permutation. As announced, we shall prove that ARid

2 (A)
is separately order continuous on �∗∗1 × c∗∗0 and that A∗∗∗ is order continuous in the
first variable but not in the second one. Although everything can be proved directly
to this bilinear form, to avoid unnecessary repetitions we shall apply some results
that will be proved later.

From Theorem 4.6 we know that A∗∗∗ : �∗∗1 × c∗∗0 −→ R is order continuous in the
first variable. Suppose that A∗∗∗ is order continuous in the second variable, that
is, for every x∗∗ ∈ �∗∗1 , the linear functional A∗∗∗(x∗∗, •) : c∗∗0 −→ R, defined by
A∗∗∗(x∗∗, •)(y∗∗) = A∗∗∗(x∗∗, y∗∗), is order continuous. Denoting by ψ : �1 −→ c∗0
the canonical isometric isomorphism, note that ψ and ψ−1 : c∗0 −→ �1, ψ−1(ϕ) =
(ϕ(en))∞n=1, are positive operators, hence ψ is a Riesz homomorphism [2, Theorem
2.15]. Moreover, ψ(x) = Aθ(•, x) for every x ∈ �1, where Aθ(•, x) : c0 −→ R is given
by Aθ(•, x)(y) = Aθ(y, x).

Claim 1. ψ∗∗(x∗∗) = A∗∗∗(x∗∗, •) for every x∗∗ ∈ �∗∗1 .
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Indeed, given y∗∗ ∈ c∗∗0 and x ∈ �1, noting that A1
θ : �1 −→ c∗0 is given by

A1
θ(x)(y) = Aθ(y, x), we have A1

θ(x) = Aθ(•, x), hence

ψ∗(y∗∗)(x) = y∗∗(ψ(x))

= y∗∗(Aθ(•, x)) = y∗∗(A1
θ(x)) = (y∗∗ ◦A1

θ)(x) = y∗∗(Aθ)(x),

proving that ψ∗(y∗∗) = y∗∗(Aθ). Therefore, for x∗∗ ∈ �∗∗1 and y∗∗ ∈ c∗∗0 , bearing in
mind that A∗∗∗ = ARθ

2(A) ,

ψ∗∗(x∗∗)(y∗∗) = x∗∗(ψ∗(y∗∗))

= x∗∗(y∗∗(Aθ)) = ARθ
2(A)(x∗∗, y∗∗) = A∗∗∗(x∗∗, •)(y∗∗).

Claim 2. x∗∗ ∈ �∗∗1 is order continuous on �∗1 if and only if ψ∗∗(x∗∗) ∈ c∗∗∗0 is order
continuous on c∗∗0 .

Let x∗∗ ∈ �∗∗1 be such that ψ∗∗(x∗∗) ∈ c∗∗∗0 is order continuous on c∗∗0 . Supposing
that x∗∗ fails to be order continuous on �∗1, the positive functional |x∗∗| ∈ �∗∗1 is not
order continuous on �∗1 either [2, Theorem 1.56]. Then there is a net (x∗α)α∈Ω in �∗1
such that x∗α ↓ 0 but inf

α∈Ω
|x∗∗|(x∗α) > 0. For each α ∈ Ω let y∗∗α ∈ c∗∗0 be such that

ψ∗(y∗∗α ) = x∗α. Thus

y∗∗α = (ψ∗)−1(x∗α) = (ψ−1)∗(x∗α) ↓ 0 in c∗∗0

because (ψ−1)∗ is positive and order continuous [2, Theorem 1.73]. By assumption
ψ∗∗(x∗∗) is order continuous on c∗∗0 , so is |ψ∗∗(x∗∗)| [2, Theorem 1.56]. Since ψ is a
Riesz homomorphism, ψ∗∗ is as well, so ψ∗∗(|x∗∗|)(y∗∗α ) = |ψ∗∗(x∗∗)|(y∗∗α ) ↓ 0, from
which it follows that

0 = inf
α∈Ω

ψ∗∗(|x∗∗|)(y∗∗α ) = inf
α∈Ω

|x∗∗|(ψ∗(y∗∗α )) = inf
α∈Ω

|x∗∗|(x∗α) > 0.

This contradiction proves that x∗∗ ∈ �∗∗1 is order continuous on �∗1 . The reverse
implication if straightforward.

Claim 3. �∗∗1 contains a functional that fails to be order continuous on �∗1.
Let c be the space of convergent real sequences and consider the positive linear

functional ϕ ∈ c∗ given by ϕ((xn)∞n=1) = lim
n→∞xn. Since c is a majorizing subspace

of �∞, ϕ admits a positive extension ϕ̃ ∈ �∗∞ [2, Theorem 1.32]. Suppose that ϕ̃ is σ-
order continuous on �∞. For each n ∈ N let xn = (1, . . . , 1, 0, . . .) = e1 + · · · + en ∈
c and y = (1, 1, . . .) ∈ c. Note that 0 � xn ↑ y and, since ϕ̃ is a positive σ-order
continuous operator, 0 � ϕ̃(xn) ↑ ϕ̃(y) (see [2, p. 46]). So,

1 = ϕ̃(y) = sup
n∈N

ϕ̃(xn) = 0,

which proves that ϕ̃ ∈ �∗∞ is not σ-order continuous on �∞. Considering the canoni-
cal Riesz isomorphism φ : �∞ −→ �∗1, there is z∗∗ ∈ �∗∗1 such that φ∗(z∗∗) = ϕ̃. Since
ϕ̃ ∈ �∗∞ fails to be σ-order continuous, there is a sequence (zn)∞n=1 in �∞ such that
zn ↓ 0 and inf

n∈N

ϕ̃(zn) > 0. Furthermore, for each n ∈ N there is y∗n ∈ �∗1 such that

φ−1(y∗n) = zn, hence y∗n = φ(zn) ↓ because φ is positive, so 0 � y∗n ↓. Suppose that

https://doi.org/10.1017/prm.2023.89 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.89


6 G. Botelho and L. A. Garcia

there exists y∗ ∈ �∗1 such that 0 < y∗ � y∗n for every n ∈ N. On the one hand, as
φ−1 is positive,

0 � φ−1(y∗) � φ−1(y∗n) = zn for every n,

from which we conclude that φ−1(y∗) = 0, and so y∗ = 0 because φ−1 is injective.
This shows that y∗n ↓ 0 in �∗1. On the other hand,

inf
n∈N

z∗∗(y∗n) = inf
n∈N

(φ∗)−1(ϕ̃)(y∗n)

= inf
n∈N

(φ−1)∗(ϕ̃)(y∗n) = inf
n∈N

ϕ̃(φ−1(y∗n)) = inf
n∈N

ϕ̃(zn) > 0,

proving that z∗∗ is not order continuous on �∞, as claimed.
Finally, combining claims 1 and 2 we have that A∗∗∗(z∗∗, •) = ψ∗∗(z∗∗) is not

order continuous on c∗∗0 . We have established that A∗∗∗ is order continuous in the
first variable and fails to be order continuous in the second variable.

As to the other Arens extension of A, namely ARid
2 (A) : �∗∗1 × c∗∗0 −→ R, since

c∗0 = �1 has order continuous norm, Corollary 5.1 guarantees that ARid
2 (A) is

separately order continuous, hence jointly order continuous by [7, Theorem 2].
Since the bilinear form A is regular and of bounded order variation, this example

shows that the results of Buskes and Roberts and of Boyd, Ryan and Snigireva
quoted in the introduction cannot be improved to get separate order continuity on
the product of the whole biduals.

4. Operators between Riesz spaces

In this section we present our results on order continuity to the whole of the bidual
of Arens extensions of multilinear operators on Riesz spaces. The main result of
the section, namely Theorem 4.6, is a multipurpose result: in this section it will
be used to prove that Arens extensions of regular homogeneous polynomials are
always order continuous at the origin on the whole of the bidual of the domain
space, to extend [7, Theorem 1] and to show that Arens extensions are always
order continuous in at least one variable. Furthermore, Theorem 4.6 will be helpful
a couple of times in the next section.

Recall that a Riesz algebra A is a Riesz space which is an associative algebra
with respect to a product ∗ such that x ∗ y � 0 for all x, y ∈ A+. And that a Riesz
algebra (A, ∗) is an f-algebra if x ∧ y = 0 in A implies that (x ∗ z) ∧ y = (z ∗ x) ∧
y = 0 for every z ∈ A+. The following Riesz spaces are f–algebras: R, C(X) and
Cb(X)-spaces, where X is a topological space, �∞(X) and R

X -spaces, where X is a
nonempty set, L∞(μ)-spaces, and spaces of measurable functions on measure spaces
(see [2, p. 126]). If (A, ∗) is an f -algebra, then the Arens product � , defined as
follows, makes A∼∼ an f -algebra [20]: for x ∈ A, y′ ∈ A∼ and x′′, y′′ ∈ A∼∼,

y′ · x : A −→ R, (y′ · x)(y) = y′(x ∗ y).
x′′ � y′ : A −→ R, (x′′ � y′)(y) = x′′(y′ · y).
x′′ � y′′ : A∼ −→ R, (x′′ � y′′)(z′) = x′′(y′′ � z′).
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An operator A ∈ Lr(E1, . . . , Em;A) is multiplicative if there are regular lin-
ear operators Ti : Ei −→ A, i = 1, . . . , m, such that A(x1, . . . , xm) = T1(x1) ∗ · · · ∗
Tm(xm) for all x1 ∈ E1, . . . , xm ∈ Em.

Since Arens extensions ARρ
m(A) of multilinear operators A are mappings between

Dedekind complete spaces, we can use any of the three notions of order continuous
linear operators to investigate the separate order continuity of ARρ

m(A).

Proposition 4.1. Let E1, . . . , Em be Riesz spaces and (A, ∗) be an Archimedean
f-algebra. If A ∈ Lr(E1, . . . , Em;A) is a finite sum of multiplicative operators,
then all Arens extensions of A, ARρ

m(A), ρ ∈ Sm, coincide and are separately order
continuous.

Proof. Given a multiplicative operator B ∈ Lr(E1, . . . , Em;A), let Ti : Ei −→
A, i = 1, . . . , m, be such that B(x1, . . . , xm) = T1(x1) ∗ · · · ∗ Tm(xm) for all x1 ∈
E1, . . . , xm ∈ Em. By [6, Remark 3.3 and the proof of Theorem 3.2] we have that,
for each ρ ∈ Sm and all x′′1 ∈ E∼∼

1 , . . . , x′′m ∈ E∼∼
m ,

ARρ
m(B)(x′′1 , . . . , x

′′
m) = T ′′

ρ(m)(x
′′
ρ(m)) � · · · � T ′′

ρ(1)(x
′′
ρ(1)).

The Arens product � makes A∼∼ a Dedekind complete, hence Archimedean,
commutative f -algebra [20, Corollaries 3.5 and 3.6], so

ARρ
m(B)(x′′1 , . . . , x

′′
m) = T ′′

1 (x′′1) � · · · � T ′′
m(x′′m),

which gives, in particular, that all Arens extensions of A coincide. In order to check
that ARρ

m(B) is separately order continuous, let j ∈ {1, . . . .m}, x′′i ∈ E∼∼
i , i =

1, . . . , m, with i �= j be given and let (x′′αj
)αj∈Ωj

be a net in E∼∼
j such that x′′αj

o−→
0. There exists a net (z′′αj

)αj∈Ωj
such that z′′αj

↓ 0 and |x′′αj
| � z′′αj

for every αj ∈ Ωj .
The functional

ϕ := |T ′′
1 (x′′1)| � · · · � |T ′′

j−1(x
′′
j−1)| � |T ′′

j+1(x
′′
j+1)| � · · · � |T ′′

m(x′′m)| ∈ A∼∼

is positive. Using again that the product � is commutative and [2, Exercise 12,
p. 131],

|ARρ
m(B)(x′′1 , . . . , x

′′
αj
, . . . , x′′m)| = |T ′′

1 (x′′1) � · · · � T ′′
j (x′′αj

) � · · · � T ′′
m(x′′m)|

= |T ′′
1 (x′′1)| � · · · � |T ′

j−1(x
′′
j−1)| � |T ′′

j (x′′αj
)| � |T ′′

j+1(x
′′
j+1)| � · · · � |T ′′

m(x′′m)|
= |T ′′

j (x′′αj
)| � (|T ′′

1 (x′′1)| � · · · � |T ′′
j−1(x

′′
j−1)| � |T ′′

j+1(x
′′
j+1)| � · · · � |T ′′

m(x′′m)|)
= |T ′′

j (x′′αj
)| � ϕ � |T ′′

j |(|x′′αj
|) � ϕ � |T ′′

j |(z′′αj
) � ϕ.

Now it is enough to prove that |T ′′
j |(z′′αj

) � ϕ ↓ 0. Let 0 � y′ ∈ A∼ be given. Then
ϕ � y′ is positive and, since |T ′′

j | is order continuous and positive [2, Theorems 1.56
and 1.73], (|T ′′

j |(z′′αj
) � ϕ

)
(y′) = |T ′′

j |(z′′αj
)(ϕ � y′) ↓ 0,

from which it follows that (|T ′′
j |(z′′αj

) � ϕ) ↓ 0 [2, Theorem 1.18] and gives the
separate order continuity of ARρ

m(B).
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The linearity of the correspondence A �→ ARρ
m(A) gives the result for finite sums

of multiplicative operators. �

Since scalar-valued Riesz multimorphisms are multiplicative [14, Theorem 6],
Proposition 4.1 yields the following.

Corollary 4.2. All Arens extensions of a finite sum of scalar-valued Riesz
multimorphisms coincide and are separately order continuous.

An operator A ∈ Lr(E1, . . . , Em;F ) is of finite type if there are n ∈ N, function-
als ϕi

j ∈ E∼
i and vectors yj ∈ F , j = 1, . . . , n, i = 1, . . . , m, such that

A(x1, . . . , xm) =
n∑

j=1

ϕ1
j (x1) · · ·ϕm

j (xm)yj for all xi ∈ Ei, i = 1, . . . ,m.

Corollary 4.3. All Arens extensions of a multilinear operator of finite type
coincide, are of finite type and are separately order continuous.

Proof. It is not difficult to check that if A ∈ Lr(E1, . . . , Em) is separately order
continuous and y ∈ F , then the operator

(x1, . . . , xm) ∈ E1 × · · · ×Em �→ A(x1, . . . , xm)y ∈ F,

is separately order continuous as well. Now the result follows from Proposition 4.1
and from its proof. �

To proceed to the main results of the section we need some preparation.

Lemma 4.4. Let E1, . . . , Em, F be Riesz spaces with F Dedekind complete and
(Bα)α be a net in Lr(E1, . . . , Em;F ). Then Bα ↓ 0 if and only if Bα(x1, . . . , xm) ↓
0 in F for all x1 ∈ E+

1 , . . . , xm ∈ E+
m.

Proof. It is straightforward that Bα ↓ 0 if Bα(x1, . . . , xm) ↓ 0 in F for all x1 ∈
E+

1 , . . . , xm ∈ E+
m. We prove the other implication by induction on m. The case

m = 1 follows from the Riesz-Kantorovich theorem [2, Theorem 1.18]. Assume that
the result holds for n and let (Bα)α be a net in Lr(E1, . . . , En+1;F ) such that
Bα ↓ 0. Consider the canonical Riesz isomorphism

ψ : Lr(E1, . . . , En+1;F ) −→ Lr(E1;Lr(E2 . . . , En+1;F )).

We have 0 � ψ(Bα) ↓ because ψ is positive. Let T ∈ Lr(E1;Lr(E2 . . . , En+1;F ))
be such that 0 � T � ψ(Bα) for every α. Since ψ−1 is positive, 0 �
ψ−1(T ) � Bα ↓ 0, hence 0 � ψ−1(T ) � 0, which proves that ψ(Bα) ↓ 0 in
Lr(E1;Lr(E2 . . . , En+1;F )). The linear case of the result gives that ψ(Bα)(x1) ↓ 0
in Lr(E2 . . . , En+1;F ) for every x1 ∈ E+

1 . The induction hypothesis gives that,
regardless of the x2 ∈ E+

2 , . . . , xn+1 ∈ E+
n+1,

Bα(x1, x2, . . . , xn+1) = ψ(Bα)(x1)(x2, . . . , xn+1) ↓ 0,

completing the proof. �
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Lemma 4.5. Let E1, . . . , Em be Riesz spaces, ρ ∈ Sm, k ∈ {1, . . . , m− 1} and
x′′ρ(k) ∈ (E∼

ρ(k))
∼
n . Then the operator

x′′ρ(k) : Lr(Eρ(k), . . . , Eρ(m)) −→ Lr(Eρ(k+1), . . . , Eρ(m)),

defined in (2.1), is order continuous.

Proof. We already know that x′′ρ(k) is a regular linear operator,
∣∣x′′ρ(k)

∣∣ � |x′′ρ(k)|
because Bk is positive for every positive B ∈ Lr(Eρ(k), . . . , Eρ(m)), so

|x′′ρ(k)|(B) = |x′′ρ(k)| ◦Bk � ±x′′ρ(k) ◦Bk = ±(x′′ρ(k) ◦Bk
)

= ±x′′ρ(k)(B).

Let (Aα)α∈Ω be a net in Lr(Eρ(k), . . . , Eρ(m)) such that Aα
o−→ 0. Then there are a

net (Bα)α∈Ω in Lr(Eρ(k), . . . , Eρ(m)) and α0 ∈ Ω such that Bα ↓ 0 and |Aα| � Bα

for every α � α0. Thus,∣∣x′′ρ(k)(Aα)
∣∣ � ∣∣x′′ρ(k)

∣∣(|Aα|) � |x′′ρ(k)|(|Aα|) � |x′′ρ(k)|(Bα) for every α � α0.

For xi ∈ E+
ρ(i), i ∈ {k, . . . , m}, Lemma 4.4 gives

Bk
α(xk+1, . . . , xm)(xk) = Bα(xk, xk+1, . . . , xm) ↓ 0.

By [2, Theorem 1.18] it follows that Bk
α(xk+1, . . . , xm) ↓ 0. Since x′′ρ(k) is an order

continuous functional, |x′′ρ(k)| is a positive order continuous operator [2, Theorem

1.56], so |x′′ρ(k)|(Bk
α(xk+1, . . . , xm)) ↓ 0, that is, |x′′ρ(k)|(Bα)(xk+1, . . . , xm) ↓ 0.

Calling on Lemma 4.4 once again it follows that |x′′ρ(k)|(Bα) ↓ 0, proving that x′′ρ(k)

is order continuous. �

Theorem 4.6. Let E1, . . . , Em, F be Riesz spaces, ρ ∈ Sm and A ∈ Lr(E1, . . . ,
Em;F ).

(a) For all j ∈ {1, . . . , m}, x′′ρ(i) ∈ E∼∼
ρ(i), i = 1, . . . , j − 1, and x′′ρ(i) ∈ (E∼

ρ(i))
∼
n , i =

j + 1, . . . , m, the operator

x′′ρ(j) ∈ E∼∼
ρ(j) �→ ARρ

m(A)(x′′1 , . . . , x
′′
ρ(j), . . . , x

′′
m) ∈ F∼∼ (4.1)

is order continuous on E∼∼
ρ(j).

(b) ARρ
m(A) is separately order continuous on (E∼

1 )∼n × · · · × (E∼
m)∼n .

(c) ARρ
m(A) is order continuous in the ρ(m)-th variable on the whole of E∼∼

ρ(m).

Proof. It is clear that (b) and (c) follow from (a) (for (c) just take j = m
in (a)). To prove (a), take j ∈ {1, . . . , m}, x′′ρ(i) ∈ E∼∼

ρ(i), i = 1, . . . , j − 1, and
x′′ρ(i) ∈ (E∼

ρ(i))
∼
n , i = j + 1, . . . , m. Given a net (x′′αρ(j)

)αρ(j)∈Ωρ(j) in E∼∼
ρ(j) such that

x′′αρ(j)

o−→ 0, there is a net (z′′αρ(j)
)αρ(j)∈Ωρ(j) in E∼∼

ρ(j) and αρ(j)0 such that z′′αρ(j)
↓ 0

and |x′′αρ(j)
| � z′′αρ(j)

for every αρ(j) � αρ(j)0 . Let A1, A2 ∈ Lr(E1, . . . , Em;F ) be
positive operators such that A = A1 −A2 and put B := A1 +A2. Of course B is
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positive. Denoting the operator in (4.1) by ARρ
m(A)x′′

ρ(1), ..., x′′
ρ(j−1), x′′

ρ(j+1), ..., x′′
ρ(m)

,
for every αρ(j) � αρ(j)0 ,

|ARρ
m(A)x′′

ρ(1),...,x
′′
ρ(j−1),x

′′
ρ(j+1),...,x

′′
ρ(m)

(x′′αρ(j)
)| = |ARρ

m(A)(x′′1 , . . . , x
′′
αρ(j)

, . . . , x′′m)|
� |ARρ

m(A)|(|x′′1 |, . . . , |x′′αρ(j)
|, . . . , |x′′m|)

= |ARρ
m(A1) −ARρ

m(A2)|(|x′′1 |, . . . , |x′′αρ(j)
|, . . . , |x′′m|)

�
(
ARρ

m(A1) +ARρ
m(A2)

)
(|x′′1 |, . . . , |x′′αρ(j)

|, . . . , |x′′m|)
= ARρ

m(B)(|x′′1 |, . . . , |x′′αρ(j)
|, . . . , |x′′m|)

= ARρ
m(B)|x′′

ρ(1)|,...,|x′′
ρ(j−1)|,|x′′

ρ(j+1)|,...,|x′′
ρ(m)|(|x′′αρ(j)

|)
� ARρ

m(B)|x′′
ρ(1)|,...,|x′′

ρ(j−1)|,|x′′
ρ(j+1)|,...,|x′′

ρ(m)|(z
′′
αρ(j)

).

As Arens extensions of positive operators are positive, it follows that

0 � ARρ
m(B)|x′′

ρ(1)|,...,|x′′
ρ(j−1)|,|x′′

ρ(j+1)|,...,|x′′
ρ(m)|(z

′′
αρ(j)

) ↓ .

Setting T := |x′′ρ(m)| ◦ · · · ◦ |x′′ρ(j+1)|, since each |x′′ρ(i)|, i = j + 1, . . . , m, is order

continuous, by Lemma 4.5 it follows that |x′′ρ(i)| is order continuous, so T is order
continuous and positive. On the other hand, it is clear that, for every positive
y′ ∈ F∼,

S :=
(|x′′ρ(j−1)| ◦ · · · ◦ |x′′ρ(1)|

)
((y′ ◦B)ρ) ∈ Lr(Eρ(j), . . . , . . . , Eρ(m))

is positive. From z′′αρ(j)
↓ 0 we conclude that z′′αρ(j)

(S) ↓ 0, therefore T (z′′αρ(j)
(S)) ↓ 0.

It follows that, for every positive y′ ∈ F∼,

ARρ
m(B)|x′′

ρ(1)|,...,|x′′
ρ(j−1)|,|x′′

ρ(j+1)|,...,|x′′
ρ(m)|(z

′′
αρ(j)

)(y′)

= ARρ
m(B)(|x′′1 |, . . . , z′′αρ(j)

, . . . , |x′′m|)(y′)
=
(|x′′ρ(m)| ◦ · · · ◦ |x′′ρ(j+1)| ◦ z′′αρ(j)

◦ |x′′ρ(j−1)| ◦ · · · ◦ |x′′ρ(1)|
)
((y′ ◦B)ρ)

=
(
T ◦ z′′αρ(j)

◦ |x′′ρ(j−1)| ◦ · · · ◦ |x′′ρ(1)|
)
((y′ ◦B)ρ)

= T
((
z′′αρ(j)

◦ |x′′ρ(j−1)| ◦ · · · ◦ |x′′ρ(1)|
)
((y′ ◦B)ρ)

)
= T

(
z′′αρ(j)

((|x′′ρ(j−1)| ◦ · · · ◦ |x′′ρ(1)|
)
((y′ ◦B)ρ)

))
= T (z′′αρ(j)

(S)) ↓ 0.

Lemma 4.4 gives that ARρ
m(B)|x′′

ρ(1)|, ..., |x′′
ρ(j−1)|, |x′′

ρ(j+1)|, ..., |x′′
ρ(m)|(z

′′
αρ(j)

) ↓ 0, and
this allows us to conclude that ARρ

m(A)x′′
ρ(1), ..., x′′

ρ(j−1), x′′
ρ(j+1), ..., x′′

ρ(m)
is order

continuous. �

Remark 4.7. Theorem 4.6 improves [7, Theorem 1] in the sense that it holds
for all Arens extensions, it holds for operators between Riesz spaces, it drops the
assumption of F being Dedekind complete and it assures the order continuity on
the whole bidual in one of the variables. For regular operators, it improves [10,
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Theorem 3.4] by taking into account all Arens extensions and by assuring the order
continuity on the whole bidual in one of the variables. In particular, Theorem 4.6(b)
provides an alternative proof of [7, Theorem 1] and of [10, Theorem 3.4] for regular
operators between Riesz spaces and (c) shows that A∗[m+1] = ARθ

m(A) is order
continuous in the first variable on the whole of E∼∼

1 .

Recall that an m-homogeneous polynomial P : E −→ F between Riesz spaces is
positive if the corresponding symmetric m-linear operator P̌ is positive, and that
P is regular, in symbols P ∈ Pr(mE;F ), if P can be written as the difference of
two positive polynomials.

The Arens extensions of a regular polynomial P ∈ Pr(mE;F ) are the polynomials
associated to the Arens extensions of P̌ , that is: for ρ ∈ Sm, the Arens extension of
P with respect to ρ is the polynomial

ARρ
m(P ) : E∼∼ −→ F∼∼, ARρ

m(P )(x′′) = ARρ
m(P̌ )(x′′, . . . , x′′).

In [10, Theorem 3.5] it is proved that ARθ
m(P ) is order continuous on (E∼)∼n . We

can go a bit further at the origin:

Proposition 4.8. All Arens extensions of a polynomial P ∈ Pr(mE;F ) are order
continuous at the origin on E∼∼, meaning that ARρ

m(P )(x′′α) o−→ 0 in F∼∼ for every
ρ ∈ Sm and any (x′′α)α∈Ω in E∼∼ such that x′′α

o−→ 0 in E∼∼.

Proof. Write P = P1 − P2, where P1 and P2 are positive m-homogeneous poly-
nomials, and let P̌1, P̌2 : Em −→ F be the positive symmetric m-linear operators
associated to P1 and P2, respectively. Let (x′′α)α∈Ω be a net in E∼∼ such that
x′′α

o−→ 0. There are a net (z′′α)α∈Ω in E∼∼ and α0 ∈ Ω such that z′′α ↓ 0 and |x′′α| � z′′α
for every α � α0. For a permutation ρ ∈ Sm, we know from Theorem 4.6 that the
operator

x′′ ∈ E∼∼ �→ ARρ
m(P̌1 + P̌2)(z′′α0

, . . . , z′′α0
, x′′, z′′α0

, . . . , z′′α0
),

where x′′ is placed at the ρ(m)-th coordinate, is order continuous. For α � α0 we
have z′′α � z′′α0

, so, using that ARρ
m(P̌1 + P̌2) is positive,

|ARρ
m(P )(x′′α)| = |ARρ

m(P1 − P2)(x′′α)| = |ARρ
m((P1 − P2)∨)(x′′α, . . . , x

′′
α)|

= |ARρ
m(P̌1 − P̌2)(x′′α, . . . , x

′′
α)| � |ARρ

m(P̌1 − P̌2)|(|x′′α|, . . . , |x′′α|)
� |ARρ

m(P̌1 − P̌2)|(z′′α, . . . , z′′α) � ARρ
m(P̌1 + P̌2)(z′′α, . . . , z

′′
α)

� ARρ
m(P̌1 + P̌2)(z′′α0

, . . . , z′′α0
, z′′α, z

′′
α0
, . . . , z′′α0

) ↓ 0.

This proves that ARρ
m(P )(x′′α) o−→ 0. �

In [8] it is proved that, for a regular homogeneous polynomial, order continuity
at one point does not imply order continuity at every point in general. The result
above shall be useful later.
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5. Operators between Banach lattices

In this section we give conditions on the Banach lattices E1, . . . , Em so that, for
every Banach lattice F , all Arens extensions of any regular m-linear operator from
E1 × · · · ×Em to F are separately order continuous on E∗∗

1 × · · · ×E∗∗
m . Conse-

quences on order continuity of extensions of regular homogeneous polynomials shall
also be obtained.

If the dual E∗ of a Banach lattice E has order continuous norm, then E∗∗ = (E∗)∗n
[17, Theorem 2.4.2]. So, the following is immediate from Theorem 4.6 .

Corollary 5.1. Let E1, . . . , Em, F be Banach lattices, A ∈ Lr(E1, . . . , Em;F )
and ρ ∈ Sm. If E∗

j has order continuous norm for j = 1, . . . , m, j �= ρ(1), then the
Arens extension ARρ

m(A) of A is separately order continuous on E∗∗
1 × · · · ×E∗∗

m .

The next result makes clear what type of condition should be asked to get order
continuity of Arens extensions on the product of the whole of the biduals.

Proposition 5.2. Let m � 2 and E1, . . . , Em be Banach lattices such that the
Arens extension A∗[m+1] of any form A ∈ Lr(E1, . . . , Em) is separately order
continuous on E∗∗

1 × · · · ×E∗∗
m . Then, for every operator T ∈ Lr(Ei;E∗

j ), i, j =
1, . . . , m, i �= j, the functional T ∗∗(x∗∗i ) is order continuous on E∗∗

j for every
x∗∗i ∈ E∗∗

i .

Proof. Let i, j = 1, . . . , m, i �= j, and T ∈ Lr(Ei;E∗
j ) be given. For k =

1, . . . , m, i �= k �= j, choose 0 �= ϕk ∈ E∗
k and consider the regular m-linear form

A : E1 × · · · ×Em −→ R, A(x1, . . . , xm) =

(
m∏

k=1
k 	=i,j

ϕk(xk)

)
T (xi)(xj).

Of course we can assume i < j. Using the Davie–Gamelin description of the
Arens extensions [12], for x∗∗l ∈ E∗∗

l and nets (xαl
)αl∈Ωl

in El such that x∗∗l =
ω∗ − lim

αl

JEl
(xαl

), l = 1, . . . , m, we have

A∗[m+1](x∗∗1 , . . . , x
∗∗
i , . . . , x

∗∗
j , . . . , x

∗∗
m ) = lim

α1
· · · lim

αi

· · · lim
αj

· · · lim
αm

A(xα1 , . . . , xαm
)

= lim
α1

· · · lim
αi

· · · lim
αj

· · · lim
αm

(
m∏

k=1
k 	=i,j

ϕk(xαk
)

)
T (xαi

)(xαj
)

= lim
α1

· · · lim
αi

· · · lim
αj

· · · lim
αm−1

(
m−1∏
k=1

k 	=i,j

ϕk(xαk
)

)
T (xαi

)(xαj
) lim

αm

JEm
(xαm

)(ϕm)
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= lim
α1

· · · lim
αi

· · · lim
αj

· · · lim
αm−1

(
m−1∏
k=1

k 	=i,j

ϕk(xαk
)

)
T (xαi

)(xαj
)x∗∗m (ϕm)

...

=
m∏

k=i+1
k 	=j

x∗∗k (ϕk) lim
α1

· · · lim
αi

(
i−1∏
k=1

ϕk(xαk
)

)
x∗∗j (T (xαi

))

=
m∏

k=i+1
k 	=j

x∗∗k (ϕk) lim
α1

· · · lim
αi−1

(
i−1∏
k=1

ϕk(xαk
)

)
lim
αi

T ∗(x∗∗j )(xαi
)

=
m∏

k=1
k 	=i,j

x∗∗k (ϕk) lim
αi

JEi
(xαi

)(T ∗(x∗∗j )) =

(
m∏

k=1
k 	=i,j

x∗∗k (ϕk)

)
x∗∗i (T ∗(x∗∗j ))

=

(
m∏

k=1
k 	=i,j

x∗∗k (ϕk)

)
T ∗∗(x∗∗i )(x∗∗j ).

Choosing xk ∈ Ek so that ϕk(xk) = 1, i �= k �= j, we get

A∗[m+1](JE1(x1), . . . , x∗∗i , . . . , x
∗∗
j , . . . , JEm

(xm)) = T ∗∗(x∗∗i )(x∗∗j ).

Since A∗[m+1] is separately order continuous by assumption, the functional T ∗∗(x∗∗i )
is order continuous for every x∗∗i ∈ E∗∗

i . �

Although the next results hold, with the obvious modifications, for all Arens
extensions ARρ

m(A) of a regular m-linear operator A, to make the proofs more
readable we shall restrict ourselves to the extension A∗[m+1] = ARθ

m(A).

Lemma 5.3. Let E1, . . . , Em be Banach lattices, A ∈ Lr(E1, . . . , Em) and i ∈
{1, . . . , m}. If x1 ∈ E1, . . . , xi−1 ∈ Ei−1, and x∗∗i+1 ∈ E∗∗

i+1, . . . , x
∗∗
m ∈ E∗∗

m , then
the operator

A∗[m+1](JE1(x1), . . . , JEi−1(xi−1), •, x∗∗i+1, . . . , x
∗∗
m ) : E∗∗

i −→ R

is ω∗-continuous and

A∗[m+1](JE1(x1), . . . , JEi−1(xi−1), x∗∗i , . . . , x
∗∗
m )

=
(
x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)(xi−1, . . . , x1).

Proof. Let (x∗∗αi
)αi∈Ωi

be a net in E∗∗
i such that x∗∗αi

ω∗
−−→ x∗∗i ∈ E∗∗

i . For every
x∗i ∈ E∗

i we have x∗∗i (x∗i ) = lim
αi

x∗∗αi
(x∗i ). Given x1 ∈ E1, . . . , xi−1 ∈ Ei−1 and x∗∗j ∈
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E∗∗
j , j = i+ 1, . . . , m,

A∗[m+1](JE1(x1), . . . , JEi−1(xi−1), x∗∗i , . . . , x
∗∗
m )

=
(
JE1(x1) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

= JE1(x1)
((
JE2(x2) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

)
= JE1(x1)

((
JE2(x2) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

)
=
(
JE2(x2) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)(x1)

= JE2(x2)
((
JE3(x3) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

)
(x1)

= JE2(x2)
(((

JE3(x3) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

)m−1(x1)
)

=
((
JE3(x3) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)

)m−1(x1)(x2)

=
(
JE3(x3) ◦ · · · ◦ JEi−1(xi−1) ◦ x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)(x2, x1)

...

=
(
x∗∗i ◦ · · · ◦ x∗∗m

)
(Aθ)(xi−1, . . . , x1)

= x∗∗i

((
x∗∗i+1 ◦ · · · ◦ x∗∗m

)
(Aθ)

)
(xi−1, . . . , x1)

= x∗∗i

(((
x∗∗i+1 ◦ · · · ◦ x∗∗m

)
(Aθ)

)m−i+1(xi−1, . . . , x1)
)

(Δ)
= lim

αi

x∗∗αi

(((
x∗∗i+1 ◦ · · · ◦ x∗∗m

)
(Aθ)

)m−i+1(xi−1, . . . , x1))

= lim
αi

A∗[m+1](JE1(x1), . . . , JEi−1(xi−1), x∗∗αi
, . . . , x∗∗m ),

where, in (Δ), we used that ((x∗∗i+1 ◦ · · · ◦ x∗∗m )(Aθ))m−i+1(xi−1, . . . , x1) ∈ E∗
i . �

Definition 5.4. Let P be a property of linear functionals on Banach lattices. We
say that:

• A form A : E∗∗
1 × · · · ×E∗∗

m −→ R, where E1, . . . , Em are Banach lattices, has
P-separately if for all j ∈ {1, . . . , m} and x∗∗i ∈ E∗∗

i , i = 1, . . . , m, i �= j, the
functional

Ax∗∗
1 ,...,x∗∗

j−1,x∗∗
j+1,...,x∗∗

m
: E∗∗

j −→ R, x∗∗j �→ A(x∗∗1 , . . . , x
∗∗
m ),

has property P.

• P is an Arens property if, regardless of positive m � 2, the Banach lattices
E1, . . . , Em and the form A ∈ Lr(E1, . . . , Em), the Arens extension A∗[m+1] of
A has P in the first variable, in the sense that the operator A∗[m+1]

x∗∗
2 , ..., x∗∗

m
: E∗∗

1 −→
R has P for all x∗∗2 ∈ E∗∗

2 , . . . , x∗∗m ∈ E∗∗
m .

Example 5.5. Order continuity (Theorem 4.6(c)) and ω∗-continuity [13, p. 413]
are Arens properties.
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Theorem 5.6. Let P be an Arens property, m � 2 and E1, . . . , Em be Banach
lattices. Suppose that:

(a) For j = 2, . . . , m− 1, and i = 1, . . . , m− j, every regular linear operator from
Ej to E∗

j+i is weakly compact;

(b) For all k = 2, . . . , m, x∗∗1 ∈ E∗∗
1 and T ∈ Lr(E1;E∗

k), the functional
T ∗∗(x∗∗1 ) ∈ E∗∗∗

k has property P.

Then, for every form A ∈ Lr(E1, . . . , Em), the Arens extension A∗[m+1] : E∗∗
1 ×

· · · ×E∗∗
m −→ R has P-separately.

Proof. We shall proceed by induction on m. Given A ∈ Lr(E1, E2), A∗∗∗ has prop-
erty P in the first variable because P is an Arens property. Let us prove that, for
every x∗∗1 ∈ E∗∗

1 , A∗∗∗(x∗∗1 , •) ∈ E∗∗∗
2 has property P. Recall that Aθ : E2 × E1 −→

R and consider the regular linear operator T := A1
θ : E1 −→ E∗

2 , T (x2)(x1) =
Aθ(x1, x2). For all x∗∗2 ∈ E∗∗

2 and x2 ∈ E1,

T ∗(x∗∗2 )(x2) = x∗∗2 (T (x2)) = x∗∗2 (A1
θ(x2)) = (x∗∗2 ◦A1

θ)(x2) = x∗∗2 (Aθ)(x2),

that is, T ∗(x∗∗2 ) = x∗∗2 (Aθ). So, for all x∗∗1 ∈ E∗∗
1 , x∗∗2 ∈ E∗∗

2 ,

T ∗∗(x∗∗1 )(x∗∗2 ) = x∗∗1 (T ∗(x∗∗2 )) = x∗∗1
(
x∗∗2 (Aθ)

)
=
(
x∗∗1 ◦ x∗∗2

)
(Aθ) = A∗∗∗(x∗∗1 , x

∗∗
2 ).

Since T ∗∗(x∗∗1 ) has property P by assumption, it follows that A∗∗∗(x∗∗1 , •) has
property P. This shows that the result holds for m = 2.

Assume now that the result holds for n and let us prove it holds for n+ 1. To do
so we suppose that conditions (a) and (b) hold for n+ 1. Let A ∈ Lr(E1, . . . , En+1)
be given. For every x∗∗i ∈ E∗∗

i , i = 2, . . . , n+ 1, we have

x∗∗n−i+2 : Lr(En−i+2, . . . , E1) −→ Lr(En−i+1, . . . , E1), x∗∗n−i+2(B) = x∗∗n−i+2 ◦Bi,

where Bi : En−i+1 × · · · ×E1 −→ E∗
n−i+2, B

i(xi+1, . . . , xn+1)(xi) = B(xi, xi+1,

. . . , xn+1). And for each x∗∗1 ∈ E∗∗
1 , the functional x∗∗1 : E∗

1 −→ R is given by
x∗∗1 = x∗∗1 . Moreover,

A∗[n+2](x∗∗1 , . . . , x
∗∗
n+1) =

(
x∗∗1 ◦ · · · ◦ x∗∗n+1

)
(Aθ) =

(
x∗∗1 ◦ · · · ◦ x∗∗n

)(
x∗∗n+1(Aθ)

)
=
(
x∗∗n+1(Aθ)

)∗[n+1](x∗∗1 , . . . , x
∗∗
n ).

Since x∗∗n+1(Aθ) ∈ Lr(En, . . . , E1), by the induction hypothesis we have
that (x∗∗n+1(Aθ))∗[n+1] has P-separately, so A∗[n+2] has property P in
the first n variables. To prove that A∗[n+2] has property P in the
(n+ 1)-th variable, let x∗∗i ∈ E∗∗

i , i = 1, . . . , n, be given. Our job is to
show that A∗[n+2](x∗∗1 , . . . , x

∗∗
n , •) : E∗∗

n+1 −→ R has property P. Recall that
Aθ : En+1 × · · · ×E1 −→ R is given by Aθ(x1, . . . , xn+1) = A(xn+1, . . . , x1)
and A1

θ : En × · · · ×E1 −→ E∗
n+1, A

1
θ(x2, . . . , xn+1)(x1) = Aθ(x1, x2, . . . , xn+1).
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Given x3 ∈ En−1, . . . , xn+1 ∈ E1, consider the regular linear operator

Ax3,...,xn+1 : En −→ E∗
n+1, Ax3,...,xn+1(x2) = A1

θ(x2, x3, . . . , xn+1).

Given x∗∗n+1 ∈ E∗∗
n+1, take a net (xα2)α2 in En such that JEn

(xα2)
ω∗
−→ x∗∗n and apply

the ω∗-ω∗-continuity of [Ax3, ..., xn+1 ]
∗∗ and Lemma 5.3 for i = n+ 1 and i = n to

obtain

[Ax3,...,xn+1 ]
∗∗(x∗∗n )(x∗∗n+1)

= lim
α2

[Ax3,...,xn+1 ]
∗∗(JEn

(xα2))(x
∗∗
n+1)

= lim
α2

JE∗
n+1

(Ax3,...,xn+1(xα2))(x
∗∗
n+1)

= lim
α2

x∗∗n+1(Ax3,...,xn+1(xα2)) = lim
α2

x∗∗n+1(A
1
θ(xα2 , x3, . . . , xn+1))

= lim
α2

x∗∗n+1(Aθ)(xα2 , x3, . . . , xn+1)

= lim
α2

A∗[n+2](JE1(xn+1), . . . , JEn−1(x3), JEn
(xα2), x

∗∗
n+1)

= A∗[n+2](JE1(xn+1), . . . , JEn−1(x3), x∗∗n , x
∗∗
n+1). (5.1)

For x∗∗n ∈ E∗∗
n and x4 ∈ En−2, . . . , xn+1 ∈ E1, consider the regular linear operator

Ax4, ..., xn+1, x∗∗
n

: En−1 −→ E∗
n+1 given by

Ax4,...,xn+1,x∗∗
n

(x3)(x1) = A∗[n+2](JE1(xn+1), . . . , JEn−1(x3), x∗∗n , JEn+1(x1)).

On the one hand, for every x3 ∈ En−1 the functional [Ax4, ..., xn+1, x∗∗
n

(x3)]∗∗

is a ω∗-continuous extension of Ax4, ..., xn+1, x∗∗
n

(x3). On the other hand, since
Ax3,...,xn+1 is weakly compact by assumption, for every x∗∗n ∈ E∗∗

n the functional
[Ax3, ..., xn+1 ]

∗∗(x∗∗n ) is ω∗-continuous. Taking a net (xα1)α1 in En+1 such that

JEn+1(xα1)
ω∗
−→ x∗∗n+1,

[Ax4,...,xn+1,x∗∗
n

(x3)]∗∗(x∗∗n+1) = lim
α1

[Ax4,...,xn+1,x∗∗
n

(x3)]∗∗(JEn+1(xα1))

= lim
α1

JEn+1(xα1)(Ax4,...,xn+1,x∗∗
n

(x3))

= lim
α1

Ax4,...,xn+1,x∗∗
n

(x3)(xα1)

= lim
α1

A∗[n+2](JE1(xn+1), . . . , JEn−1(x3), x∗∗n , JEn+1(xα1))

= lim
α1

[Ax3,...,xn+1 ]
∗∗(x∗∗n )(JEn+1(xα1)) = [Ax3,...,xn+1 ]

∗∗(x∗∗n )(x∗∗n+1)

(5.1)
= A∗[n+2](JE1(xn+1), . . . , JEn−1(x3), x∗∗n , x

∗∗
n+1). (5.2)

Take a net (xα3)α3 in En−1 such that JEn−1(xα3)
ω∗
−→ x∗∗n−1. Using that

[Ax4, ..., xn+1, x∗∗
n

]∗∗ is ω∗-ω∗-continuous and calling on Lemma 5.3 for i = n− 1,
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for each x∗∗n+1 ∈ E∗∗
n+1 we have

[Ax4,...,xn+1,x∗∗
n

]∗∗(x∗∗n−1)(x
∗∗
n+1) = lim

α3
[Ax4,...,xn+1,x∗∗

n
]∗∗(JEn−1(xα3))(x

∗∗
n+1)

= lim
α3

JE∗
n+1

(Ax4,...,xn+1,x∗∗
n

(xα3))(x
∗∗
n+1)

= lim
α3

x∗∗n+1(Ax4,...,xn+1,x∗∗
n

(xα3)) = lim
α3

[Ax4,...,xn+1,x∗∗
n

(xα3)]
∗∗(x∗∗n+1)

(5.2)
= lim

α3
A∗[n+2](JE1(xn+1), . . . , JEn−1(xα3), x

∗∗
n , x

∗∗
n+1)

= A∗[n+2](JE1(xn+1), . . . , JEn−2(x4), x∗∗n−1, x
∗∗
n , x

∗∗
n+1). (5.3)

For x∗∗n−1 ∈ E∗∗
n−1, x

∗∗
n ∈ E∗∗

n and x5 ∈ En−3, . . . , xn+1 ∈ E1, consider the regular
linear operator Ax5, ..., xn+1, x∗∗

n−1, x∗∗
n

: En−2 −→ E∗
n+1 given by

Ax5,...,xn+1,x∗∗
n−1,x∗∗

n
(x4)(x1)

= A∗[n+2](JE1(xn+1), . . . , JEn−2(x4), x∗∗n−1, x
∗∗
n , JEn+1(x1)).

For every x4 ∈ En−2 the functional [Ax5, ..., xn+1, x∗∗
n−1, x∗∗

n
(x4)]∗∗ is a ω∗-continuous

extension of Ax5, ..., xn+1, x∗∗
n−1, x∗∗

n
(x4). On the other hand, since Ax4, ..., xn+1, x∗∗

n

is weakly compact by assumption, for every x∗∗n−1 ∈ E∗∗
n−1 the functional

[Ax4, ..., xn+1, x∗∗
n

]∗∗(x∗∗n−1) is ω∗-continuous on En−2. So, repeating the procedure
using (5.3) we get

[Ax5,...,xn+1,x∗∗
n−1,x∗∗

n
(x4)]∗∗(x∗∗n+1)

= A∗[n+2](JE1(xn+1), . . . , JEn−2(x4), x∗∗n−1, x
∗∗
n , x

∗∗
n+1). (5.4)

Since the operator [Ax5, ..., xn+1, x∗∗
n−1, x∗∗

n
]∗∗ is ω∗-ω∗-continuous, for every x∗∗n+1 ∈

E∗∗
n+1, taking a net (xα4)α4 in En−2 such that JEn−2(xα4)

ω∗
−→ x∗∗n−2, using

Lemma 5.3 for i = n− 2 and ( 5.4) we have

[Ax5,...,xn+1,x∗∗
n−1,x∗∗

n
]∗∗(x∗∗n−2)(x

∗∗
n+1)

= A∗[n+2](JE1(xn+1), . . . , JEn−3(x5), x∗∗n−2, x
∗∗
n−1, x

∗∗
n , x

∗∗
n+1).

Repeating the procedure (n− 3) times, we end up with

[Axn+1,x∗∗
3 ,...,x∗∗

n
]∗∗(x∗∗2 )(x∗∗n+1) = A∗[n+2](JE1(xn+1), x∗∗2 , . . . , x

∗∗
n+1) (5.5)

for every x∗∗n+1 ∈ E∗∗
n+1, where, for each xn+1 ∈ E1 and x∗∗i ∈ E∗∗

i , i = 3, . . . , n,
Axn+1, x∗∗

3 , ..., x∗∗
n

: E2 −→ E∗
n+1 is the regular linear operator given by

Axn+1,x∗∗
3 ,...,x∗∗

n
(xn)(x1) = A∗[n+2](JE1(xn+1), JE2(xn), x∗∗3 , . . . , x

∗∗
n , JEn+1(x1)).

Finally, given x∗∗i ∈ E∗∗
i , i = 2, . . . , n, the regular linear operator Ax∗∗

2 , ..., x∗∗
n

: E1

−→ E∗
n+1 defined by

Ax∗∗
2 ,...,x∗∗

n
(xn+1)(x1) = A∗[n+2](JE1(xn+1), x∗∗2 , . . . , x

∗∗
n , JEn+1(x1)),
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is weakly compact by condition (ii) for n+ 1. So, for every x∗∗2 ∈ E∗∗
2 ,

[Axn+1, x∗∗
3 , ..., x∗∗

n
]∗∗(x∗∗2 ) is ω∗-continuous, therefore

[Ax∗∗
2 ,...,x∗∗

n
(xn+1)]∗∗(x∗∗n+1) = lim

α1
[Ax∗∗

2 ,...,x∗∗
n

(xn+1)]∗∗(JEn+1(xα1))

= lim
α1

JEn+1(xα1)(Ax∗∗
2 ,...,x∗∗

n
(xn+1)) = lim

α1
Ax∗∗

2 ,...,x∗∗
n

(xn+1)(xα1)

= lim
α1

A∗[n+2](JE1(xn+1), x∗∗2 , . . . , x
∗∗
n , JEn+1(xα1))

= lim
α1

[Axn+1,x∗∗
3 ,...,x∗∗

n
]∗∗(x∗∗2 )(JEn+1(xα1)) = [Axn+1,x∗∗

3 ,...,x∗∗
n

]∗∗(x∗∗2 )(x∗∗n+1)

(5.5)
= A∗[n+2](JE1(xn+1), x∗∗2 , . . . , x

∗∗
n+1). (5.6)

For the final time, taking a net (xαn+1)αn+1 in E1 such that JE1(xαn+1)
ω∗
−→ x∗∗1 , the

ω∗-ω∗ continuity of [Ax∗
2 , ..., x∗∗

n
]∗∗ and Lemma 5.3 for i = 1 give, for every x∗∗n+1 ∈

E∗∗
n+1,

[Ax∗∗
2 ,...,x∗∗

n
]∗∗(x∗∗1 )(x∗∗n+1) = lim

αn+1
[Ax∗∗

2 ,...,x∗∗
n

]∗∗(JE1(xαn+1)(x
∗∗
n+1)

= lim
αn+1

JE∗
n+1

(Ax∗∗
2 ,...,x∗∗

n
(xαn+1))(x

∗∗
n+1)

= lim
αn+1

x∗∗n+1(Ax∗∗
2 ,...,x∗∗

n
(xαn+1)) = lim

αn+1
[Ax∗∗

2 ,...,x∗∗
n

(xαn+1)]
∗∗(x∗∗n+1)

(5.6)
= lim

αn+1
A∗[n+2](JE1(xαn+1), x

∗∗
2 , . . . , x

∗∗
n+1) = A∗[n+2](x∗∗1 , . . . , x

∗∗
n+1).

This proves that [Ax∗∗
2 , ..., x∗∗

n
]∗∗(x∗∗1 ) = A∗[n+2](x∗∗1 , . . . , x

∗∗
n , •). By condi-

tion (b) for n+ 1 we know that [Ax∗∗
2 , ..., x∗∗

n
]∗∗(x∗∗1 ) has property P, so

A∗[n+2](x∗∗1 , . . . , x
∗∗
n , •) has property P, which completes the proof. �

Theorem 5.6 gives sufficient conditions for Arens extensions of regular multilinear
forms to be separately order continuous on the product of the whole of the biduals.
Now we derive the case of vector-valued regular multilinear operators.

Theorem 5.7. Let m � 2 and E1, . . . , Em be Banach lattices such that:

(a) For j = 2, . . . , m− 1, and i = 1, . . . , m− j, every regular linear operator from
Ej to E∗

j+i is weakly compact;

(b) For all k = 2, . . . , m, x∗∗1 ∈ E∗∗
1 and T ∈ Lr(E1;E∗

k), the functional T ∗∗(x∗∗1 )
is order continuous on E∗∗∗

k .

Then, for every Banach lattice F and any A ∈ Lr(E1, . . . , Em;F ), the Arens
extension A∗[m+1] is separately order continuous on E∗∗

1 × · · · ×E∗∗
m .

Proof. Let A ∈ Lr(E1, . . . , Em;F ) and y∗ ∈ F ∗ be given. Since y∗ ◦A ∈
Lr(E1, . . . , Em) and order continuity is an Arens property, by Theorem 5.6 the
extension (y∗ ◦A)∗[m+1] is separately order continuous. For all x∗∗i ∈ E∗∗

i , i =
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1, . . . , m,

A∗[m+1](x∗∗1 , . . . , x
∗∗
m )(y∗) = (y∗ ◦A)∗[m+1](x∗∗1 , . . . , x

∗∗
m ).

For each j ∈ {1, . . . , m} let x∗∗j ∈ E∗∗
j and let (x∗∗αj

)αj∈Ωj
be a net E∗∗

j such that
x∗∗αj

o−→ 0. There exists a net (y∗∗αj
)αj∈Ωj

in E∗∗
j and αj0 ∈ Ωj so that y∗∗αj

↓ 0 and
|x∗∗αj

| � y∗∗αj
for every αj � αj0 . Without loss of generality, assume that A and

y∗ are positive. Since (y∗ ◦A)∗[m+1](|x∗∗1 |, . . . , •, . . . , |x∗∗m |) : E∗∗
j −→ R is positive

and order continuous,

A∗[m+1](|x∗∗1 |, . . . , y∗∗αj
, . . . , |x∗∗m |)(y∗)

= (y∗ ◦A)∗[m+1](|x∗∗1 |, . . . , •, . . . , |x∗∗m |)(y∗∗αj
) ↓ 0.

It follows that A∗[m+1](|x∗∗1 |, . . . , y∗∗αj
, . . . , |x∗∗m |) ↓ 0 [2, Theorem 1.18] and, for

every αj � αj0 ,

|A∗[m+1](x∗∗1 , . . . , x
∗∗
αj
, . . . , x∗∗m )| � A∗[m+1](|x∗∗1 |, . . . , |x∗∗αj

|, . . . , |x∗∗m |)
� A∗[m+1](|x∗∗1 |, . . . , y∗∗αj

, . . . , |x∗∗m |) ↓ 0.

This shows that A∗[m+1](x∗∗1 , . . . , x
∗∗
αj
, . . . , x∗∗m ) o−→ 0 and proves that A∗[m+1] is

separately order continuous. �

Recall that a Banach lattice E is said to be a Kantorovich-Banach space
(or briefly a KB-space) if increasing positive bounded sequences of E are norm
convergent.

Example 5.8. As to condition (a) above, we have the following examples between
nonreflexive Banach lattices:

(a) Every operator from c0 to c∗0 = �1 is compact, hence weakly compact (this is
Pitt’s theorem).

(b) Every operator from C(K), where K is a compact Hausdorff space, to a KB-
space is weakly compact. Just recall that KB-spaces do not contain a copy of
c0 [2, Theorem 4.60] and apply [18, Theorem 5].

(c) Since any AM-space with order unity is order isometric to a C(K)-space [2,
Theorem 4.29], from (b) it follows that every operator from an AM-space with
order unity to a KB-space is weakly compact. And since the dual of an AM-
space is a KB-space, every operator from an AM-space with order unity to its
dual is weakly compact. In particular, every operator from �∞ to �∗∞ is weakly
compact.

Corollary 5.9. Let m � 2 and E1, . . . , Em, F be Banach lattices such that
every regular operator from Ej to E∗

j+i is weakly compact, j = 2, . . . , m− 1, i =
1, . . . , m− j. If E∗

1 has order continuous norm, then the Arens extension A∗[m+1]

of any operator A ∈ Lr(E1, . . . , Em;F ) is separately order continuous on E∗∗
1 ×

· · · ×E∗∗
m .
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Proof. Condition (a) of Theorem 5.7 is given by assumption. For x∗∗1 ∈ E∗∗
1 and T ∈

Lr(E1;E∗
k), x∗∗1 is order continuous because the norm of E∗

1 is order continuous [17,
Theorem 2.4.2]. Since T ∗ is order continuous [2, Theorem 1.73], T ∗∗(x∗∗1 ) = x∗∗1 ◦ T ∗

is order continuous as well, so condition (b) is fulfilled too. �

Recall that a Banach space E is Arens regular if every bounded linear operator
from E to E∗ is weakly compact (see, e.g., [13]). The Banach lattices c0, �∞ and
C(K), where K is a compact Hausdorff space, in particular AM-spaces with order
unit, are Arens regular (cf. Example 5.8).

Corollary 5.10. Let E be an Arens regular Banach lattice. Then, for every
Banach lattice F , the Arens extension A∗[m+1] of any regular m-linear operator
A : Em −→ F is separately order continuous on (E∗∗)m.

Proof. The Arens regularity of E immediately gives condition (a) of Theorem 5.7
and implies that, for every T ∈ Lr(E;E∗), T ∗∗(E∗∗) ⊆ JE∗(E∗) ⊆ (E∗∗)∗n, which
gives condition (b). �

We conclude this paper with one more result on order continuity of Arens
extensions of homogeneous polynomials. For a polynomial P ∈ Pr(mE;F ), we
write P ∗[m+1] := ARθ

m(P ). Recall that P is orthogonally additive if P (x+ y) =
P (x) + P (y) whenever x and y are disjoint. The literature on orthogonally additive
polynomials is extensive.

A linear operator u : E −→ E∗ is symmetric if u(x)(y) = u(y)(x) for all x, y ∈ E.
A Banach space E is symetrically Arens regular if every symmetric operator from E
to E∗ is weakly compact. Of course, Arens regular spaces are symmetrically Arens
regular, but there are symmetrically Arens regular spaces that fail to be Arens
regular [15].

Proposition 5.11. Let E, F be Banach lattices and P ∈ Pr(mE;F ). If either P
is orthogonally additive and F = R or E is symmetrically Arens regular, then the
Arens extension P ∗[m+1] : E∗∗ −→ F ∗∗ of P is order continuous on E∗∗.

Proof. Assume first that P is orthogonally additive and F = R. By Proposition 4.8
we know that P ∗[m+1] is order continuous at the origin on E∗∗, therefore it is order
continuous at every point of E∗∗ by [8, Proposition 8].

Suppose now that E is symmetrically Arens regular. It is clear that we can assume
that P is positive. We know that (P̌ )∗[m+1] is order continuous in the first variable
on E∗∗ (Theorem 4.6) and positive because P̌ is positive. In order to check that
it is symmetric, let ρ ∈ Sm be given. For every ϕ ∈ F ∗, since E is symmetrically
Arens regular and ϕ ◦ P̌ is symmetric, by [5, Theorem 8.3] (or [11, Corollary 6])
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we know that ARθ
m(ϕ ◦ P̌ ) is symmetric as well. So, for x∗∗1 , . . . , x

∗∗
m ∈ E∗∗,

(P̌ )∗[m+1](x∗∗1 , . . . , x
∗∗
m )(ϕ) = ARθ

m(P̌ )(x∗∗1 , . . . , x
∗∗
m )(ϕ)

= ARθ
m(ϕ ◦ P̌ )(x∗∗1 , . . . , x

∗∗
m )

= ARθ
m(ϕ ◦ P̌ )(x∗∗ρ(1), . . . , x

∗∗
ρ(m))

= ARθ
m(P̌ )(x∗∗ρ(1), . . . , x

∗∗
ρ(m))(ϕ)

= (P̌ )∗[m+1](x∗∗ρ(1), . . . , x
∗∗
ρ(m))(ϕ),

proving that (P̌ )∗[m+1] is symmetric. The order continuity in the first variable and
the symmetry yield that the positivem-linear operator (P̌ )∗[m+1] is separately order
continuous on (E∗∗)m. By [10, Lemma 2.6] it follows that (P̌ )∗[m+1] is jointly order
continuous on (E∗∗)m. So, if x∗∗α

o−→ x∗∗ in E∗∗, then

P ∗[m+1](x∗∗α ) = (P̌ )∗[m+1](x∗∗α , . . . , x
∗∗
α ) o−−→ (P̌ )∗[m+1](x∗∗, . . . , x∗∗)

= P ∗[m+1](x∗∗).
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