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Abstract

Let 5 be a finite linear space on v > r?-n points and b = n2+n+\-m lines, m > 0, n > 1 ,
such that at most m points are not on n + 1 lines. If m > 1, except if m = 1 and a unique
point on n lines is on no line with two points, then 5 embeds uniquely in a projective plane
of order n , or is one exceptional case if n = 4 . If m < 1 and if v > n - 2Vn + 3 + 6 , the
same conclusion holds, except possibly for the uniqueness.

1991 Mathematics subject classification (Amer. Math. Soc.) 05 B 05, 51 E 10.

1. Introduction

In [18], Totten proved that if 5" is a linear space on v = n2 - n or v =
n2 - n + 1 points, n > 2, of which at least n2 - n have degree n + 1, and
b < n2 + n - 1 lines, then S embeds in a finite projective plane of order
n, with one exceptional case if n = 4 . The parameters are those of the
complement of two lines in a finite projective plane of order n . He fixes v ,
the number of points, and allows the number of lines to vary. In this article,
we take the dual approach of fixing b, the number of lines, and allowing
the number of points to vary. The parameters are such that m lines have
been deleted from a projective plane, and in each case, all points but one
have been deleted, but no point has two or more lines removed from it. In
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effect, since v > n2 - n , except for very small values of n , only one or two
lines have been removed in this manner, perhaps with some additional points
in a sporadic way; and we show that in almost all cases, S re-embeds in a
projective plane of order n .

Many articles in the literature have considered the problem of embedding
a linear space S with parameters v , b and point and line sizes a function
of an integer n , in a projective plane of order n . The particular situation
of constant point size has been dealt with by Vanstone [19], McCarthy and
Vanstone [9], Dow [6] and Beutelspacher and Metsch [5]. Constant line size
implies constant point size in a linear space, so the dual approach to constant
point size has been to allow the line sizes to range over a small number of
values as in Batten and Totten [3], de Witte and Batten [20], Batten [1],
Beutelspacher [4]. Another approach has been to fix the parameter b, while
allowing v to vary. The papers by Stinson [17], Erdos, Mullin, Sos and
Stinson [7] and Metsch [10] figure here. A much broader approach of simply
placing upper and lower bounds on v and b has been taken by de Witte
[16] and Metsch [11].

As in Totten's paper[18], the motivation for the embedding problem has
often come from examining the parameters of the complement of a con-
figuration in a projective plane. For instance, Mullin and Vanstone [13],
Mullin, Singhi and Vanstone [14], Ralston [15] and Montekhab [12] have
each re-embedded the complement of a certain set of lines in a finite projec-
tive plane.

Finally, for a more comprehensive discussion of the embedding and com-
plementation problems, we refer the reader to Batten and Beutelspacher [2].

2. The setting

A (finite) linear space is a (finite) set of v elements called points together
with a collection of b sets of points called lines such that any two distinct
points p and q belong to precisely one common line, denoted pq, and every
line contains at least two points.

A projective plane of finite order n is a finite linear space with v = n2 +
n + 1, n > 2, in which each line has n+\ points and each point is on (in)
n + 1 lines. It is easy to see that in a projective plane any two lines meet
in precisely one common point. For convenience, we shall call a triangle a
projective plane of order 1.

A line with precisely k points will frequently be referred to as a k-line, a
point on precisely k lines will frequently be referred to as a k-point.

In Sections 3 and 4, we prove the following result.
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THEOREM. Let S be a finite linear space on v > n2 - n points and b =
n2 + n + 1 - m lines, m>0,n> 1, such that at most m points are not on
n + 1 lines. Then if m>\, except if m = 1 and a unique point on n lines
is on no line with two points, then S embeds uniquely in a projective plane
of order n, with one exceptional case if n = 4. If m = 0 or m = \, and
v >n2 - 2y/n + 3 + 6, n > 1, the same conclusion holds, except possibly for
the uniqueness.

In order to prove the theorem, we shall make use of the following results.

THEOREM (Dow [6]). Let S be a finite linear space on b = n2 + n+\ lines,
n>\,in which each point is an (n + \)-point. Ifv>n2 - 2\jn + 3 + 6, then
S can be embedded in a projective plane of order n.

THEOREM (Metsch [10]). Let S be a finite linear space on b = n2 + n + 1
lines, n > 2, in which each point is on at most n + 1 lines. If v > n2 - n/6,
then S can be embedded in a projective plane of order n, which is unique up
to isomorphism.

3 . P r o o f o f t h e t h e o r e m f o r m > 2

Suppose some point p is on c < n lines. Counting v at p leads to
c > n - 1. Hence p is on precisely 1 n-line and « - 2 (« + 1 )-lines and
v = n2 - n, or p is on « - 1 (« + l)-lines and v = n2 - n + 1. In the
first case, the «-line h on p determines a spread of lines of S (a set of
pairwise disjoint lines such that each point of S is on precisely one line).
We introduce a new point x corresponding to this spread, and say that x is
in each line of the spread. We get a linear space S' this way, in which each
lines has n - I, n o r n + 1 points, and v = n2 - n + 1. In fact, we now
have the second case. The main theorem of Batten [1] now indicates that S'
is the complement of two lines less their point of intersection, in a projective
plane of order n,n>\.

We may therefore assume that each point of S is an n- or (n + l)-point.
CASE I. We suppose first of all that (n + l)-lines exist. (Clearly, no line

can have more than n + 1 points, and every line meets an (« + l)-line.)
If there is at most one n-point, then counting b at an (n + l)-line leads to

b > n2 + n, which is false. So there are at least two n-points, and a unique
(n + l)-line / on all n-points.

Counting v using an n-point, we obtain v < n + l + ( « - l ) 2 = n2 -n + 2,
which implies that each n-point is on at least n — 3 «-lines. The case n = 1
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gives either a 2-point line or a triangle, each of which embeds in a protective
plane of order 1; n = 2 produces a linear space on 4 points which embeds
in the projective plane of order 2. If n = 3 and no n-point is on an n-line
we obtain v = 6, b = 10 and m = 4, a contradiction. Hence for n > 3 , we
may assume that each n-point is on at least one n-line.

Fix an n-point p and an n-line n on p. Any point not on h is on at
most one line missing h . Since all n-points are on / , f n h = {p} and all
lines meet / , it follows that n determines a unique maximal partial spread
of n + 1 — (m — I) lines (that is, a maximal set of n + 1 — m + 1 pairwise
disjoint lines). We introduce a new point x corresponding to this partial
spread, and say x is in every line of the partial spread. Fix a second n-point
q # p and an n-line h' on q . We introduce in the same way, a new point
y corresponding to the induced maximal partial spread.

The lines n and n' meet in an (n +l)-point, and ( n - l ) n + n + ( n - 2 ) =
n2 + n - 2 lines meet n or h'. Since m > 2, we have n2 + n-2<b<
n2 + n - 1.

(a) Suppose b = n2+n-1, or equivalently, m = 2. Then there is a unique
line missing both h and n' . This line is common to both corresponding
maximal partial spreads. So x and y belong to a common line of S.

For each of the > n - 3 n-lines on p, we proceed in the manner described
above to introduce new points JC, , x2, ... . We also introduce a new line
consisting of the point q along with all the xt. Similarly, for each of the
> n - 3 n-lines on q, we introduce new points yt and a new line consisting of
p and all the yt. This new structure S' consisting of all points and lines of
S and all new points and lines is a linear space on ? / > t ; + 2 n - 6 > n 2 + n - 6
points, b' = n2 + n + 1 lines, and in which each point is on n + 1 lines.

Either of the theorems cited in Section 2 can now be applied to give the
embedding if n > 6. In particular, the theorem of Metsch also yields the
fact that the embedding is unique. If n = 3 , counting points on the lines
through a 3-point gives v > 7 and so v' > 9. By Metsch, S' and therefore
also S, embeds uniquely in a projective plane of order 3. If n = 4, using
Metsch we can embed S', and also S, uniquely in a plane of order 4 if
v' > 16. Since v > 12, the only problematic cases are v = 12 and v = 13.
If v = 12 and v' = 14, and if S' contains no 4-lines, then each point of
S' must be on precisely two 5-lines (by an easy computation). In this case,
counting point-line incidences for 5-lines, we obtain the contradiction 14 • 2
is divisible by 5. Hence S' contains a 4-line which can be used to produce
a spread and hence a new point. We may therefore suppose, for v = 12 or
13, that S' has 15 points, 21 lines and lines of maximum size 5. If 4-lines
exist, introduce a new point and apply Metsch. If no 4-lines exist, an easy
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computation shows that each point of S' is on at least two 5-lines. If some
point x is on a 2-line xy, then y is on at least three 5-lines which is not
possible. Hence each point of S' is on precisely two 5-lines and three 3-lines.
Letting

{1, 2, 3, 4, 5}, {1, 6, 7, 8, 9}, {1,10, 11}, {1, 12, 13}, {1, 14, 15}

be the lines on the point 1, it is not difficult to see that the following lines
are determined:

{10, 1 2 , 2 , 6 , 14}, {10, 13, 15, 7, 3}, {11, 12, 1 5 , 8 , 4 } ,

{11, 13, 14, 9, 5}, {10, 8, 5}, {10, 9, 4}, {11, 7, 2}, {11, 6, 3},

{ 1 2 , 9 , 3 } , { 1 2 , 7 , 5 } , { 1 3 , 8 , 2 } , { 1 3 , 6 , 4 } ,

{ 1 4 , 8 , 3 } , { 1 4 , 7 , 4 } , { 1 5 , 9 , 2 } , { 1 5 , 6 , 5 } .

Since S' is unique and has the parameters of the complement of six points
no three coUinear in the projective plane of order 4 (a hyperoval), S', and
therefore also S, embeds uniquely in the projective plane of order 4.

Finally, if n = 5, v > 20, and each 5-point must be on at least two 5-
lines. In this case, v > 24. If v' > 25, Metsch gives a unique embedding.
The only problematic case is therefore v' = 24. Once again, if 5-lines exist,
we can introduce a new point and obtain an embedding. So suppose 5-lines
do not exist. Then any point is on at least three 6-lines. If some point x is
on four or more 6-lines, then it must be on a 2-line xy, in which case y is on
at least five 6-lines, which is not possible. So every point is on three 6-lines,
two 4-lines and one 3-line. Letting xi be the number of /-lines, counting
point-line incidence yields x3 = 8, x4 = 12, x6 = 12, while b' = 31 gives a
contradiction.

(b) Suppose b = n2 + n - 2, or equivalently, m = 3 . Then there is no
line of S missing both h and h'. The line / contains a third n-point r.

We introduce a new system S' consisting of the points and lines of S
along with x and y and three new lines: {x, q}, {y, p}, {x, y, r} . S' is
a linear space with v > n2 - n + 2 points, b' = n2 + n + 1 lines, and each
point on n + 1 lines. If n > 4, there is an n-line h" ^ h on p . Moreover,
x $ h" in S'. However, the distinct lines {x, q} and {x, y, r} are both
on x missing h", contradicting the fact that x is on n + 1 lines in S'.
Therefore n < 4 .

If n = 3 or 4 and a second n-line, h", exists on p as above, the same
argument applies. If n = 3 and p is on a unique n-line, the only case to
consider here is v = 7 and b = 10. The lines of 51 can then be given by
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the sets

{ 1 , 2 , 3 , 4} , { 1 , 5 , 6} , {2, 6, 7} , {3, 5, 7} , { 1 , 7 } , {2, 5},

{3, 6} , {4, 5} , {4, 6} , {4.7}.

The embedding is given by the sets

{ 1 , 2 , 3 , 4 } , { 1 , 5 , 6 , 8 } , { 1 , 7 , 1 2 , 1 3 } , { 1 , 9 , 10, 11}, { 2 , 5 , 1 1 , 13},

{2, 6, 7, 9} , {2, 8, 10, 12}, {3, 5, 7, 10}, {3, 6, 11, 12},

{3, 8, 9, 13}, {4, 5, 9, 12}, {4, 7, 8, 11}, {4, 6, 10, 13}.

This is a unique embedding in the projective plane of order 3.
Consider n = 4 . If p is on no second H-line, then v = 12. If a 5-point

on / is on an n-line, this introduces a partial spread of S implying v = 11
and a contradiction.

We prove now that there is a unique finite linear space S with one 5-point
line / , three 4-points, twelve points, eighteen lines, each 4-point on a unique
4-line, the 5-points on / each on one 5-line, three 3-lines and one 2-line.

Let the points of 5 be 1, 2, 3 , . . . , 12, and the following sets be the
lines on the 4-point 1:

{ 1 , 2 , 3 , 4 , 5} , { 1 , 6 , 7, 8} , { 1 , 9 , 10}, {1 , 11, 12}.

Without loss of generality, the lines on the 4-point 2 are

{2, 6, 9, 11}, {2, 7, 12}, {2, 8, 10}.

There are precisely three 4-lines, and they all meet each other. Two 4-lines
pass through 6. (i) Suppose the third 4-line is not on 6. Then it is on either
7 or 8. Without loss of generality, choose {3, 7, 10, 11} as a 4-line on the
third 4-point, 3. The point 11 is on two more lines, one a 3-line and one
a 2-line. Since the line on 8 and 11 must meet / , and since 4 and 5 play
equivalent roles so far, we may choose {5, 8, 11} and {4,11} as lines.
Now 3 and 6 must be on a line, and the only possibility is { 3 , 6 , 12} . Thus
{ 3 , 8 , 9 } is the remaining line on 3. The 3-lines on 4 are

{4, 6, 10}, {4, 7, 9} , {4, 8, 12}.

We need one 2-line and 2 3-lines now on 5. Thus either 5 and 6 are together
on a 3-point line, or 5 and 7 are. This is not possible.

(ii) The third 4-line is therefore on 6. It must be {3, 6, 10, 12}. The
other lines on 6 are {4, 6} and { 5 , 6 } . There must be two more 3-lines on
3, and without loss of generality, these may be chosen to be {3, 7, 11} and
{ 3 , 8 , 9 } . At this point, 4 and 5 still play interchangeable roles. We need
three 3-lines on each of them, and so may choose these as

{4, 7, 9} , {5, 7, 10}, {4, 8, 12}, {5, 8, 11}, {4, 10, 11}, {5, 9, 12}.
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This gives us all eighteen lines of S1. Hence S is unique.
Now consider the projective plane n of order 4 and let the points p, q, r,

x, y, z, s form a Fano configuration in n, such that the triples p, q, r and
p, y, z and q, x, y and r,x,z and s, r, y and s, q, z and s, p, x are
collinear. In n delete the lines xy, xz and yz and all their points except
for the points p, q and r. The complement of the deleted configuration in
n is a linear space with the parameters of the space we have just proved is
unique, the n-lines in n being ps, qs and rs. Hence, the space S embeds
uniquely in the projective plane of order 4.

CASE II. Suppose now that (n + l)-lines do not exist.
Suppose there is no n-point. Then counting v at a point implies that

n-lines exist. Let / be such a line. It forms a spread of at least v/n > n - 1
lines. But the facts that n2 + 1 lines meet an n-line, and b < n2 + n - 1
imply that there are precisely n - 1 lines in the spread. These must all be
n-lines, and so v = n2 - n and b — n2 + n - 1. Now any line not in the
spread meets all lines of the spread, and thus is an (n - l)-line. Applying
the theorem of Batten [1] we see that for n > 4 , S is the complement of
two lines and all their points in a projective plane of order n, or, in case
n = 4, S may be the exceptional case described in Totten [18] which does
not embed in a projective plane of order 4, but does embed in the projective
plane of order 5. In case n = 3 , it is easy to see that S is once again the
complement of two lines and all their points in the projective plane of order
3. For n < 2, S does not exist.

Count v using an n-point p. This gives v < n2 - n + 1. So either
every line on p is an n-line, or there are n - 1 n-lines on p and a unique
(n - l)-line.

Let h be an n-line on the n-point p. Then n gives rise to a maximal
partial spread for which we introduce a new point x. Let S' be the new
system consisting of all points and lines of S where x is said to be on any
line of its partial spread, along with x and all 2-point lines {x, q} , q an n-
pointof S not on n . Suppose h contains s n-points. Then there are m-s
new 2-point lines in S'. So S' has a total of b' — n2 + n + 1 - m + (m - s) =
n2 + n + l-s lines. Moreover, there are ,s(n-l) + (n-s)n + l = n2-s+l lines
meeting n , including h itself. So the maximal partial spread on n contains
n2 + n + l - w - ( n 2 - 5 + l ) + l = n- m + s +1 lines. Thus in S', x is on
n + l-m+s+(m-s) = n+l lines. Now S' has v = v + l > n2-n + l points,
and a unique (n +1 )-line with s n-points. All other points are (n + l)-points.
If j > 2, we may apply case I to obtain the embedding.

If s — 1, we take the remaining n - 1 or n - 2 n-lines of S on p,
which remain n-lines in S', and with each of these generate a spread and so
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introduce a new point. Let x and y be distinct new points generated from
w-lines on p in S, and let h and h' be the corresponding n-lines. We claim
that there is a unique line of S' on both x and y. To see this, count lines
of S' meeting h or h'. There are (n - 1)« + n + (n - 1) = n2 + n - 1 such
lines. Since b' = n2 + n, we have the desired result.

Now the extended system S* obtained by adding these additional points
to 5 ' is a linear space with v* > n2 - 1, b* = n2 + n, a unique n-point
and all other points (n + l)-points. In fact, in 5* either all lines on p are
(n + l)-lines, or n - 1 lines on p are (n + l)-lines and the nth line is an
(n - l)-line. Let q ^ p be any point, but choose it on the (n - l)-line on p
if that exists. Since all lines meet an (n + l)-line, x is on n n-lines not on
p. Each of these determines a maximal partial spread on n lines. Adding
n new points appropriately and joining these in a single new line on p, we
see that the resulting structure is a projective plane of order n less 0, 1 or 2
points. Hence we have a unique embedding.

4. Proof of the theorem for m = 0 or 1

If m = 0, each point is an (n + l)-point, and we apply Dow's theorem to
obtain the desired result.

Suppose m = 1. Each point is on n or n + 1 lines using the argument of
Section 3. If there is no n-point, we obtain the contradiction b > n2 + n + 1.
Let p be the unique n-point.

CASE I. Suppose that (n + l)-lines exist. Then p is on all (n + l)-lines.
(i) Assume that p is on a 2-line {p, x} . Let / be an (n + l)-line, and

q e / \ { p } . If q is on no n-line, then v < n2 - n + 1. In this case, no point
of / \ { p } is on an «-line, and so any H-lines are on p. Now count v using
x . We get v < n2 - In + 2. So n2 - n < n2 - In + 2, or n < 2, which is
impossible.

So each point of f\{p} is on at least one n-line. But every line on
p meets every n-line. So apart from {p, x}, x is only on n-lines, and
v = n2 - n + 2.

For each n-line on x, we get a maximal partial spread on n-lines, and
hence a new point. Join all new points to p in a single line. The new structure
S' is a linear space on v' = n2 + 2 points and b' = n2 + n + 1 lines. By
Metsch, S', and hence also 5 , embeds uniquely in a finite projective plane
of order n .

(ii) Assume that there are no 2-lines on p. If all lines on p are n- or
(n + l)-lines, then trivially, 5 embeds in a unique way in a projective plane
of order n .
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Let h be a line with fewer than n points on p. Let x e h\{p) . If JC is
on no n-line, then n -n-l>v > n - 2vn + 3 + 6, a contradiction. Thus
x is on an n-line which produces a maximal partial spread which we use to
introduce a new point. This new point is then joined to p in a 2-point line
yielding a linear space S' with v > n2 - 2y/n + 3 + 7, b' = n2 + n + 1, and
each point an (« + l)-point. By Dow's theorem, S', and so also S, embeds
in a projective plane of order n .

We note here, that for v < n2 - 2y/n + 3 + 6, such an embedding does
not always exist. For example, a set of t < n - 1 mutually orthogonal latin
squares of order n with no common orthogonal mate gives rise to a linear
space S' with b' — n1 + n + 1 and each point an (n + 1 )-point, which cannot
be embedded in a projective plane of order n ([6, 8]).

CASE II. Suppose that there are no (n + l)-lines. In this case counting v
on p, n2-n<v<n2-n + l.

If v — n2 -n+l, each line on p is an n-line. Each gives rise via a spread
to a new point, and so a new line on the n new points. 51 is easily seen to be
a projective plane of order n with one of its lines and all its points removed,
and a second line with all its points but one removed.

If v — n2 - n, a single line on p is an (n - l)-line and the other are
n -lines. S is as above, except that one more point on neither of the deleted
lines, has been deleted.
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