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Lattices of congruences have been studied by many authors. Hall [4] has
shown that the lattice of congruences on a semilattice satisfy a certain chain
condition which is a natural extension to arbitrary lattices of the Jordan-Dadekind
chain condition for finite lattices.

In this paper we show that this chain condition is also satisfied by the lattice
of structure semilattice preserving congruences on any normal band. We in
fact show that the lattice of structure semilattice preserving congruences on a
normal band satisfies the condition (1) if y >- x A y then x\J y > x for any
lattice elements x and y.

Two examples are included which show that the results given are in a csrtain
sense the best possible. The notation of [1] and [2] is used throughout this
paper.

1. Congruences on regular bands

We begin by giving the fundamental decomposit ion theorem for idempotent

semigroups. A band S is called rectangular if xyz = xz for all x, y,zeS.

THEOREM 1.1. (McLean [8]). Let S be a band. Then there exists a semi-
lattice F , which is unique up to isomorphism, and a disjointfamily of rectangular
subbands of S indexed by F, {Sy: yeT}, such that

(i) S = u{Sy:yer}, and
(ii) SaSp = Saf for all a,peT.

The semilattice T is the maximal semilattice homomorphic image of S.
r is called the structure semilattice of S and Sy the y-kernel, or simply, a kernel
of S. We denote the decomposition by the notation:
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49

https://doi.org/10.1017/S1446788700009630 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009630
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The homomorphism of S onto F, which in fact maps aeSx onto a, is called
the natural map of S onto F.

Let p be a congruence on a band S ~ £ {Sy: y e F} and suppose the struc-
ture semilattice of S/p is A. Then, since F is the maximal semilattice homomorphic
image of S, there is induced a congruence F on F such that r / f s A . We may
identify F/F and A. When we wish to indicate explicitly that p induces the con-
gruence F on F we shall write p -*• F.

LEMMA 1.2. Let p be a congruence on S ~ ~L{Sy: yeT} such that p -> F.
Let (a,p)eF and suppose that a ^ /?. Then there exist aeSx, beSp such that
(a,b)ep.

Conversely, if(a,b)ep with aeSx, beSp then (a,/?)eF.

PROOF. Suppose that (a,/J)eF. Let xeSx and yeSfi. Since (a,j5)eF, (xp)
and (yp) are in the same kernel of S/p and so

(xp)(yp)(xp) = (xp).

Now xyx e Sp, since a ^ /?, and (xyx)p = (xp)Op)(xp). Put a = x and b = xyx.
Then aeS a , beSp and (a,b)ep.

The converse is obvious. This completes the proof of Lemma 1.2.

We now determine the congruence F in terms of the congruence p.

THEOREM 1.3. Let p be a congruence on S ~ £{S?: yeT} such that
p-+ F. Then

F = {(a,j8)eF x F: there exist e e 5,,,/e Ŝ  such that

REMARK. Let a be a relation on a semigroup £. By u' we mean the transitive
closure of a.

PROOF. Put a = {(oc,P)eT x F: there exist eeSx,feSfi such that (ej)ep}.
We are required to prove that F = a'.

It follows from the second part of Lemma 1.2 that CT' S F .
Suppose now that (a,#)eF. Then (a,ajS)eF and (a/?,j8)eF. By Lemma

1.2 there exists eeSx,f, geSaP, and AeS^ such that (e,f)ep and (g,h)ep.
Thus (a.a/Oecr and (a/?,a)e<r. Hence (a,/?)6fffand so F s <rf. This com-

pletes the proof of Theorem 1.3.
Let L ~ ZlLyryeF} and /? ~ H{/?r' 7 eF} be two bands which have

the same structure semilattice F. Let <j> and \\i be the natural maps associated
with L and R respectively. Then

T = {(a,b):aeL,beR and a$ = b\j/}
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forms a subsemigroup of the direct product L x R. We call 7" the spined product
of L and R with spine T and write T = L |XI R(T). Spined products were intro-
duced by Kimura in [5,7].

A band S is called (1) left regular, (2) right regular, or (3) regular if it satis-
fies respectively the following identities.

(1) aba = ab for all a, beS;
(2) aba = ba for all a, beS;
(3) abaca = abca for all a,b,ceS.

THEOREM 1.4 (Kimura [7]). A band T is regular if and only if it is the
spined product L |X| R(T) of a left regular band Land a right regular band R.

Let T = L |X| -R(r) be a regular band. Further, let pL(pR) be a congruence
on L(R) such that pL ->• F (p^ -> F) for some congruence f o n T . Put

n = {((a,b),(c,d))eTx T:(a,c)epL,(b,d)epR}.

It is straightforward to check that it is a congruence on T. We write n = pL JX| p*
and say that n is the spined product of pL and pR.

THEOREM 1.5. (This is a restatement of corollary 2 of [7].) Let S and T be
regular bands and suppose that S = A |XI B(T) and T= C IXI £>(A), where
A,C are left regular and B,D are right regular. Further, suppose that

yer}, B~ Z{By:yer}, C ~ £{Cy:yeA} and D ~ ~L{Dy:yeA}.

Let k: S -»• T be a homomorphism, then there exists a homomorphism
/ i :F->A and homomorphisms f: A -> C and g: B -> D satisfying (1)
(a,b)k = (af,bg) and (2) pft = / r and qh = gs. That is, the diagram

•v y -v
g

C —^ A <r^— C

is commutative, where p, q, r and s are the natural homomorphisms.

THEOREM 1.6. Let n be a congruence on a regular band T = L |X|
where L, R are left and right regular bands respectively. Then there exist
congruences pL, pR on Land R respectively such that n = pL IX| PR-

PROOF. NOW Tjn is a regular band and so Tin = L' IXI R'(T/F), where L'
is a left regular band, R' is a right regular band, and n->F. By theorem 1.5 there
exist maps/, g from Lto L' and R to R' respectively such that (a, b)n" = (af,bg).
PatpL = / o / ~ 1 and pR = go g"1. ThenpL -> F,pR-> F, again using theorem
1.5. Put 7i* = pL IXI PR- Then
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((a,b),(c,d))en if and only if (a,b)n* = (c,d)n*
Now

(a,b)n* = (c,d)n" ifandonlyif(a/,fcg) = (cf,dg).
Further,

(af,bg) = (cf,dg) if and only if ((a,i),(c,d))en*.

We conclude that n = pL |XI PR- This completes the proof of theorem 1.6.
Hereafter for a regular band Tif we simply write T= L IXI R(X) without any

explanation, then L and R will always denote a left regular band and a right
regular band respectively. Further for a congruence n on a regular band
T = L 1X| i?(F) if we simply write n = p |X| a, then p, a will mean congruences
on L,R respectively.

LEMMA 1.7. Let n1,n2 be congruences on a regular band S = L|XI
Suppose that 7̂  = p1 1X1 ^I and n2 = p2 1X1 ^i- Then %y £ n2 if and only if
P! c p2 and IT, c i r 2 .

PROOF. If p± ̂  p2 and ffi £ o-2
 t n e n by the definition of spined product

Pi IXI^i S f t IXI cr2.

On the other hand assume that nt £ n2. Suppose that

Sjn, = Lx IXI ^iCr/FJ and Sjn2 = L2 |X| /?2(r/F2),

where Lx, L2 are left regular bands, Rt, R2 are right regular bands, and nY -* Ft,
n2-*• F2. Let/X and/2 be the maps from Lto Lx and Lto L2 respectively such
that

Pi=fi°fr1 and p 2 = / 2 o / 2 - 1 .

Since n, £ n2 the map n2 from S to S/n2 can be factored through Sjn,. That
is, there exists a map ^ t from S/^ to Sjn2 such that 7r2 = n\^i. It follows
from theorem 1.5 that there exists a map \p2 from Lt to Lz such that/2 = /xi/̂ 2 .
Hence

/.o/r1 s/jo/r1,

that is, pt £ p2- Similarly, we prove that ffx £ a2. This completes the proof
of lemma 1.7.

THEOREM 1.8. Let n^ = At IXI ffi ««^ ^2 = ^2 IXI ^2 ^e congruences on a
regular band. Then

(1) nt \/n2 = At V^2 IXI <7i Vo-2. ««^
(2) nt A ?t2 = Ax A A2 IXl ffi A ff2 •

Theorem 1.8 follows from lemma 1.7 using routine lattice theoretic arguments.
We omit the details.

https://doi.org/10.1017/S1446788700009630 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009630


[5] On the lattice of congruences on a band 53

2. Some definitions and known results

THEOREM 2.1. (This is easy to show and is largely contained in section 3
of [9].) Let S be any set and consider the set of equivalences on S, ordered
under set inclusion. Let a be any equivalence on S. Then there is a natural
order-preserving one-to-one correspondence (described below) between the set
of equivalences on S which contain a and the set of all equivalences on the set
Sja. For any equivalence y on S containing a, the corresponding equivalence
on Sja is

yja = {{xa,ya)eSja x Sja:{x,y)Gy).

If S is a semigroup and a is a congruence on S then an equivalence y on S
containing a is a congruence on S if and only if yja is a congruence on the
semigroup Sja.

The following definitions and results are contained in [3], except for the
definition of upper semimodularity, which is merely called condition (7) in [3].

Let L be a lattice. For a,beL, a> b means that a 2: b and that a ^ b,
and a>-b (a covers b) means that a > b and there is no element x e L such that
a > x > b. For a lattice Lwith a zero element 0, the atoms of L are those elements
which cover 0.

DEFINITION 2.2. (This is a restatement of definition 1, page 85 [3].) A lattice
Lis semimodular when for any elements x,y,zeLif

y /\z <x <z <x\J y

then there exists an element teL such that

v A z < t :§ y and x = (x V 0 A z •

DEFINITION 2.3. (This is a restatement of condition (7), page 92 [3].). A lattice
L is upper-semimodular when for any elements x,yeL, if x > x A y and
y>x f\y then x\Jy>x and x Vy>y.

THEOREM 2.4. (This follows from lemma 1 and theorem 1 on page 265 [3].).
The lattice £(S) of all equivalences on a set S is semimodular.

THEOREM 2.5. (This is a restatement of property 2, page 90 [3].). Any semi-
modular lattice satisfies the following condition:

(1) if y> x A y then x V y >- x, for any lattice elements x and y.

THEOREM 2.6. (This is a restatement of the last paragraph of page 92 [3].)
Any lattice satisfying condition (1) is upper-semimodular.

THEOREM 2.7. (This is a restatement of theorem 1, page 88 [3].) Let L be
any lattice satisfying condition (1), and let a, b be elements ofL such that a <b.
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If there is a maximal chain of elements from a to b which is of finite length,
then any maximal chain of elements from a to b is finite and of the same length.

Let S be a semigroup and let A(S) be the lattice of all congruences on S.
Suppose now that S is a band and that

We define

Aj(S) = {a eA(S):(a,b)ea implies there exists aeT such that a,beSx}.

It is clear that p eAj(S) if and only if <f> o 0"1 2 p, where 4> is the natural
map of S upon I \ Thus A;(S) is a sublattice of A(S). In fact A((S) is a complete
sublattice of A(S).

Evidently if />eA,(S) then the structure semilattice of S/p is isomorphic
to F and hence we call A;(S) the sublattice of structure semilattice preserving
congruences on S.

The following example due to Hall [4] shows that the lattice of congruences
on a regular band is not upper-semimodular. In fact we show that the lattice
of structure semilattice preserving congruences on a right regular band is not
upper-semimodular.

Put S = {a,b,e,f,g,h} with multiplication given by the table

a

b

e

f

g

h

a

a

aj

e

f
e

f

b

b

b

g

h

g

h

e

e

e )

e

e

e

e

f

f

f

f

f

f

g

g

g

g

g

g

g

It is routine to check that S is a right regular idempotent semigroup. Con-
sider the relations

Pi = {(e,f),(f,e),(g,h),(h,g)}vis,

P2 = {O,g),(g,e)}Uis and

o = {(e,g),(g,e),(f,h),(h,f)}KJis.
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It is easily checked that px , p2 and a are contained in Af(S). Further, p1 >- is

and p2 > is. Now

P1VP2 = {(e,f);(e,g),(e,h),(f,e),(g,e),(h,e),

(f,g),(f,h),(g,f),(Kf>,(g,h),(h,g)}vis.

Thus p2 < G < p1 \j p2. Hence A;(S) is not upper-semimodular.
In view of the above example we now focus our attention on a smaller class

of bands.

3. Congruences on normal bands

A band S is called 1. left normal, 2. right normal, or 3. normal if it satisfies
respectively the following identities:

1. abc = acb for all a,b,ceS;
2. abc = bac for all a,b,ceS;
3. abed = acbd for all a,b,c,deS.

THEOREM 3.1 (Kimura and Yamada [6]) A band is normal if and only if
it is a spined product of a left normal band and a right normal band.

We remark that a left normal band is left regular, a right normal band is
right regular and a normal band is regular. Furthermore, a normal left regular
band is left normal and a normal right regular band is right normal. Hence the-
orem 3.1 is a corollary to theorem 1.4.

By the above remark any congruence i t o n a normal band S = L|XI R(T),
can be written as a spined product n = p |X[ a > where p is a congruence on the
left normal band Land a is a congruence on the right normal band R.

Let peAi(S) and suppose that (e,f)ep, e^f. Clearly there exist a e T
such that e,feSx. Generalizing Hall's argument in [4] put

CT = isu{(x,y)eSxS:(x,y)ep, xeSf,P£a}.

It is straightforward to check that a is a congruence and that is<a gj p. Suppose
now that p covers is. Then a = p and moreover,

(A) p = i , u [pnS , x S J ;

for suppose that (g,h)ep, g^ h, geS^, and / i<a . Then

a' = isu {(x,y)eS x S:(x,y)e p,xeSv,v < a}

is a congruence such that is<a' < p, a contradiction.

THEOREM 3.2. Let S ~ S{Sy:yEr} be a left normal band, p any atom
of Af(S). Then there exists e,feSx, such that
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(i) p = {(e,f),(f,e)}Vl.
(ii) ex =fx for all xeSp, £<« .

Conversely, given any pair e, feSx such that (ii) holds, the relation p
defined by (i) is a congruence and hence an atom o/A;(S).

PROOF. We begin by proving the converse. It is easily checked, by using
theorem 1 in [6], that p is a congruence. The converse is now obvious.

Let now p be an atom of A;(S) and suppose (e,/)ep, £ # / . Clearly e,feSx

for some oceF. Now (ex,fx)ep for all xeS since p is a congruence and so (ii)
holds using (A). Put

Then a is an atom (the converse) and is < a ^ p,a = p and the proof of theorem
3.2 is complete.

THEOREM 3.3. Let S be a left normal band. For any two congruences
p, <7eA;(S) p >- a in the lattice A;(S) if and only if p> a in the lattice

PROOF. The "if" statement is obvious.
Suppose that p >- a in the lattice A;(S). Then p/<r e A;(S/cr) (by theorem 2.1)

and since the one-to-one correspondence of theorem 2.1 is order preserving,
p\a is an atom of A;(S/cr). But Sja is also a left normal band, whence by theorem
3.2 pja is an atom of £(S/<x). Using theorem 2.1 again we obtain that p >- a in the
lattice £(S). This completes the proof of theorem 3.3.

THEOREM 3.4. Let S be a left normal band. Then the lattice A,(S) satisfies
the condition (1).

PROOF. Recall that A(S) is a sublattice of £(S). Further, A,(S) is a sublattice
of A(S) and so A;(S) is a sublattice of £(S). But £(S) satisfies condition (1) by
theorems 2.4 and 2.5. Theorem 3.4 now follows from theorem 3.3. This completes
the proof of theorem 3.4.

LEMMA 3.5. Let S = L|X| R(T) be a normal band. Let n be an atom
of A,(S). Then n = p |X| IR, where p is an atom of A;(L), or n = iL |X| P,
where p is an atom of At(R).

Lemma 3.5 follows immediately from lemma 1.7 and the definition of an
atom.

LEMMA 3.6. Let S = L|X| R(T) be a normal band. Let nt = px |X| ^i
*2 = Pi IXi <r2 eAj(S). Then ur > n2 if and only if

0) Pi >- Pi and o^ = a2, or
(ii) pt = p2 and at >- a2.
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PROOF. We observe that n1jn2 is an atom of S/7r2 and that 7r1/7r2 = P\\p2

[XI ffi/^2- Lemma 3.6 now follows from lemma 3.5 and theorem 2.1. This
completes the proof of lemma 3.6.

THEOREM 3.7. Let S = L IXl

A,(S) satisfies condition (1).
be a normal band. Then the lattice

PROOF. Let nl = px IXl ai. ^2 = P2 1X1 ff2eAi(S) and suppose that
n1>- n^ f\n2. Now

Hence

or

*i A n2 = pt A P2 IXl ffi A <r2.

Pi > Pi A p2 and o-j =

Pi = Pi A

t\

A

by lemma 3.6. Suppose that pl >- pj A p2ando-1 = ax l\a2. Then (7! V ^2 = ff2-
Hence TT! V ^2 = Pi V P2 IX! ff2 • Further, px\/ p2>- Pi since L is a left normal
band and theorem 3.4. Hence 7r, V t 2 >- ^2 •

We treat the other case similarly using the left-right dual of theorem 3.4.
This completes the proof of theorem 3.7.

COROLLARY 3.8. Let S be a normal band. If p, o-eAj(S) such that a g p
and there is a maximal chain of congruences from a to p which is of finite
length, then any maximal chain of congruences from & to p is finite and of the
same length.

COROLLARY 3.9. The lattice A;(S) of structure semilattice preserving con-
gruences on a normal band is upper-semimodular.

Corollaries 3.8 and 3.9 follow immediately from theorems 3.7, 2.7 and 2.6.
We conclude this paper with an example showing that corollary 3.9 does

not extend to the full lattice. Let S = {a,b,x,y} with multiplication table given
by

a

b

X

y

a

a

b

X

y

b

a

b

X

y

X

X

y

X

y

y

X

y

X

y
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It is routine to check that S is a left normal band. The lattice A(S) is isomorphic
to the lattice given diagrammatically below.

Hence A(S) is not upper-semimodular.
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