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A new surface-processes model combining glacial and
fluvial erosion
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ABSTRACT. We have developed a new surface-processes model incorporating large-
scale fluvial processes, local hill-slope processes and glacial erosion. Ice thickness and
velocity are calculated under a shallow-ice approximation. Simulation experiments in
fast-growing orogens comparing the efficiencies of fluvial and glacial erosion, where the
two are operating simultaneously over several glacial cycles, show that: glacial landscapes
can support greater ice masses than fluvial landscapes; glacial valley and lake shapes cre-
ate a disequilibrium between landform and land-forming process that leads to pulses of
high erosion at the end of glacial periods; glacial erosion rates can reach a constant value
in a uniformly growing orogen; and glacial erosion is capable of eroding drainage divides

when the ice is moderately thick.

INTRODUCTION

Landscape evolution in orogenic belts has attracted consider-
able attention in the earth-sciences community (e.g. Koons,
1989; Beaumont and others, 1992). New dating methods, such
as fission-track analysis (Brown and others, 1994) or the deter-
mination of exposure ages by cosmogenic isotopes (Nishiizumi
and others, 1986), have provided greater insight into the effi-
ciency of surface processes in shaping a tectonically active
area.

At the same time, the increasing power of modern com-
puters has allowed the development of sophisticated surface-
processes models in which the evolution of the landscape is
commonly assumed to be governed by two types of pro-
cesses: large-scale fluvial transport and/or local hill-slope
diffusion (Willgoose and others, 1991; Beaumont and others,
1992; Chase, 1992; Howard and others, 1994; Kooi and Beau-
mont, 1994; Tucker and Slingerland, 1994). Several studies
have investigated the combined effect of both processes on
the evolution of rifted margin escarpments (Kooi and Beau-
mont, 1994; Tucker and Slingerland, 1994) and zones of con-
tinental convergence (Beaumont and others, 1992). Because
these models simulate the evolution of the Earth’s surface
over longer times and greater distances than are readily ob-
servable, the field of computational geomorphology has been
plagued by a lack of constraints on the numerous parameters
that enter the various model equations. Only limited at-
tempts have been made at constraining these parameters
(Van der Beek and Braun, 1999).

Moreover, the temperate climatic conditions prevailing
today in many active orogenic belts (such as the European
Alps or the Southern Alps in New Zealand) under which
fluvial erosion is dominant, have only existed for a relatively
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short time. For much of the last two million years, these high
elevation, temperate mountain belts have, in fact, been
heavily glaciated. In the present study, we wish to investi-
gate the importance of glacial conditions in determining
landscape evolution in orogenic belts.

The glacial-erosion model we have developed, like many
other geomorphic models, is weakened because several para-
meters have to be introduced that are difficult to constrain
from direct observation and/or experimentation. It is for this
reason that we focus on comparing the relative efficiencies of
fluvial and glacial erosion and the interplay between the two
processes during times of alternating glacial and interglacial
periods, rather than on absolute erosion rates.

In this paper, we present a description of the model includ-
ing the assumptions it is based on, as well as its most inter-
esting predictions. We emphasize that we have not attempted
to include all forms of glacial erosion, but to produce a model
which parameterizes the large-scale landscape evolution. If
the forms and processes that are observed in nature are repro-
duced by the model, this does not prove that the assumptions
on which the model is based are correct, but rather that they
are plausible.

MODEL DESCRIPTION

Surface-processes model

The landscape is described by a bedrock topography,
H(z,y), known at a finite number of nodes distributed on
a regular rectangular grid, H;. Landscape evolution is
assumed to be controlled by three types of processes: (1)
long-range fluvial processes, (2) local hill-slope processes
(Kooi and Beaumont, 1994) and (3) glacial erosion.

Fluvial erosion

At each point on the landscape, fluvial erosion is assumed
proportional to the difference between the actual sediment
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load, gs, and the stream carrying capacity, goq (Kooi and
Beaumont, 1994):

0H; _ qs — Qeqi
ot S lea

(1)

where S; and [; are the surface area and stream reach length
associated with point ¢ on the landscape, and I q is a length
scale characterizing the erosion—deposition process (Kooi
and Beaumont, 1994). If erosion takes place (0H; /0t < 0),
lo represents the length scale over which the sediment load
will increase by a factor e. [, is a function of the nature of the
bedrock: alluvial surfaces (previously deposited sediments)
are characterized by a smaller value of [, than intact bed-
rock, because they are eroded more easily. We assume that
streams cannot transport sediment above their carrying
capacity, so a value of l4 equal to [; is used where deposition
takes place (0H; /0t > 0).

The sediment load is calculated by integrating upstream
erosion/deposition. The carrying capacity is expressed as a
linear function of local slope, ¢, and water discharge, gy
(Kooi and Beaumont, 1994):

Geq = Kr‘]wd) (2)

where K is a constant. Water discharge, gy, is the product of
the catchment surface area, A, and the precipitation rate,
1y, and is calculated at every point of the landscape via the
so-called CASCADE node-ordering algorithm.

Node ordering

At each point ¢ on the landscape, bedrock elevation is up-
dated at each time-step according to the solution of the flu-
vial erosion—deposition equation. The sediment load and
water discharge are then updated and passed to the lowest
of the eight adjacent points or, more exactly, the one of the
eight neighbours that defines the steepest slope. This oper-
ation is performed in a sequence that guarantees that when
the equations are solved at point ¢ all upstream properties,
such as water discharge and sediment load, have been pre-
viously estimated. The ordering of the nodes in that se-
quence is based on the CASCADE algorithm, developed
by Braun and Sambridge (1997).

In CASCADE, each node is given a parcel of water pro-
portional to the local precipitation (assumed constant in the
experiments described here) and the surface area attached to
the node, S;. Each node gives its water parcel to its lowest
neighbour. At the end of this “passing operation”, any node
that is left without water is put on a stack. The passing oper-
ation is repeated with the remaining nodes and those that are
left without water are put on the stack. This simple operation
is repeated as many times as necessary until all the water has
reached base level (along the sides of the model), all the nodes
have been put on the stack, and the water discharge has been
calculated for every node. This algorithm yields an ordering
of the nodes (in the stack) that is appropriate to solve the geo-
morphic fluvial equations described above.

Hill-slope processes

Hill-slope processes are regarded as diffusive processes and
are incorporated in the model through a simple, linear dif-
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fusion equation (Kooi and Beaumont, 1994; Braun and Sam-
bridge, 1997):
OH

- = 2
o = KaV'H (3)

where Kj is a constant. This simplified parameterization is
assumed to include a variety of processes such as weather-
ing, slope wash, mass wasting and soil creep.

Ice model

To calculate glacial erosion, we first need to estimate the
extent and thickness of ice covering the landscape for given
accumulation and ablation rates. To compute the ice thick-
ness, h, we solve the mass-balance equation based on the
shallow ice approximation (Knap and others, 1996):

oh - =
&=V -F+M 4
i A s (4)

where F is the vertically integrated mass flux (ﬁ = h,
where @ is the vertically integrated horizontal ice velocity)
and M is the mass balance which, in our model, includes
surface accumulation and basal melting, the two dominant
processes that determine net accumulation/ablation in tem-
perate mountain glaciers.

It is clear that the shallow-ice approximation is not ap-
propriate in regions characterized by horizontal gradients
in bedrock topography greater than the ice thickness. It is
interesting to note, however, that the minimum horizontal-
length scale that can be resolved in our computations is
given by the grid spacing, Az = Ay ~2 km, while the max-
imum ice thickness is of the order of a few hundred meters.
Consequently, although the shallow ice approximation may
not always be appropriate in high-relief mountainous ter-
rain, it is a relatively sound approximation in our model
where, because of its limited spatial resolution, the ratio of
ice-thickness to bedrock-topography length scale is of order
1:10.

The ice velocity, 4, is the sum of two terms:

U = Uq + Us (5)
where g is the deformation velocity and s is the sliding

velocity which may be expressed in the following manner
(Knap and others, 1996):

- QAB nyn+l|v7, n—1<’

tg = — = (pg)"W" |V (h + H)[" "V (h + H) (6)
- Abﬁ(pgh)n i n—1v7

Us =5 [V(h+ H)|" V(h+ H) (7)

where a and N define the power-law ice rheology (Hooke,
1981):

g=Ad" (8)
p 1s the ice density, g is the acceleration due to gravity, Ag is
the sliding parameter, N is the ice overburden pressure and P
is the water pressure. We shall assume that N — P = 80% N
(Knap and others, 1996). This simplification does not take
into account the complex spatial variations in basal water
pressure observed beneath flowing glaciers (Harbor, 1992).
A more rigorous approach would require that the height of
the piezometric surface be estimated at every point of the
landscape from the flux of water melting at the base of the
ice. This is the subject of ongoing work. Note that the sliding
velocity, i, is set to zero in regions of the landscape where
the ice is frozen to the bedrock (that is where the ice basal
temperature is below the melting point) (Drewry, 1986).
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When ice flows down narrow glacial valleys it is well-
documented (Svennson, 1959) that the deformation and slid-
ing velocities (and thus basal-shearing stress) are affected
by the constriction of ice by the valley walls. We implement
this effect by scaling the ice velocities by a “constriction fac-
tor”, B, which may be expressed as:

1
b= 1+ k.(0?H/0x?) ©)

where k. is a constant and (92H/31:f2 1s the second derivative

of the bedrock topography in a direction normal to the direc-
tion of ice flow.

The mass balance term, M, may be regarded as the sum of
two terms: M,, the surface accumulation (expressed inma ),
which is assumed proportional to surface temperature, T (ex-
pressed in °C):

M, = —a;(Ty — 0.5) (10)

where o is a constant, and My, the melting rate at the base,
which is assumed proportional to the difference between basal
temperature, T, and the melting point, Ty, =87 %10 *h;

Mm = —Ozz(Tb — Tm) (11)

where ay 1s a constant. The ice-surface temperature, Ty, is
assumed to vary with total elevation and with time, %,
through a series of climate cycles of amplitude AT:

T, = 50 — ATy(t) — as(h + H) (12)

where a3 is a constant.

The values of the parameters are chosen to produce a
mass-balance—altitude relationship similar to the one pro-
posed by Kerr (1993) for areas characterized by a continental
climate. The ice basal temperature results from a balance
between vertical heat conduction and advection (Siegert
and Dowdeswell, 1995):

or\ [2hk | M
T, =1T; — —erf |hy/—
l ot <8z>b M [ 2hk

where & is the thermal diffusivity of ice and (0T'/0z), the
imposed basal heat flux.

(13)

Glacial-erosion model

We will adopt Hallet’s (1979) hypothesis that glacial erosion

P yp g
is proportional to basal-sliding velocity. Hence, at every
point of the landscape where the ice is sliding on the bedrock
1is # 0), glacial erosion is assumed to take place at a rate
(us #0), g p
given by:

OH

= Kl 14
B |14 (14)

where K; is a constant. Following the work of (Harbor, 1992)
and for ease of numerical implementation, we shall assume
that ! = L. Little constraint is available for the parameter K;;
we shall use a value derived from Drewry (1986; table 6.1).

Modification to the CASCADE algorithm

We assume that, following local glacial erosion, glacial
debris 1s extracted from the landscape and transported by
the ice at the velocity @ (the ice velocity). This process can
be incorporated in the model by modifying the CASCADE
algorithm in the glaciated parts of the landscape in the fol-
lowing ways:

(I) debris 1s passed to the one of the eight adjacent nodes
that defines the steepest gradient in total ice elevation

284

https://doi.org/10.3189/172756499781821797 Published online by Cambridge University Press

(this ensures the debris is carried in the direction of ice
velocity, @);

(2) sequencing of the nodes in the CASCADE algorithm is
based on the total ice-surface elevation; and

(3) at the boundary between glaciated and ice-free parts of
the landscape, ice-transported debris is “transformed”
into sediment load.

Because the flow of ice on a glaciated landscape is much
slower than the flow of water in a river network (Drewry,
1986), an ice sheet (or mountain glacier) is capable of storing
a substantial debris concentration over time-scales of
several hundred years. Unlike a fluvial transport model, a
glacial transport model must therefore incorporate a
storage term. This is incorporated in our model by limiting
the amount of debris passed from point ¢ of the landscape to
its steepest total ice elevation gradient neighbour by a factor
~ determined by the local ice velocity, #, the distance
between node % and the node to which the debris is passed,
l;, and the integration time step, At:

y= min(l,A?M) (15)

Flexural isostasy

Tectonic deformation within the Earth’s lithosphere leads to
surface uplift and mass redistribution at the surface by ero-
sion/deposition. This mass redistribution gives rise to large
horizontal gradients in vertical stress that can cause flow in
the underlying asthenosphere. On the time and length
scales of glacial processes, it is likely that a large proportion
of these horizontal stress gradients will be sustained by the
lithosphere itself.

To incorporate flexural isostasy in our model, we coupled
the surface-processes model to a simple mechanical model
representing the behaviour of the lithosphere—asthenosphere
system: at each time-step in the model, variations in surface
topography are transformed into a load that is applied to a
two-dimensional uniform thin elastic plate. The resulting
deflection is then incorporated into the tectonic uplift func-
tion. Note that this load also includes the mass of the ice.

PARAMETER VALUE AND PROBLEM SETTING

The problem to be solved is that of a relatively fast-growing
orogen of small dimension. The equations are solved on a
rectangular grid of dimension L, = 100 km x L, = 200 km
with a grid spacing of 1.58 km (i.e. 64 X 128 nodes). Model
parameter values are given in Table 1. Tectonic activity is
represented by an uplift function, ur(z,y), which has the
appearance of a rising dome with a Gaussian bell-curve
cross-section and defined as:

2 - 2
uT<x,y>=uoexp<—<x‘L‘”/2) b Ly“)) (16)

e Ay
where ug = 2 km Myr, A, =25 km and Ay = 50 km.

A series of glacial cycles is imposed on the model through
a time-varying surface-temperature function. Each cycle is
100 kyr long and comprises a short (10 kyr) period of rapid
warming followed by a longer (90kyr) period of cooling.
Such a saw-tooth function has been used in previous works
(Huybrechts, 1992, 1996; Pattyn and Decleir, 1995) to simulate
the climatic effects of glacial cycles in glacier and ice-sheet
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Table 1. Model parameter values

Parameter Value

lo 10 km for alluvials
100 km for bedrock

Ko 25ma

K4 3m?a !

A 25x10 ®m®a 'N?

n 3

p 920 kgm ®

g 98lms 2

Ay 19x10 “m’a 'N?

i O0lma '°C!

a3 02ma '°C!

s 4x10 *°Cm’!

|ATy| 25°°C

(0T/02), 54x10 > W m 2

K 983Wm 'C!

Ky 01

ke 100 km

lithospheric thickness 50 km

Young’s modulus 10" Pa

Poisson’s ratio 0.25
Asthenospheric density 3150 kg m *

models. It is based on the Vostok ice core temperature signal
from 150 kyr until present (Pattyn and Decleir, 1995) and on
the generally accepted good correlation between high-alti-
tude paleo-air temperatures and indicators of global ice
volume (Barrett, 1991). The amplitude of the imposed tem-
perature variation is arbitrarily set at ATy = 2°C.

MODEL RESULTS

A series of model experiments were performed in which the
values of the fluvial erosion constant, K, and glacial erosion
constant, [, vary while their product remains constant. In
doing so, we compare the efficiency of each of the two pro-
cesses in competition with the other to sculpt a landscape in an
orogenic belt characterized by a spatially and temporally
“smooth” tectonic uplift function.

It is expected that fluvial processes will be most efficient
during periods of low (or no) glaciation, whereas glacial
processes will be most efficient during glaciations. The pur-
pose of the modelling is to investigate how each eroding
mechanism can adapt to a landscape produced by the other
mechanism, and how the landscape evolves through time
under these variable conditions.

Experiment I is characterized by intermediate values of
the glacial erosion constant and the fluvial erosion constant
(Ki = Kjp and K, = K, ); experiment II is characterized
by a low value for the glacial erosion constant (K; = Kj(/2)
and a high value for the fluvial erosion constant
(K = K, x 2); experiment III is characterized by a high
value for the glacial erosion constant (K; = Kjp X 2) and a
low value for the fluvial erosion constant (K, = K;(/2). In
experiment IV, no ice is allowed to form; in experiment V,
the ice constriction effect is not included (i.e. the factor 8 in
Equations (6) and (7) is set to one). Each experiment is car-
ried out for 520 kyr, which is approximately the length of five
glacial cycles.

Results of one model experiment through a glacial
cycle

Results from experiment I are illustrated in Figure 1, where
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the evolution of the bedrock topography and ice thickness
throughout the fourth glacial cycle is shown. The landscape
is displayed as a three-dimensional surface, illuminated
from the top left corner of the image and on which the ice
has been draped and coloured in white. The ten panels cor-
respond to 10 kyr intervals from 410 to 500 kyr since the be-
ginning of the experiment.

The bedrock topography is characterized by high-relief
mountain tops, deeply incised U-shaped valleys, relatively
steep backwalls which make the valleys resemble large
cirques, and narrow interfluves. The ice cover is minimum
at 410 kyr and grows monotonously from 430 kyr onwards to
reach a maximum at the end of the glacial period (i.e.
500 kyr). The distribution of ice is strongly influenced by
the underlying bedrock topography: although character-
ized by the highest accumulation (i.e. precipitation) rates,
the peaks are barely glaciated, whereas the valleys forming
along the mountain sides host large ice tongues that resem-
ble piedmont glaciers fed by the ice accumulating in the ad-
jacent high-altitude, high-relief regions.

In the following sections, we compare the various ex-
periments in terms of the time evolution of “space-inte-
grated” or “model-averaged” variables such as total ice
volume, maximum bedrock topography, glacial and fluvial
erosion rates, etc.

Ice volume and topography

Figure 2 shows the evolution of the total volume of ice on the
landscape for experiments I to III. The computed ice
volume reflects the imposed variations in surface tempera-
ture (and hence ice accumulation) and the imposed steady
tectonic uplift. During the first glaciation, the elevation of
the mountain belt is too low for any ice to accumulate on
the landscape. During the following glaciations, ice volume
grows almost linearly to reach a maximum at the end of
each glaciation (200, 300, 400 and 500 kyr) and then de-
creases very abruptly within a few thousands years of the
glacial maximum. The first two interglacial periods (200—
210 kyr and 300-310 kyr) are ice free, whereas during the
last interglacial period (400—410 kyr), some ice is preserved.

From these experiments, it is apparent that more ice is
formed on a landscape that has been dominantly carved by
ice erosion (experiment IIT) than on a landscape that has
been carved by fluvial processes (experiment II). Of the
three, experiment III is characterized by the lowest max-
imum topography (Fig. 3) and, because ice accumulation is
proportional to elevation, one might also expect it to have
the lowest ice volume. However experiment III actually has
the greatest ice volume, demonstrating that it is the form of the
landscape that is responsible for differences in “ice retention”,
not the absolute value of the topography. This can be further
demonstrated by considering Figure 4, where mean bedrock-
topography gradient (in the direction of ice flow) is shown
as a function of'ice thickness for experiments I-1II. This dia-
gram clearly shows that landscapes created by glacial pro-
cesses are, on average, characterized by lower slopes near
the ice margins where glacial erosion is most active. It is this
reduction in bedrock-topography slope (or the spoon shape
of glacial valleys and cirques) near the ice margins that
leads to a reduced ice velocity along the edges of the ice
sheet and is therefore responsible for the greater ice reten-
tion by glacial landscapes.

The large, rapid variations in ice volume that character-
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Fig. 1. Results of the computations shown as perspective views of the bedrock topography (dark grey) on which the ice has been
draped (light grey ). Vertical exaggeration is 40 : 3. Panels a—j correspond to X 410-500 kyr at 10 kyr intervals.

ize the fourth glacial cycle in experiment II (Fig. 2) are of large tongues of ice which develop along the flanks of the
further proof of the inability of a fluvial landscape to sustain mountain and render the ice cap unstable. We do not place
a large ice cap. These variations correspond to the formation too much significance on the details of the evolution and
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geometry of these surging instabilities, only to notice they are
likely to form in valleys that have recently been carved by a
major river along the sides of the mountain. These instabil-
ities are therefore triggered by the grading process that takes
place in river valleys during interglacial periods.

Local maxima (drainage divides)

Since the landscape dominated by glacial erosion is charac-
terized by the lowest maximum topography, it suggests gla-
cial erosion i1s more efficient than fluvial erosion at
removing local topographic maxima. It is indeed well
known that fluvial processes are, in fact, incapable of erod-
ing material from the summit of drainage divides because
these divides are characterized by a zero-area catchment.
No such restrictions apply to glacial erosion.

Figure 3 suggests, however, that the glacial erosion of the
mountain top is maximum during time of intermediate ice
cover. This is because glacial erosion is not possible (1)
during the interglacial periods when there is no ice on the
mountain top or (2) during the time of maximum glaciation
when the ice 1s frozen to the bedrock at the top of the moun-
tain. This behaviour agrees well with the common obser-
vation that large mountain ranges that were covered by
continental ice sheets during the last glaciation, such as the
Canadian Cordillera (Evans, 1996; Clague, 1989), show little
effect of the overriding ice near the summits; most of the evi-
dence for ice abrasion/erosion is found in relatively low-alti-
tude cirques and valleys.

Glacial-erosion rate

In Figure 5, we compare the spatially integrated fluvial and
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Fig. 3. Computed maximum topography as a function of time
Jor experiments I II and IIL The topography s the result of a
balance between tectonic uplift, isostasy and erosion.
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Fig. 4. Mean bedrock slope as a function of ice thickness for
experiments I, II and I1I. Lower slopes near the ice margins
indicate the landscape is capable of retaining more ice.

glacial erosion rates calculated from each experiment. As
expected, glacial-erosion rate is directly proportional to ice
volume. It is nil during ice-free periods and maximum
during periods of maximum ice extent. Note, however, that
in all experiments the rate of glacial erosion steadily in-
creases from one glacial period to the next, but in experi-
ment III, it remains constant between the last two
glaciations. This indicates that, from the third glaciation on-
wards, despite the fact that the volume of'ice is still increas-
ing (see Fig. 2), glacial erosion has reached steady-state.

To understand this behaviour, one must consider where
glacial erosion is taking place beneath the ice. Figure 6a
shows a contour plot of the  component of the sliding
velocity at the time of the Last Glacial Maximum. This dem-
onstrates that the ice is sliding in the valleys, but is frozen to
the bedrock in the regions of high topography (that is the
central divide and the major interfluves). Thus, despite the
fact that the surface area covered by ice is still increasing
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Fig. 5. (a) Computed river erosion rate and (b) glacial ero-
ston rate. These quantities are computed at each time-step by
summing the amount of material removed from the landscape
by each process and dividing by the time-step length.
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Fig. 6. Computed sliding velocity (a) in the x direction and
(b) in the y direction at the end of the last glacial period
(500 kyr) in experiment III. The dark-grey regions corres-
pond to positive (eastward and northward) velocities,
whereas the light-grey regions correspond to negative velocities
(westward and southward ). Notice in panel (b) the ice-flow
convergence near the top of the glacial valleys (or névés) and
the flow divergence in the unconstricted glaciers’ tongues (or
piedmont glaciers ).

from glaciation to glaciation, the surface area covered by
sliding ice does not substantially change from the third glaci-
ation onwards.

Fluvial-erosion rate

Opverall, the fluvial erosion rate increases with time in all three
experiments. In the second experiment, the fluvial erosion rate
decreases during glacial periods; whereas in the third experi-
ment, the fluvial erosion rate increases during interglacial per-
10ds. The first experiment displays an intermediate behaviour.
The reduction in fluvial erosion rate during glacial periods is
directly related to the presence of ice that prevents fluvial inci-
sion and transport from operating.

The increase in fluvial erosion rate during interglacial
periods is caused by the imbalance between the form of the
glaciated landscape and the process of river incision. At the
end of a glacial period, the landscape includes formerly gla-
ciated valleys that are characterized by a steep backwall and
a relatively flat valley floor (see Fig. 7). Some of the valleys
are, 1n fact, filled by lakes, as they are terminated by a raised
sill which formed along the margin of the ice cap. When
such a landscape is suddenly freed of ice and river incision
is allowed to take place, rapid incision of the flat river beds
and sills takes place leading to a pulse in fluvial erosion rate
by “elacial nickpoint retreat” The removal, by the fluvial
network, of relatively soft glacial debris deposited during
glacial retreat also contributes to the increased fluvial ero-
sion rate immediately after a glaciation.

Large mass movements by fluvial erosion/transport have
been documented in many mountainous areas following de-
glaciation. A spectacular example of such processes took
place at the end of the last glaciation in the Lahul Hima-
laya, northern India (Owen and others, 1995), where para-
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Fig. 7. Computed topography at the end of the last glacial
period (500 kyr) in experiment ILL White to light-grey areas
correspond to low topography; dark-grey to black areas corres-
pond to high topography.

glacial reworking of unconsolidated glaciogenic sediments
and rapid degradation of glacial landforms by fluvial pro-
cesses led to the release of large quantities of sediments into
the present-day fluvial system. A similar readjustment of the
landscape has also been observed around retreating glaciers
in Norway (see, e.g., Ballantyne and Benn, 1994).

Drainage patterns

Another important contribution to the imbalance between
fluvial and glacial erosion processes comes from the differ-
ence between ice and water flow along the sides of a moun-
tain. Water flows downhill, that is by following the local
topographic gradient, whereas ice flows in the direction of
steepest ice-surface gradient. Although on average the two
directions coincide, locally they may diverge substantially.
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Fig. 8. Topographic cross-sections computed along a north—
south line shown on Figure 7 for experiments (a) I, (b)
IVand (¢) Vatt= 500 kyr.

This 1s illustrated in Figure 6b, where a contour map of the y
component of the ice-sliding velocity is shown. In the “north-
ern” part of the mountain belt, there is a finite northward
component to the sliding velocity in east—west trending val-
leys; conversely, in the southern part of the mountain belt,
there is a finite southward component in east—west trending
valleys. Valleys in the northern and southern parts of the
mountain belt, that have experienced ice flow in a direction
oblique to the local topographic gradient, are wider than the
valleys in the central parts of the mountain belt (Fig. 7).

This difference between ice and water-drainage patterns
can be measured by the proportion of the nodes discretizing
the landscape where the direction of ice flow is different
from the direction of water flow. This proportion reaches
12% at the peak of the last glaciation in experiment IIT.

Ice constriction

Valley cross-sections are shown in Figure 8a, along a north—
south profile that runs along the side of the mountain belt
10 km to the west of the main drainage divide. The geometry
of the valleys at the peak of the Last Glacial Maximum in
experiment III are U-shaped and separated by very “sharp”
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interfluves (inverted Vs). This geometry contrasts with that
of experiment IV, in which no ice is allowed to develop on
the landscape (Fig 8b). In this case, the valleys are V-
shaped and the interfluves are rounded (inverted Us).

The characteristic U-shape of the glacial valleys 1is
imposed in our model by the ice-constriction factor, 3. This
is clearly demonstrated by the results of experiment 'V, iden-
tical to experiment III but for the constriction parameter,
k., which is set to zero (leading to 8 = 1 everywhere). The
resulting valley cross-sections are V-shaped (Fig. 8c). Note,
however, that in this fifth experiment the downstream
profiles of the glacial valleys were identical to those of ex-
periment IIT leading to the formation of narrow, spoon-
shaped, glacial lakes. In experiment V, the pulses in fluvial
erosion rate following the glacial periods are of greater
magnitude and the ice volume supported by the landscape
is larger than in experiment III. This demonstrates that the
imbalance between glaciated and fluvial landscapes pre-
dicted by our model does not come from the imposed ice-
constriction term which we arbitrarily included in the
model and which strongly dictates the cross-sectional shape
of glacial/fluvial valleys. Rather, this imbalance is a more
fundamental consequence of the basic difference between
glacial and fluvial erosion processes which create their own
characteristic landforms in the direction of ice/water move-
ment: glacial cirques/lakes versus graded river profiles.

CONCLUSIONS

Glacial landscapes have a form that is better suited to
hold large ice volumes than fluvial landscapes;

unlike water streams, glaciers are capable of eroding
drainage divides, but only for moderate ice thickness
under the conditions modelled here;

glacial erosion may rapidly reach a constant rate even in
a steadily growing orogen; therefore, ice erosion cannot
keep pace with tectonic uplift once a critical topography
is reached;

disequilibrium between fluvial and glacial landforms
leads to large pulses in erosion rate (and thus, sediment
flux) at the end of glacial periods; and

this disequilibrium comes from the spoon-like shape of
glacial valleys and lakes which are eroded away by rapid
nick-point retreat at the end of glacial periods; the dis-
equilibrium also results from the difference in local
drainage patterns between the fluvial network and the
ice-sheet flow.

Our model is based on a collection of relatively well-es-
tablished concepts concerning fluvial and ice erosion; it is
therefore not surprising that it predicts behaviours that are
also relatively well understood. Its originality comes from its
ability to combine, in space and time, processes that have
usually been studied separately in the past. Work is under
way to further improve this geomorphic model and to com-
pare its predictions to natural examples.
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