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Synopsis

In this paper we define two semigroups of continuous relations on topological spaces and
determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for
which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes
all O-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which
contain an arc; indeed all of K. D. Magill's S"-spaces are included. Some of the algebraic
structure of the semigroup of all continuous relations is elucidated and a method for producing
examples of topological semigroups of relations is discussed.

1. Wide continuous relations

X and Y will always denote topological spaces which need not be
Hausdorff. The interior and closure of a set A are denoted A°, A* respec-
tively. We let si(X) (respectively, 3V(X)) denote the collection of all nonvoid
subsets (respectively, all nonvoid compact subsets) of X, and consider these
collections to be topological spaces in the finite topology of Michael (1951). •

A relation from X to Y is a subset of X x Y. If R is a relation from X to
Y then R ' is a relation from Y to X, where R~' = {(y, x):(x, y) G R}. If
RCXxY, ACX and B C Y, put AR = {y:3a EA.(a,y)GR} and put
RB = BR "'. A singleton subset will usually be denoted by its element, so that
xR will appear in place of {x}R, and so forth. It R QXx Y and S C Y x Z ,
put

R ° S = {(x, z): for some y G Y, (x, y) G R and (y, z) G S}.

One easily establishes that (R ° 5)° T = R °(5 ° T) for all relations R, S and
T, and that the formulas

(1.1) A(R°S) = (AR)S

(1.2) (R°S)B = R(SB)

46

https://doi.org/10.1017/S144678870001733X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001733X


[2] Two semigroups 47

(1.3) A(RL)S)= ARUAS

(1.4) (R U S)B = RBUSB

are universally valid. Equations (1.2) and (1.4) are consequences of (1.1) and
(1.3) respectively, in light of the identity

(1.5) (R °S)-1 = S-1 °R-1

We note that if R and S are functions then aR and Rb are more
commonly denoted by R(a) and R~'(b) respectively, while a(R°S) becomes
S(R(a)). We shall write functions to the left or to the right of their
arguments, as is convenient.

If R C X x Y we say R is wide provided that X = RY. To each wide
relation R C X x Y there corresponds a unique function fR: X—*s&(Y),
given by fR(x) = XR. The correspondence W: R <-»/« is a bijection between
the set of wide relations from X to Y and the set of all functions from X into
si(Y). To each such relation there corresponds uniquely another function FR:
s£(X)->s4(Y), given by FR(A) = AR. If is easy to see that FR(A) =
U{/ R (x ) : i eA} .

Day and Franklin (1967) say a relation R G X x Y is continuous pro-
vided the following conditions hold:

(i) RB is closed in X whenever B is closed in Y
(ii) RB is open in X whenever B is open in Y
(iii) xR is compact for each x G X.

Each of these three conditions defines a property of relations: (i) is upper
semicontinuity, (ii) is lower semicontinuity (Day and Franklin (1967)) and (iii)
is point-compactness. In addition, a relation R is called point-closed if xR is a
closed subset of Y for each x G X. Upper and lower semicontinuity are
known to have several equivalent formulations with which we assume the
reader to be familiar.

In this paper we shall be concerned with several collections of relations
and functions. We denote by C(X, Y) the set of all continuous relations from
X into Y; CW(X, X) is the set of all continuous wide relations from X into Y
and CF(X, Y) is the set of all continuous functions from X into V. Function
spaces will always carry the compact-open topology. We shall be interested
particularly in the function spaces CF(X,3V(Y)) and CF(3if(X), 3if(Y)). For
brevity's sake we write C(X) in place of C(X, X), etc. Day and Franklin
(1967) proved that the bijection V(R) = fR mentioned above maps CW(X)
onto CF(X, 3if(X)). We shall prove that CW(X) is a semigroup under the
operation of relation composition. More is actually true, although we shall not
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include the additional proof: with the additional operation of pairwise union,
over which relation composition distributes, CW(X) is a semiring. We shall
need the following well-known lemma, the brief proof of which seems to be
new to the literature.

LEMMA 1.1. If R is a continuous relation from X onto Y, then AR is
compact whenever A is compact.

PROOF. It is no loss to assume that A is a compact subset of RY. Since
the function fR: i?Y—>3f(Y) is continuous (a result of Michael (1955),
Theorem 9.2), fR(A) = {xR: x G A} is a compact subset of JK{Y), i.e.
fR(A)<E3V(5V(Y)), and hence (Michael (1951), Theorem 2.5.2) UfR(A) =
AR is compact.

PROPOSITION 1.2. C(X) and CW(X) are semigroups under the operation
of relation composition.

PROOF. We omit the routine verification that the composition of upper
(respectively, lower) semicontinuous relations is again upper (lower) semicon-
tinuous. If R and S are in C(X) and x G X, then xR is compact, and, by
Lemma 1.1, x(R °S)= (xR)S is compact. If R and S are wide, it is
immediate from (1.1) that R °S is wide.

The function space CF(3V(X)) is of course a semigroup (in the discrete
topology) under function composition. Of particular interest is its subsemig-
roup CF0(3T(X)) of all functions / G CF(JK(X)) that preserve unions of finite
families of subsets of X. It is immediately seen that CF0(X(X)) is a
semigroup: indeed, it is the semigroup of endomorphisms of the topological
semilattice (3C(X\, U). We define CF0(3((X),3C{Y)) analogously to
CF0(X(X)).

PROPOSITION 1.3. CW{X) is isomorphic to CF0(X(X)), ifX is Hausdorff.

PROOF. If R G CW(X) then, as Michael (1951) proved, fR< X-*%(X) is
continuous, where fR(x) = xR. A result of Michael (1951), Theorem 5.10.1)
then implies that the induced function fR: s£.(X)^> si(J{(X)), given by
fR(A) = {fR(x): x G A}, is also continuous. It is then a consequence of
Lemma 1.1 that f% maps 3£(X) into %C%(X)). Michael's "union" function
a: si(si(X))^> M(X), given by or(98) = U 38 for 38 G st{M{X)), is continu-
ous, provided all spaces carry the finite topology (ibid., Theorem 5.7.2), and
therefore the restriction of a to JC(JK(X)) is continuous; according to
Theorem 2.5.2 (ibid.), a carries JK(%(X)) into 3({X). Hence the function
FR:X(X)^X(X) given by FR(A)= AR is continuous, since FR(A) =
O-(JR(A)) for each A G.3K{X). Observe that for any relation R and any
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collection 93 of sets, (U 93 )R = U{AR: A G 93}, so that FR(\J93) =
U {FR(A): A £ 93}; hence, for each R G CW(X), FR e CF0(5Sf(X)). We now
define a function 4>: CW(X)-> CF0(3if(X)) by <S>(R) = FR. Routine checking
shows that <f> is 1-1 and a semigroup homomorphism. We will be done if we
show that $ maps CW(X) onto CF0(3iT(X)).

If FG CF0((X)), then, letting R = U i e x {x}x F({x}), we will see that
F = FR. The restriction of F to the singletons is continuous as a function from
X to 3if(X) and one sees F({x})= FR({x}) for all x G X, so R G CW{X).

Next we will prove that F and>FR agree on the set $ of finite subsets of
X, which is dense in 3iT(X) (ibid, 2.4.1). To this end, let A E $ and let
77: X x X—>X be the projection mapping (x, y) to y. We compute: FR(A) =
77[(AxX)nR]=U l £ / 1 7 r [{x}xF({x}) ]=U E ,F({x}) = F(A). Hence the
continuous functions F and FR agree on all of 3C(X), since 3if"(X) is Hausdorff
whenever X is.

The following easily established observation is interesting.

COROLLARY 1.4. The isomorphism R —» FR is order-preserving: if R C. S
then FR S Fs, where f S g means f(A)Cg(A) for every A G X(X).

DEFINITION. Let A be any subset of X. The relation constantly A is
KA = X x A.

PROPOSITION 1.5. A nonvoid rectangular relation A x B is in C(X, Y) if
and only if A is clopen and B is compact; hence KB G CW(X, Y) whenever
BGSff(Y).

PROOF. If R = A x B E C(X, Y) then A = RY is clopen since V i s a
clopen subset of itself. If x G X, then xR is either void or equal to B,
depending on whether x G A or not; hence B is compact. Conversely, if
C C.Y, RC is empty or equals A, depending on whether or not B d C i s void.
The upper and lower semicontinuity of R is clear from this, and the
compactness of B and 0 guarantee the point-compactness of R. The.second
assertion is clear.

PROPOSITION 1.6. There is precisely one 0-minimal ideal in C(X), namely
M(X) = {A xJ3: A is clopen and B is compact}. There is precisely one
0-minimal ideal in CW(X), namely MW(X) = {KA:AE Sif(X)}.

PROOF. M(X) is defined in such a way as to include 0 , the empty relation
on X, which is clearly the zero of C(X). This fact, together with the equations

(1.6) R°(AxB)= RAxB

(1.7) (A xB)°R = A x BR,
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which hold for any relation R and any rectangular relation A x B, proves that
M(X) is an ideal of C(X). If / is any ideal of C(X), let R G / and (z,, z2) E R.
Then for any nonvoid A x B € M(X), A x {z,} and X x B are surely in
C(X); since A x B = A x {z,}°R °X x B G /, it follows that M(X)C 7. The
assertion for CW(X) is proved similarly.

2. A Banach-Stone theorem for CW(X)

If h is a bijection from a space X onto a space Y, and <t> is defined by the
equation

<P(R)=h l°R°h

for each relation R from X to Y, then it is routine to verify that 4> is a finite-
union-preserving (in fact, a union-preserving), one-to-one homomorphism of
relations; if h is a homeomorphism, then 4> is a finite-union-preserving
isomorphism of CW(X) onto CW(Y). We aim to show that the converse of
this assertion is true for a quite extensive class of spaces. We begin with the
following result.

PROPOSITION 2.1. If 4>: CW(X)-» CW(Y) is any finite-union-preserving

isomorphism then there is a bijection h:X-* Y for which

<t>(R) = h'° R ° h

for all R £ CW{X).

PROOF. Since <t> is an isomorphism, it maps the 0-minimal ideal of
CW(X) onto that of CW(Y); so we may define H : 3if(X)-»3if(Y) by the
condition H(A) = B if and only if <$>(KA) = KB. It is easily verified that H is a
bijection. We include the details of this verification.

(i) H is a function: If (A, B), (A, C) G H, then Y x B = KB = <$>(KA) =
Kc = Y x C, so B = C.

(ii) H is one-to-one: If H(A)=H(B)= C, then Kc = 4>(KA) = 4>(KB);
since <!> is one-to-one, KA = /fB, whence it follows A = B.

(iii) H is onto: If B E 3>C(Y), KB is in the minimal ideal of CW(X),
hence is the image under <I> of some KA in the 0-minimal ideal of CW(X).
Then B = H{A).

We will show that H preserves singleton subsets (and thus induces the
required function h) by showing that H preserves finite unions. We shall use
the fact—a consequence of the definition of H—that <$>(KA) = KH(A). To see
that H preserves finite unions suppose 35 = {A,,-••, An} is a finite subcollec-
tion of %{X) and put B = U 39. Then KB = X x B and U {X x A | A G 35} =
U{KA | A G 33}, whence follows
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Y x H(B) = KmB) = ®(KB) = U{<P(KA)\A G38} = U{KH(A)\A <E @}

= U{YxH(A)\A E@}= Yx U{H(A)\A £38}.

From the extremes of this last we see

H(B)= U{H(A):A G 38}

(We observe in passing that H preserves arbitrary unions, provided <P does
also.)

Next let x G X and suppose y G H({x}). There is some A 6 K(X) for
which H(A) = {y}, and it follows that

H({x}) = H({x}) U {y} = H({x}) UH(A)= H({x} U A);

since H is one-to-one, then {x} = {x}UA, implying AC.{x}. Since
AE.X(X), A is nonvoid and therefore A = {x}. But this implies that
{y} = H(A)= H({x}), i.e. H({x}) is a singleton.

The condition h(x)G H({x}) defines a function h:X^>Y which is
clearly a bijection. To see that h has the asserted property, let R G CW(X)
and y = h(x)G Y. Then we compute as follows:

y<t>(R) = y[Ky °<P(R)] = y[®(Kx)°<P(R)] = y[<t>(Kx °R)] = y[<t>(KxR)]

Hence <;>(/?)= h~'° R ° h.
In order to "topologize" proposition 1.7, we need to identify a class of

spaces for which that proposition is true for homeomorphisms h. The class of
CW-spaces defined below is such a class; it is, as we shall see, quite extensive.

DEFINITION X is a CW-space if and only if {Rx | x G X, R G CW(X)} is
a basis for the closed subsets of X.

We note that since the identity function 1, is in CW(X) that X is
necessarily T, if it is CW. It will be convenient to refer to the defining basis as
the CW-basis of X.

Magill (1967) has defined the class of S"-spaces as follows: X is an
S*-space if X is T, and whenever F is a closed subset of X and x& F there is
a point q G X and a continuous function / : X —> X such that f(F) = {q} and
f(x)/ q. He proved that X is an S*-space just in case X is T, and the family
{/~'(x)\x GXJE CF(X)} is a basis for the closed subsets of X. Magill
proved that among the S*-spaces are the O-dimensional Hausdorff spaces as
well as those completely regular spaces containing an arc. In light of the
following proposition, the class of CW-spaces is rather broad.

https://doi.org/10.1017/S144678870001733X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001733X


52 A. R. Bednarek and Eugene M. Norris [7]

PROPOSITION 2.2. Every S*-space' is a CW-space.

PROOF. CF{X) C CW(X), SO

{f-\x): f G CF(X), xEX}C{Rx\xGX,R(= CW(X)};

the upper semicontinuity of each R together with the fact that X is T, implies
that {Rx | x £ X, R G CW(X)} is a basis for the closed sets of X.

We may now state and prove the principal result of this section of the
paper.

THEOREM 2.3. Let X and Y be CW-spaces. The following are equivalent:
(i) there is a homeomorphism h from X to Y
(ii) there is a finite-union-preserving isomorphism <t> from CW(X) to

CW(Y).
The homeomorphism and isomorphism satisfy the equation

for all R G CW{X).

PROOF. That homeomorphism implies isomorphism is clear; we proceed
to prove the converse. Suppose that 4>: CW(X)—> CW{Y) is an isomorphism
and h:X—*Y is the corresponding bijection from proposition 2.1, i.e.
$ ( R ) = r ' o R » / i for all R G CW(X). We will be done if we show that
(Rx)h = (<t>(R)) (xh), for this will show that h induces a bijection between the
CW-bases of X and Y and is therefore a homeomorphism.
If R G CW(X) and x G X, then, writing h to the right,

(Rx)h =(xR')h = x(R-l°h) = (R-'°hy'x =(h~l°R)x

= (h~l°R °h)(h-'x) = &(R)(xh).

We pause to record an interesting consequence of Theorem 2.3. Vitanza
(1966) studied a notion of inner endomorphism on a semigroup 5, that is, such
a homomorphism f: S —> S that for some a and b G S and for all x G S,
/(x) = ax/>. Vitanza showed that an automorphism of S is inner if S is a
monoid and the a and b of the preceding definition are inverses relative to
the identity of S. In CW(X), of course, the identity function l x is the identity
and h is a unit relative to 1* just in case h is a homeomorphism of X onto X.

COROLLARY 2.4. Lef X be a CW-space and <t> an automorphism of
CW(X). Then these are equivalent:

(i) <J> is finite-union-preserving
(ii) 4> is inner.
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PROOF. If $ preserves finite unions then the theorem gives a
homeomorphism h on X for which <P(R) = h ~' ° R ° h for all R E CW(X), so
<& is inner. Conversely there exist, by Vitanza's theorem (op. cit.) and the
preceding remarks, a homeomorphism h from X onto X for which <P(R) =
h-1°R°hioxa\\RE CW(X); if {Rt, • • -, Rn} is any.finite subset of CW(X),
then ®(U,Ri)=h-l°\JiR, °h = U1/r1°.R1 °fc = U,4>(/?,), proving that <P
is finite-union-preserving.

Finally, one asks if each isomorphism <1>: CW(X)—» CW(Y) is necessar-
ily union-preserving. If so, Theorem 2.3 would be much stronger than it seems
to be.

3. Topologies for relation semigroups

The fact that the function <P(R) = FR in the proof of Theorem 1.3 is an
isomorphism allows one to produce examples of topological semigroups of
relations. For example, if Y is locally compact and Hausdorff then so is 3£(Y),
and therefore—as is well known—it is the case that CF(3fC(Y)) is a topological
semigroup in the compact-open topology. We pursue this idea briefly.

In general, each choice of topology on CF(3V(X),3V(Y)) leads to a
topology on CW(X, Y) via <J>, since CW(X, Y) will inherit the subspace
topology on CFa(W{X\ X(Y)). Day and Franklin (1967) give a simple
description of the topology °U induced on CW(X, Y) by the bijection
ty(R) = /R when CF(X, 9£(Y)) carries the compact-open topology: °U has for
an open subbase all sets A(K, U) = {R G CW(X, Y): KR C U} and
B(K, U) = {R& CW(X, Y): K C RU}, where K G %(X) and U is open in y,
and Y is a Hausdorff space (op. cit., Prop. 1). We denote by 9~ the topology
on CW(X, Y) induced via <t> when CF(3V(X)), 3V( Y)) carries the compact-
open topology. The problem of comparing % and 2T naturally presents itself.

PROPOSITION 3.1. Let Y be a Hausdorff space. In the notation above, °U is
weaker than ST.

PROOF. (In this proof, the notation [A, B] is used for the set of functions
mapping A into B, and [[/],([/) denote the usual subbasic open sets in X(Y),
namely, [U] = {B G SV(Y): B C U} and (U) = {B <= %(Y): B (1 t / ^ 0 } ; see
Michael (1951).)

Since Y is Hausdorff, so is 3V(Y) and therefore (Dugundji, (1965) XII,
5.1 (a)) an open subbase for the compact-open topology on CF0(3{(X), 3K{ Y))
consists of all sets [%[U]], [%{U)\ where <£ G %(%(X)) and U is open in Y.
The inverse images of these sets constitute the open subbase for 3~. Routine
checking shows that the °U-subbasic open sets A = A(K, U) and B =
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B(K, U) are j-ust the inverse images under cj> of the compact-open sets
[{K}, [I/]] and [38,(£/>] respectively, where S3 is the compact set
{{x}:x£K} (is compact since it is the image of K via the canonical
embedding x^>{x} of X into 3V(X)). Hence °U is weaker than ST.

THEOREM 3.2. / / X is a locally compact Hausdorff space, then aU = ST.

The proof of this theorem follows from the next proposition and the
ensuing discussion.

PROPOSITION 3.3. If X is locally compact and Hausdorff then CW(X) is a
topological semigroup in the topology aU.

PROOF. (I) If R ° S E A [K, U] for K compact and U open in X, then the
compact set K(R °S) = (KR)S C U; the local compactness of X guarantees
the existence of an open relatively compact set V for which (KR)S CV C
V* C U. If y G KR then yS C V so the upper semicontinuity of S gives (as is
well known) an open relatively compact set Uy about y for which it is the case
that

U,S C V,

and the lower semicontinuity of S gives that

Uy*SQ(UyS)*C V*C U.

Since KR is compact there are y,, • • • yn G KR so that KR QU?,U • • • Uyn =
W and W* is compact. Then SEA[W*,U] and R G A[K, W]. It is
immediate that for any R,EA[K,W] and 5, G A[ W*, U], R,°S, E
A[K, U].

(II) If R°SEB[K, U], that is, K C R(SU), then for each x E K, there
is some yx E xR with the property that yxS D U is nonvoid. The lower
semicontinuity of 5 gives an open set V\ about yx with the property

vEVl implies vS n [/^ 0 .

Since X is locally compact Hausdorff, there is an open, relatively compact set
Vx satisfying

yx E Vx C V* C Vi

and therefore having the property

(1.8) vEV* implies uS n U/ 0 .

Since y, G V, n xR, the lower semicontinuity of R gives an open set Ux about
x for which
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(1.9) u G Ux implies uR D Vx/0.

Since K is compact, there exist x , , - - - x n E K such that KC
[/„ U • • • U (/,, = VV; choose the corresponding y, = y,, and the correspond-
ing V, satisfying (1.8); put V = V, U • • • Vm so that V* is compact and (again
using 1.8) we see that

SGB[V*, U].

Since K C W then it follows from (1.9) that

R <EB[K, V}.

It is immediate that if Rt G B[K, V] and S, G B[ V*, U) then

Rt°S, <EB[K, U],

proving that composition of relations is continuous. °U from its definition is a
Hausdorff topology, so the proposition follows.

The bijection 4> from the space CW(X) with topology °U onto the set
CFo(3if(X)) induces a topology °U0 on CF(1(3f(X)) which, in light of Proposi-
tion 3.1, is weaker than the compact open topology. One can easily prove the
next result.

PROPOSITION 3.3. If F is a topological semigroup of functions on a space Y
and if Y is embedded in F, then the evaluation map P: F x V —> V, given by

/- y) = /(>') 's continuous.

In particular, when X is locally compact and Hausdorff then 3V(X) is
embedded in the function space of CF0(J{(X)) with topology °U0, and from the
preceding proposition the evaluation map is continuous and °U0 is therefore
jointly continuous on compacta. But for locally compact Hausdorff spaces it is
well known that the compact-open topology is the weakest jointly continuous
topology and is therefore weaker than %0. Going back to CW(X) via <t>, then,
we see that 9~ is weaker than °ti. This, together with Proposition 3.1,
establishes Theorem 3.2.

Although we can consider CW(X) to be a topological semigroup with
topology °tt whenever X is locally compact and Hausdorff, the general
problem of topologizing relation semigroups seems to be a difficult one. For
example, it is known that the closed relations on a compact space form a
semigroup;'each closed relation is itself a point of the hyperspace 3V(X x X).
Examples show, even if X is taken to be the closed unit interval, that
composition is not continuous in the hyperspace topology.
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4. Isomorphism and homeomorphism for C(X)

In this section we direct our attention primarily to spaces which are
Hausdorff and O-dimensional. Such spaces of course are regular.

The following easily established result, needed below, generalizes a
well-known result on continuous Hausdorff-valued functions and closed
graphs. We omit its straightforward proof.

LEMMA 4.1. A point-closed upper semicontinuous relation with regular
range space is closed.

The semigroup K(X) of clopen relations on X recently studied by
Bednarek and Magill (1973) for compact X is easily seen (in the compact case)
to be a subsemigroup of C(X); indeed, on any space, if R is an open relation
then RA is open for any set A, and if R is closed and A is compact then RA
(and AR) are closed. The fatter assertion is a consequence of a well-known
result of A. D. Wallace. It now follows that K(X) C C(X) when X is
compact. It would be interesting to have a purely algebraic description of
K(X) in terms of C(X).

We have the following result, relating relation containment to relation
composition. Recall from Proposition 1.6 that M(X) is the O-minimal ideal of
C(X).

LEMMA 4.2. If R and S are any continuous relations on X, a 0-
dimensional Hausdorff space, then the following are equivalent:

(i) RQS
(ii) PoRoQ^0 implies P°S°Q^0 for all PQE C(X)
(iii) P°R°Q^0 implies P ° S °Q/ 0 for all P,0 E M(X).

PROOF. The implications (i)=> (ii)=> (iii) hold trivially in any space X for
any relations, so there remains only the implication (iii)=>(i). This is proved
in essentially the same way as Lemma 2 of Bednarek and Magill (1973). Since
that result may not be readily available to the reader, we give a proof here.
Let (x,y)ER and let A x B, be any clopen neighborhood of (x, y). Then
A x {x} and B x {y} belong to M(X) and

A x{x}°R°B x { y } ^ 0 .

Therefore there is a point (z, w) in

A x{x}°S°J3 x{y} .

Hence there are points u, v for which (z, « ) £ A x{x}, (u, v)E.S and
(v, w)E B x {y}. This implies (u, u)G A x B D S, i.e. (x, y) is in the closure of
S. Now by Lemma 4.1, S is closed and hence (i) is established.
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We may note in passing that the hypothesis of O-dimensionality in this
lemma is essential: the result cannot be carried to 1-dimensional spaces, e.g.
the unit interval. Indeed for any connected space X, C(X) is just CW(X) with
a zero adjoined; every nontrivial composition is nonvoid.

Lemma 4.2 holds of course for the full relation semigroup 98 (X) on any
discrete space X. It is of considerable interest to study the class of relation
semigroups for which containment is so characterized.

We use Lemma 4.2 to obtain the next easy but interesting result.

PROPOSITION 4.3. Let X be any space. If Y is a 0-dimensional Hausdorff
space then every isomorphism <S>: C(X)—» C(Y) is order-preserving.

PROOF. Suppose P, Q, R and S are in C(X) and R C S and suppose
further that <$>(P) ° <t>(R) ° <t>(Q) ^ 0 ; since 4> is a one-to-one homomorphism,
P°R °Q/ 0 and therefore P °S ° Q/ 0. Applying <$>, we see that
<P(P)°$>(S)°<P(Q)/ 0 . Since $ maps C(X) onto C(Y), Lemma 4.2 applies
to allow the conclusion <t(R)C <t>(S).

The next lemma is elementary and involves only the fact—true on any
space X—that the union of two continuous relations is continuous. We recall
the elementary fact that any order-preserving bijection between join semilat-
tices is join-preserving if its inverse is order-preserving.

COROLLARY 4.4. Let X and Y be 0-dimensional Hausdorff spaces. Every
isomorphism <1>: C(X)—» C(Y) preserves finite unions.

We will now locate CW(X) algebraically in C(X).

PROPOSITION 4.5. Suppose X is any space and let R £ C(X). The follow-
ing assertions are equivalent:

(i) R £ CW(X)
(ii) S°R/0 for all S G C(X), S/0
(iii) S°R/0 for all SG M(X), S^ 0

PROOF. The implications (i)=^ ( i i )^ (m) a r e clear, so we need only verify
(jji)=>(i). If R satisfies (iii) and R£ CW(X), then there is a point x not in
RX. The rectangular relation Xx{x} is in M(X), but Xx{x}°R =
X x xR = 0 , contrary to (iii).

COROLLARY 4.6. // X and Y are spaces, each isomorphism
<t>:C(X)^C(Y) carries CW(X) isomorphically onto CW(Y).

The aim of this sequence of propositions is the next result.

THEOREM 4.7. Let X and Y be 0-dimensional Hausdorff spaces. Then X
and Y are homeomorphic if and only if C(X) and C(Y) are isomorphic.

https://doi.org/10.1017/S144678870001733X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001733X


58 A. R. Bednarek and Eugene M. Norris [13]

PROOF. AS is usually the case, it is easy to see that homeomorphism of X
and Y implies isomorphism of C(X) and C(Y). To see the converse, let
<t>: C(X)—»C(Y) be any isomorphism; <J> is necessarily finite-union-
preserving by Corollary 4.4 and maps CW(X) onto CW(Y) by Corollary 4.6.
Since a O-dimensional Hausdorff space is a CW-space, Theorem 2.3 applies to
yield a homeomorphism h:X—> Y, proving the theorem.

We .remark that the homeomorphism h satisfies the condition <t>(R) =
h ' ° R ° h for all R E CW(X). That this equation holds for all R E C(X) is a
highly attractive conjecture.
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