## INCOMPLETE DIAGONALS OF LATIN SQUARES

## J. Marica and J. Schönheim

The following question has been asked by J. Dénes [2]: If $n-1$ elements of the diagonal of an $n \times n$ array are prescribed, is it possible to complete the array to form an $n \times n$ latin square? ' It is known that if $n$ diagonal elements are given such a completion is not always possible.

That the answer to Denes' question is yes follows directly from a theorem of M. Hall Jr. [1].

## Given elements $a_{1}, \ldots, a_{n}$ (possibly with repetitions) of an abelian

 group $G$ of order $n$, there exist two permutations $g_{1}, \ldots, g_{n}$ and $g_{1}^{\prime}, \ldots, g_{n}^{\prime}$ of the elements of $G$, such that $a_{i}=g_{i}+g_{i}^{\prime} i=1,2, \ldots, n$, if and only if $a_{1}+\ldots+a_{n}=0$.The application is as follows. Let $a_{1}, \ldots, a_{n-1}$ be the prescribed diagonal elements and identify distinct $a_{i}$ with (some) distinct elements of $Z_{n}$. Set $a_{n}=-\left(a_{1}+\ldots+a_{n-1}\right)$ so that $a_{1}+\ldots+a_{n}=0$. By Hall's theorem select permutations $g_{1}, \ldots, g_{n}$ and $g_{1}^{\prime}, \ldots, g_{n}^{\prime}$ of the elements of $Z_{n}$ such that $a_{i}=g_{i}+g_{i}^{\prime}$. The array $\left(b_{i j}\right)$ where $b_{i j}=g_{i}+g_{j}^{\prime}$ is then a latin square and $b_{i i}=a_{i}, i=1,2, \ldots, n-1$, thus satisfying the requirements given.

We understand that a different construction was found by E. Milner and J. Schaer.

## REFERENCE

1. M. Hall, Jr., A combinatorial problem on abelian groups. Proc. Amer. Math. Soc. 3 (1952) 584-587.
2. J. Dénes, Lecture at University of Surrey, 1967.

## University of Calgary <br> Calgary <br> Alberta

