INCOMPLETE DIAGONALS OF LATIN SQUARES

J. Marica and J. Schönheim

The following question has been asked by J. Dénes [2]: If n-1 elements of the diagonal of an $n \times n$ array are prescribed, is it possible to complete the array to form an $n \times n$ latin square?" It is known that if n diagonal elements are given such a completion is not always possible.

That the answer to Dénes' question is yes follows directly from a theorem of M. Hall Jr. [1].

<u>Given elements</u> a_1, \ldots, a_n (possibly with repetitions) of an abelian group G of order n, there exist two permutations g_1, \ldots, g_n and g'_1, \ldots, g'_n of the elements of G, such that $a_i = g_i + g'_i$ i = 1, 2, ..., n, if and only if $a_1 + \ldots + a_n = 0$.

The application is as follows. Let a_1, \ldots, a_{n-1} be the prescribed diagonal elements and identify distinct a_i with (some) distinct elements of Z_n . Set $a_n = -(a_1 + \ldots + a_{n-1})$ so that $a_1 + \ldots + a_n = 0$. By Hall's theorem select permutations g_1, \ldots, g_n and g'_1, \ldots, g'_n of the elements of Z_n such that $a_i = g_i + g'_i$. The array (b_{ij}) where $b_{ij} = g_i + g'_j$ is then a latin square and $b_{ii} = a_i$, $i = 1, 2, \ldots, n-1$, thus satisfying the requirements given.

We understand that a different construction was found by E. Milner and J. Schaer.

REFERENCE

 M. Hall, Jr., A combinatorial problem on abelian groups. Proc. Amer. Math. Soc. 3 (1952) 584-587.

2. J. Dénes, Lecture at University of Surrey, 1967.

University of Calgary Calgary Alberta

235