AUTOMORPHISMS OF THE SEMIGROUP OF ALL RELATIONS ON A SET

Kenneth D. Magill, Jr. (received August 15, 1965)

An automorphism Φ of a semigroup S is said to be an inner automorphism if there exists a unit u in S such that

$$
a \Phi=u^{-1} a u
$$

for each a in S. Let X denote a nonempty set and let \mathcal{B} denote the semigroup of all binary relations on X where
$A \circ B=\{(x, y) \in X \times X:(x, z) \in A$ and $(z, y) \in B$ for some z in $X\}$
for elements A and B of \mathcal{B}. This semigroup is discussed in [1, pp. 13-16] and in [2, pp. 33-35]. The purpose of this note is to prove the following

THEOREM. Every automorphism of β is inner.
Applying this theorem, we also obtain the following
COROLLARY. The automorphism group of \mathcal{B} is isomorphic to the group of permutations on X .

The analogous results for the semigroup of all transformations of a set into itself are proven in [2, pp. 302-303]. It is pointed out there that I. Schreier [5], A. I. Malcev [4] and E.S. Ljapin [3] have all given proofs of the fact that every automorphism of the semigroup of all transformations on a set is inner. Schreier's paper, the first of the three, appeared in 1936.

In what follows, the empty relation will be denoted by E. For any A in \mathcal{B}, the domain, $\mathscr{D}(A)$, of A and the range, Canad. Math. Bull. vol. 9, no. 1, 1966
$R(A)$, of A are defined by

$$
\begin{aligned}
& \mathscr{Q}(A)=\{x \in X:(x, y) \in A \text { for some } y \text { in } X\} \text { and } \\
& R(A)=\{y \in X:(x, y) \in A \text { for some } x \text { in } X\} .
\end{aligned}
$$

Finally, for x in X ,

$$
\{(y, x) \in X \times X: y \in X\}
$$

is an element of β and will be denoted by $|\mathbf{x}|$.

Proofs.

In proving the theorem, we make use of the following facts:
(1) $\alpha^{\prime D}(A)=X$ if and only if $B \circ A=E$ implies $B=E$.
(2) $\dot{\alpha}(A) \subset \mathscr{N}(B)$ if and only if $C \circ B=E$ implies $C \circ A=E$.
(3) $R(A) \subset R(B)$ if and only if $B \circ C=E$ implies
$A \circ C=E$.
(4) $R(A)$ consists of one point if and only if $A \neq E$ and there exists an element B in \mathcal{B} such that
(i) $A \circ B=E$ and
(ii) if $A \circ C \neq E$ and $\mathscr{Q}(B) \subset \mathscr{N}(C)$, then $\mathscr{Q}(C)=X$.

The verification of each of the statements above is straightforward and will not be given here. Now let Φ be an automorphism of β. Since E is the zero of $\mathcal{\beta}$, we must have
(5) $\mathrm{E} \Phi=\mathrm{E}$.

Statements (1) and (5) together imply
(6) $\mathscr{L}(\mathrm{A})=\mathrm{X}$ if and only if $\mathscr{L}(\mathrm{A} \Phi)=\mathrm{x}$.

Statements (3) and (5) imply
(7) $R(A) \subset R(B)$ if and only if $R(A \underline{\sigma}) \subset R(B \Phi)$.

Statements (1), (2), (4) and (5) imply
(8) $R(A)$ consists of one point if and only if R (Ag) consists of one point.

Now we are in a position to define a one-to-one transformation H from X onto X. Let any X in X be given. It follows from (6) and (8) that

$$
|x| \Phi=|y| \text { for some } y \text { in } x .
$$

We define $\mathrm{xH}=\mathrm{y}$. Let us observe that H is a unit of \mathcal{B} and moreover
(9) $|x| \Phi=|x H|$ and $|x| \Phi^{-1}=\left|x H^{-1}\right|$
for each x in X. Now for any x in X and A in \mathcal{B}, we let

$$
x A=\{y \in X:(x, y) \in A\} .
$$

We will use the fact that for elements A and B of $B, A=B$ if and only if $x A=x B$ for each x in X.

Using (9) (several times) we get the following string of equalities:

$$
\begin{aligned}
& x(H \Phi)=x(|x| \circ H \Phi)=x\left(\left|x H^{-1}\right| \Phi \circ H \Phi\right)=x\left(\left(\left|x H^{-1}\right| \circ H\right) \Phi\right)= \\
& x\left(\left(|x| \circ H^{-1} \circ H\right) \Phi\right)=x(|x| \Phi)=x|x H|=x(|x| \circ H)=x H .
\end{aligned}
$$

Therefore

$$
\text { (10) } \mathrm{H} \Phi=\mathrm{H} .
$$

Now let A be an arbitrary element of \mathcal{B}. It follows from (7), (9) and (10) that the following statements are successively equivalent:

$$
y \in x\left(H^{-1} \circ A \circ H\right),
$$

$$
\begin{aligned}
& y \in x\left(\left|x H^{-1}\right| \circ A \circ H\right), \\
& R(|y|) \subset R\left(\left|x H^{-1}\right| \circ A \circ H\right), \\
& R(|y| \Phi) \subset R\left(\left|x H^{-1}\right| \Phi \circ A \Phi \circ H \Phi\right) \\
& R(|y H|) \subset R(|x| \circ A \Phi \circ H), \\
& y H \in z(|x| \circ A \Phi \circ H) \text { for some } z \text { in } X, \\
& y H \in x(A \Phi \circ H), \\
& y \in x(A \Phi) .
\end{aligned}
$$

Thus $x\left(H^{-1} \circ A \circ H\right)=x(A \Phi)$ for each x in X. This implies $A \Phi=H^{-1} \circ A \circ H$ and the theorem is proved.

To see how the corollary follows from the theorem, recall that the units of \mathcal{B} are precisely the permutations on X . For any permutation H on X, map H onto the automorphism which carries an element A in \mathcal{B} onto $H^{-1} \circ A \circ H$. This mapping is a homomorphism from the group of permutations on X into the group of automorphisms of \mathcal{B}. In fact, the mapping is an epimorphism onto \mathcal{B} since every automorphism of \mathcal{B} is inner. If H is in the kernel of the epimorphism, we must have $H^{-1} \circ A \circ H=A$ for each A in \mathcal{B}. But this implies that H commutes with each element of \mathcal{B} which, in turn, implies that H is the identity mapping on X. Thus, the epimorphism is an isomorphism and the corollary is proved.

REFERENCES

1. A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups. Mathematical Surveys, Number 7, Amer. Math. Soc. 1961.
2. E.S. Ljapin, Semigroups, Vol. 3, Translations of Mathematical Monographs, Amer. Math. Soc., 1963.
3. E.S. Ljapin, Abstract Characterization of Certain Semigroups of Transformations. Leningrad. Gos. Ped. Inst. Ucen. Zap. 103 (1955), 5-29 (Russian).
4. A.I. Malcev, Symmetric Groupoids, Mat. Sb. (N. S.) 31 (73) (1952), 136-151. (Russian).
5. I. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmenge. Fund. Math. 28 (1936), 261-264.

State University of New York at Buffalo

