SOCLES OF VERMA MODULES IN QUANTUM GROUPS

A.V. Jeyakumar and P.B. Sarasija

In this paper the Verma modules $M_{e}(\lambda)$ over the quantum group $v_{c}(s l(n+1), \mathbb{C})$, where ε is a primitive ℓ th root of 1 are studied. Some commutation relations among the generators of U_{c} are obtained. Using these relations, it is proved that the socle of $M_{\epsilon}(\lambda)$ is non-zero.

0 . Introduction

A quantum group $U_{q}=U_{q}(g)$ is a q-deformation of the classical universal enveloping algebra U of a complex semi-simple Lie algebra g, where q is an indeterminate. The representations of U_{q} have recently occupied the attention of many mathematicians (see for example, $[1,2,3,4]$). When q is a root of unity, the representation theory of U_{q} has a close bearing on the modular representation theory of semi-simple, simply connected algebraic groups and affine Lie algebras.

In [1], De Concini and Kac defined the notion of Verma modules over U_{q} and U_{e} (where ε is a primitive ℓ th root of $1, \ell$ is an odd integer) analogous to the classical Verma modules. In this paper, we study the Verma module $M_{\varepsilon}(\lambda)$ over $U_{\varepsilon}=U_{e}(g)$, where $g=s l(n+1)$, and in particular prove that the socle of $M_{e}(\lambda)$ over U_{e} is nonzero.

1. Preliminaries

1.1. Let us fix some notations which are standard (see for example, [1]).

For a fixed $n \in \mathbb{N}$, let $\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$ be the cartan matrix of type A_{n}.
Let q be an indeterminate and let $A=\mathbb{C}\left[q, q^{-1}\right]$ with the quotient field $\mathbb{C}(q)$. For any integer $M \geqslant 0$, we define
and

$$
[M]=\frac{q^{M}-q^{-M}}{q-q^{-1}} \in A, \quad[M]!=[M][M-1] \ldots[1]
$$

$$
\left[\begin{array}{c}
M \\
j
\end{array}\right]=\frac{[M]!}{[j]![M-j]!} \quad \text { for } j \in \mathbb{N}, \quad\left[\begin{array}{c}
M \\
0
\end{array}\right]=1
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

Let U_{q} be the $\mathbb{C}(q)$ algebra with 1 , defined by the generators $E_{i}, F_{i}, K_{i}^{ \pm 1}$ $(1 \leqslant i \leqslant n)$ with the relations:

$$
\begin{equation*}
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \quad K_{i} K_{j}=K_{j} K_{i} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
K_{i} E_{j} K_{i}^{-1}=q^{a_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=q^{-a_{i j}} F_{j} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}} \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
E_{i} E_{j}=E_{j} E_{i} \text { if } a_{i j}=0 \tag{d}
\end{equation*}
$$

$$
\begin{equation*}
F_{i} F_{j}=F_{j} F_{i} \text { if } a_{i j}=0 \tag{f}
\end{equation*}
$$

$$
\begin{equation*}
E_{i}^{2} E_{j}-\left(q+q^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 \text { if } a_{i j}=-1 \tag{e}
\end{equation*}
$$

$$
\begin{equation*}
F_{i}^{2} F_{j}-\left(q+q^{-1}\right) F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 \text { if } a_{i j}=-1 \tag{g}
\end{equation*}
$$

Then U_{q} is a Hopf algebra over $\mathbb{C}(q)$ which is called the quantum group associated to the matrix ($a_{i j}$), with comultiplication \triangle, antipode S and counit ν defined by

$$
\begin{aligned}
\triangle E_{i} & =E_{i} \otimes 1+K_{i} \otimes E_{i}, \quad \Delta F_{i}=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i} \\
\triangle K_{i} & =K_{i} \otimes K_{i} \\
S E_{i} & =-K_{i}^{-1} E_{i}, \quad S F_{i}=-F_{i} K_{i}, \quad S K_{i}=K_{i}^{-1} \\
\nu E_{i} & =0, \quad \nu F_{i}=0, \quad \nu K_{i}=1 .
\end{aligned}
$$

Also introduce the elements

$$
\left[K_{i} ; n\right]=\frac{\left(K_{i} q^{n}-K_{i}^{-1} q^{-n}\right)}{q-q^{-1}} \text { in } U_{q} .
$$

1.2. It is well known that one can introduce a root system associated to the matrix $\left(a_{i j}\right)$. We briefly describe the construction here. For details refer to $[1,5]$.

Let P be a free abelian group with basis $\omega_{i}, i=1,2, \ldots, n$ (P is usually called the lattice of weights). Let P^{+}denote the subgroup of non-negative integral combinations of $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ and any element of P^{+}is called a dominant weight. Define the following elements in P :
let

$$
\begin{aligned}
\rho & =\sum_{i=1}^{n} \omega_{i},
\end{aligned} \quad \alpha_{j}=\sum_{i=1}^{n} a_{i j} \omega_{i} \quad(j=1, \ldots, n)
$$

Define a bilinear pairing $P \times Q \rightarrow Z$ by

$$
\begin{equation*}
\left(\omega_{i} \mid \alpha_{j}\right)=\delta_{i j} \tag{1.2.1}
\end{equation*}
$$

Then $\left(\alpha_{i} \mid \alpha_{j}\right)=a_{i j}$, so that we get a symmetric Z-valued bilinear form on Q such that $(\alpha \mid \alpha) \in 2 Z$.

Define automorphisms r_{i} of P by $r_{i} \omega_{j}=\omega_{j}-\delta_{i j} \alpha_{i}(i, j=1,2, \ldots, n)$.
Then $r_{i} \alpha_{j}=\alpha_{j}-a_{i j} \alpha_{i}$. Let W be the (finite) subgroup of $G L(P)$ generated by $r_{1}, r_{2}, \ldots, r_{n}$. Then Q is W-invariant and the pairing $P \times Q \rightarrow Z$ is W-invariant. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, R=W \Pi$ and denote $R \cap Q_{+}$by R^{+}. Then R is a root system corresponding to the cartan matrix ($a_{i j}$) with Weyl group W and R^{+}the system of positive roots. Clearly p is half the sum of positive roots. We introduce a partial ordering of P by $\lambda \geqslant \mu$ if $\lambda-\mu \in Q_{+}$. Let w_{0} be the unique element of W such that $w_{0}\left(R^{+}\right)=-R^{+}$.
1.3. Let U_{A} be the A-subalgebra of U_{q} generated by the elements $E_{i}, F_{i}, K_{i}^{ \pm 1},\left[K_{i} ; 0\right]$ $(i=1,2, \ldots, n)$. Let U_{A}^{+}(respectively U_{A}^{-}) be the A-subalgebra of U_{A} generated by the E_{i} (respectively F_{i}) and U_{A}^{0} the subalgebra generated by the K_{i} and $\left[K_{i} ; 0\right]$.
1.4. We shall show how to choose a canonical basis for U_{q} from the given set of generators (for details see [1, 5, 6]).

We note that we can define an anti-automorphism ω of U_{q} defined by

$$
\begin{equation*}
\omega E_{i}=F_{i} \quad \omega F_{i}=E_{i}, \quad \omega K_{i}=K_{i}^{-1}, \quad \omega q=q^{-1} \tag{1.4.1}
\end{equation*}
$$

For any $i, 1 \leqslant i \leqslant n$, there is a unique algebra automorphism T_{i} of U_{q} such that

$$
\begin{align*}
& T_{i} E_{i}=-F_{i} K_{i}, \quad T_{j} E_{i}=-E_{j} E_{i}+q^{-1} E_{i} E_{j} \text { if } a_{j i}=-1 \tag{1.4.2}\\
& \text { and } T_{j}\left(E_{i}\right)=E_{i} \text { if } a_{i j}=0
\end{align*}
$$

$$
\begin{align*}
& T_{i} F_{i}=-K_{i}^{-1} E_{i}, \quad T_{j} F_{i}=-F_{j} F_{i}+q F_{i} F_{j} \text { if } a_{j i}=-1 \tag{1.4.3}\\
& \text { and } T_{j}\left(F_{i}\right)=F_{i} \text { if } a_{i j}=0 \\
& T_{i} K_{j}=K_{j} K_{i}^{-a_{i j}}, \quad T_{i} \omega=\omega T_{i} . \tag{1.4.4}
\end{align*}
$$

Let $w \in W$ and let $r_{i_{1}} \ldots r_{i_{k}}$ be a reduced expression of w. Then the automorphism $T_{w}=T_{i_{1}} \ldots T_{i_{k}}$ of U_{q} is independent of the choice of the reduced expression of w.

Fix a reduced expression $r_{i_{1}} r_{i_{2}} \ldots r_{i_{N}}$ of the longest element of W, where $N=$ $\left|R^{+}\right|$. Then this gives us an enumeration of the elements of R^{+}:

$$
\beta_{1}=\alpha_{i_{1}}, \quad \beta_{2}=r_{i_{1}} \alpha_{i_{2}}, \ldots, \beta_{N}=r_{i_{1}} \ldots r_{i_{N-1}} \alpha_{i_{N}}
$$

We define the root vectors:

$$
\begin{aligned}
& E_{\beta_{s}}=T_{i_{1}} T_{i_{2}} \ldots T_{i_{s-1}} E_{i_{s}} \\
& F_{\beta_{s}}=T_{i_{1}} T_{i_{2}} \ldots T_{i_{\varepsilon-1}} F_{i_{s}} \quad \text { which is the same as } \omega E_{\beta_{\varepsilon}} .
\end{aligned}
$$

For $j=\left(j_{1}, j_{2}, \ldots, j_{N}\right) \in Z_{+}^{N}$ let

$$
\begin{equation*}
E^{j}=E_{\beta_{1}}^{j_{1}} \ldots E_{\beta_{N}}^{j_{N}}, \quad F^{j}=\omega E^{j} \tag{1.4.5}
\end{equation*}
$$

The elements $F^{j} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}$ where $j, r \in Z_{+}^{N},\left(m_{1} \ldots m_{n}\right) \in Z^{n}$ form a basis of U_{q} over $\mathbb{C}(q)$.
1.5. Given $\varepsilon \in \mathbb{C}^{*}$, we now consider the specialisation $U_{\varepsilon}=U_{A} /(q-\varepsilon) U_{A}$. We take ε in such a way that $\varepsilon^{2} \neq 1$.

Then U_{e} is an algebra over \mathbb{C} with generators $E_{i}, F_{i}, K_{i}^{ \pm 1}(1 \leqslant i \leqslant n)$ (identifying these vectors with their images), and defining relations,

$$
K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1
$$

$$
K_{i} E_{j} K_{i}^{-1}=\varepsilon^{a_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=\varepsilon^{-a_{i j}} F_{j}
$$

$$
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{\varepsilon-\varepsilon^{-1^{\prime}}}
$$

$$
E_{i}^{2} E_{j}-\left(\varepsilon+\varepsilon^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 \text { if } a_{i j}=-1
$$

$$
F_{i}^{2} F_{j}-\left(\varepsilon+\varepsilon^{-1}\right) F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 \text { if } a_{i j}=-1
$$

$$
E_{i} E_{j}=E_{j} E_{i}=0, \quad F_{i} F_{j}=F_{j} F_{i}=0 \text { if } a_{i j}=0
$$

1.6. We denote by $U_{\varepsilon}^{+}, U_{e}^{-}, U_{\varepsilon}^{0}$ the images of U_{A}^{+}, U_{A}^{-}, and U_{A}^{0} in U_{ε}. The automorphism T_{i} of U_{q} defined in (1.4) clearly induces an automorphism T_{i} of U_{e}. The vectors E^{j}, F^{j} et cetera of (1.4.5) can then be taken to represent their images in U_{ε}. Then the elements $E^{j}, j \in Z_{+}^{N}$ form a basis of U_{e}^{+}over \mathbb{C}, and the elements $F^{j} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}$ where $j, r \in Z_{+}^{N}$ and $\left(m_{1} \ldots m_{n}\right) \in Z^{n}$ form a basis of U_{e} over \mathbb{C}.

2. Some commutation relations

2.1. We shall now introduce certain basic relations among the generators of U_{ε} corresponding to the positive roots.

Consider the following sequence of elements in U_{ϵ}.

$$
\begin{align*}
& E_{2}, T_{2} T_{1}\left(E_{2}\right), T_{i+1}\left(E_{i}\right) \quad i=1,2, \ldots, n \\
& T_{i-2}\left(E_{i}\right) \quad i=3, \ldots, n, T_{i+2} T_{i+1}\left(E_{i}\right) \quad i=1, \ldots, n-2 \tag{2.1.1}\\
& \ldots, T_{n} T_{n-1} \ldots T_{2}\left(E_{1}\right) .
\end{align*}
$$

For convenience we shall write the above terms in the same order.

$$
\begin{align*}
& E_{2}, E_{1}, E_{i i+1}, \quad i=1,2, \ldots, n, E_{i i-2}, \quad i=3, \ldots, n \\
& E_{i i+1 i+2}, \quad i=1, \ldots, n-2, \ldots, E_{12 \ldots n} . \tag{2.1.2}
\end{align*}
$$

The subscripts correspond to the various positive roots: For example the subscript 12 corresponds to $\alpha_{1}+\alpha_{2}$, and 123 corresponds to $\alpha_{1}+\alpha_{2}+\alpha_{3}$.

For A_{2} and A_{3} these elements are E_{2}, E_{1}, E_{12} (see [6]) and $E_{2}, E_{1}, E_{3}, E_{12}$, E_{23}, E_{123} respectively.
2.2. Using the identities (1.4.2) we obtain the following commutation formulas among the elements defined in (2.1.2).

$$
\begin{aligned}
& E_{s s+1 \ldots k} E_{k+1 k+2 \ldots \ell}=\varepsilon E_{k+1 \ldots \ell} E_{a s+1 \ldots k}+\varepsilon E_{s,+1 \ldots \ell}, 1 \leqslant s, k \leqslant n, k+1 \leqslant \ell \leqslant n ; \\
& E_{12 \ldots k} E_{s s+1 \ldots \ell}=E_{s s+1 \ldots \ell} E_{12 \ldots k}, 1 \leqslant k \leqslant n, 1<s, \ell<k ; \\
& E_{s s+1 \ldots k} E_{\ell \ell+1 \ldots k}=\varepsilon^{-1} E_{\ell \ell+1 \ldots k} E_{s, s+1 \ldots k}, 1 \leqslant s, k \leqslant n, s<\ell \leqslant k ; \\
& E_{s s+1 \ldots k} E_{s,+1 \ldots \ell}=\varepsilon E_{a s+1 \ldots \ell} E_{a+1 \ldots k}, 1 \leqslant s, k \leqslant n, s \leqslant \ell<k ; \\
& E_{s s+1 \ldots k} E_{\ell \ell+1 \ldots m}=E_{\ell \ell+1 \ldots m} E_{s s+1 \ldots k}+\left(\varepsilon^{-1}-\varepsilon\right) E_{r r+1 \ldots p} E_{s,+1 \ldots m}, \\
& \quad 1 \leqslant s, k<n, s \neq k, s<\ell \leqslant k<m \leqslant n, \ell=k=r=p, \ell \leqslant r, p \leqslant k, r \neq p ; \\
& E_{12 \ldots k} E_{k+2}=E_{k+2} E_{12 \ldots k}, \quad 1<k<n-1 ; \\
& E_{i} E_{j}=E_{j} E_{i}, \quad i, j=1,2 \ldots n, \quad i \neq j, a_{i j}=0 .
\end{aligned}
$$

The above commutation formulas give rise, by induction, to commutation formulas between the basis element of U_{e}^{+}.

$$
\begin{aligned}
& E_{s s+1 \ldots k}^{m} E_{k+1 \ldots \ell}^{p}=\varepsilon^{m p} E_{k+1 . . \ell}^{p} E_{s a+1 \ldots k}^{m} \\
& \quad+\sum_{j=1}^{\min (m, p)} \underset{((p-j) m+j)}{\in[j]!}\left[\begin{array}{c}
p \\
j
\end{array}\right]\left[\begin{array}{c}
m \\
j
\end{array}\right] E_{*,+1 \ldots \ell}^{j} E_{k+1 \ldots \ell}^{p-j} E_{*+1 \ldots k}^{m-j} ;
\end{aligned}
$$

$$
1 \leqslant s, k \leqslant n, k+1 \leqslant \ell \leqslant n
$$

$$
E_{s a+1 \ldots k}^{m} E_{\ell \ell+1 \ldots t}^{u}=E_{\ell \ell+1 \ldots t}^{u} E_{a,+1 \ldots k}^{m}
$$

$$
+\sum_{j=1}^{\min (m, u)}(-1)^{j+1}\left(\varepsilon^{-1}-\varepsilon\right)^{j} \varepsilon^{j-1}[j]!\left[\begin{array}{c}
m \\
j
\end{array}\right]\left[\begin{array}{c}
u \\
j
\end{array}\right] E_{r r+1 \ldots p}^{j} E_{\varepsilon s+1 \ldots k}^{m-j} E_{\ell \ell+1 \ldots t}^{u-j} E_{\&,+1 \ldots t}^{j} ;
$$

$$
1 \leqslant s, k<n, s \neq k, s<\ell \leqslant k<t \leqslant n, \ell=k=r=p, \ell \leqslant r, p \leqslant k, r \neq p ;
$$

$$
E_{s s+1 \ldots K}^{m} E_{\ell \ell+1 \ldots k}^{p}=\varepsilon^{-m p} E_{l \ell+1 \ldots k}^{p} E_{s+1 \ldots k}^{m}, 1 \leqslant s, k \leqslant n, s<\ell \leqslant k ;
$$

$$
E_{12 \ldots k}^{m} E_{s s+1 \ldots \ell}^{p}=E_{s,+1 \ldots \ell}^{p} E_{12 \ldots k}^{m}, 1 \leqslant k \leqslant n, 1<s, \ell<k ;
$$

$$
E_{s s+1 \ldots k}^{m} E_{s+1 \ldots \ell}^{p}=\varepsilon^{m p} E_{x x+1 \ldots \ell}^{p} E_{s+1 \ldots k}^{m}, 1 \leqslant s, k \leqslant n, s \leqslant \ell<k
$$

$E_{12 \ldots k}^{m} E_{k+2}^{p}=E_{k+2}^{p} E_{12 \ldots k}^{m}, 1<k<n-1 ;$
$E_{i}^{m} E_{j}^{p}=E_{j}^{p} E_{i}^{m} \quad$ if $\quad a_{i j}=0, i \neq j, \quad i, j=1 \ldots n$.

By using the relations $\omega E_{i}=F_{i}, \omega \varepsilon=\varepsilon^{-1}$ we obtain similar relations among the F_{i} 's.

3. Verma modules

3.1. The notion of Verma modules over U_{q} and U_{c} was introduced by De Concini and Kac in [1]. In the rest of the paper, we shall be concerned only with Verma modules over U_{ϵ}, where ε is a primitive ℓ th root of unity. We recapitulate the definition below:

For each $\lambda \in P$ the Verma module $M_{e}(\lambda)$ over U_{e} is the vector space $M_{e}(\lambda)$ in which there exists a non-zero distinguished vector $v_{\boldsymbol{\lambda}}$ such that $U_{e}^{+} v_{\boldsymbol{\lambda}}=0, K v_{\boldsymbol{\lambda}}=$ $\varepsilon^{(\lambda \mid \alpha)} v_{\lambda}, K \in U_{e}^{0}$ where (\mid) is the pairing from $P \times W \rightarrow Z$ defined in (1.2) and $\left\{F^{j} v_{\lambda}\left(j \in Z_{+}^{N}\right)\right\}$ is a basis of $M_{e}(\lambda)$. Let $L_{e}(\lambda)$ denote the unique irreducible quotient of $M_{c}(\lambda)$ by its unique maximal submodule.

Then we have

$$
\begin{equation*}
K v_{\lambda}=\varepsilon^{(\lambda \mid \alpha)} v_{\lambda} \tag{3.1.1}
\end{equation*}
$$

Also for each $h=1,2, \ldots, N, F_{h} v_{\lambda}$ is a weight vector of weight $\lambda-\alpha_{h}$ as easily seen below.

$$
\begin{aligned}
K F_{h} v_{\lambda} & =\varepsilon^{-\left(\alpha \mid \alpha_{h}\right)} F_{h} K v_{\lambda} \\
& \left.=\varepsilon^{-\left(\alpha \mid \alpha_{h}\right)} \varepsilon^{(\lambda \mid \alpha)} F_{h} v_{\lambda} \quad \quad \text { (since }\left(\alpha_{h} \mid \alpha\right)=\left(\alpha \mid \alpha_{h}\right)\right) \\
& =\varepsilon^{-\left(\lambda-\alpha_{h} \mid \alpha\right)} F_{h} v_{\lambda}
\end{aligned}
$$

3.1.2. This shows that for any $r \in Z_{+}, F_{h}^{r} v_{\lambda}$ is a weight vector of weight $\lambda-r \alpha_{h}$ and therefore each $F^{j} v_{\lambda}\left(=F_{i}^{j_{1}} \ldots F_{N}^{j_{N}} v_{\lambda}\right)$ is a weight vector of weight $\lambda-\sum_{h=1}^{N} j_{h} \alpha_{h}$.
3.2 Verma Modules over some subalgebras of U_{e}.

We first define the subalgebras $U_{r}, U_{r}^{+}, U_{r}^{-}$, of U_{e} generated by

$$
\begin{aligned}
& \left\{F^{j}, \prod_{i=1}^{n} K_{i}^{m_{i}}, E^{r}, 0<j_{i}, r_{i}<\ell^{r}, \quad\left(m_{1} \ldots m_{n}\right) \in Z^{n}\right\} \\
& \left\{E^{r}, \prod_{i=1}^{n} K_{i}^{m_{i}}, 0<r_{i}<\ell^{r}, \quad\left(m_{1} \ldots m_{n}\right) \in Z^{n}\right\} \\
& \left\{F^{j}, 0 \leqslant j_{i}<\ell^{r}\right\} \quad \text { respectively } .
\end{aligned}
$$

The set

$$
\begin{equation*}
\left\{F_{1}^{j_{1}} \ldots F_{N}^{j_{N}} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E_{1}^{r_{1}} \ldots E_{N}^{r_{N}}, 0 \leqslant j_{i}, r_{i}<\ell^{r},\left(m_{1} \ldots m_{n}\right) \in Z^{n}\right\} \tag{3.2.1}
\end{equation*}
$$

is a basis of U_{r} and the set

$$
\begin{equation*}
\left\{F_{1}^{j_{1}} \ldots F_{N}^{j_{N}}, 0 \leqslant j_{i}<\ell^{r}\right\} \quad \text { is a basis of } U_{r}^{-} \tag{3.2.2}
\end{equation*}
$$

We can then define the Verma modules $M_{\varepsilon, r}(\lambda)$ of weight λ over U_{r} analogously to $M_{e}(\lambda)$ over U_{ε}, that is, there exists a non-zero vector (say) \widehat{v}_{λ} such that $U_{r}^{+} \widehat{v}_{\lambda}=0$, $K \widehat{v}_{\lambda}=\varepsilon^{(\lambda \mid \alpha)} \widehat{v}_{\lambda}$ for $K \in U_{r}^{0}$ and $\left\{F^{j} \widehat{v}_{\lambda}, 0 \leqslant j_{i}<\ell^{r}\right\}$ form a basis of $M_{e, r}(\lambda)$.

There is a natural injective homomorphism $f_{r}: M_{e, r}(\lambda) \rightarrow M_{e}(\lambda)$ given by

$$
\begin{equation*}
f_{r}\left(F^{j} \widehat{v}_{\lambda}\right)=F^{j} v_{\lambda} . \tag{3.2.3}
\end{equation*}
$$

3.3. We next introduce certain elements defined by I_{Γ} of U_{ε}^{-}, which play an important role in our future study of the socles of Verma modules and homomorphisms between Verma modules.

For each positive integer r, let $I_{r}=F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell^{r}-1}$ which is an element of U_{r}^{-}.
It then follows that $I_{r} v_{\lambda}$ is a weight vector of $U_{\boldsymbol{r}} v_{\lambda}$ of weight $\lambda-2(\ell-1) \rho$, where ρ is half the sum of the positive roots.

In fact,

$$
\begin{align*}
K I_{r} v_{\lambda} & =K F_{1}^{\ell^{r}-1} F_{2}^{\ell^{r}-1} \ldots F_{N}^{\ell^{r}-1} v_{\lambda} \tag{3.3.1}\\
& =\varepsilon^{\left(\lambda-\left(\ell^{r}-1\right) \alpha_{1}+\ldots+\alpha_{N} \mid \alpha\right)} F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell^{r}-1} v_{\lambda} \quad \text { from }[3.1 .2] \\
& =\varepsilon^{\left(\lambda-2\left(\ell^{r}-1\right) \rho \mid \alpha\right)} F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell r-1} v_{\lambda} \\
& =\varepsilon^{(\lambda+2 \rho \mid \alpha)} F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell^{r}-1} v_{\lambda} \quad\left[\text { since } \varepsilon^{\ell^{r}}=1\right] \\
& =\varepsilon^{(\lambda-2 \ell \rho+2 \rho \mid \alpha)} F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell^{r}-1} v_{\lambda} \\
& =\varepsilon^{(\lambda-2(\ell-1) \rho \mid \alpha)} F_{1}^{\ell^{r}-1} \ldots F_{N}^{\ell \ell^{r}-1} v_{\lambda}
\end{align*}
$$

In particular, when $\lambda=0$, we see that $I_{r} \widehat{v}_{0}$ is a weight vector of $M_{\varepsilon, r}(0)$ with minimal weight $-2(\ell-1) \rho$.

We observe for later use that I_{r} is an integral of U_{r}^{-}. In fact, for $\alpha \in R^{+}$and $a \in \mathbb{N}$ such that $0<a<\ell^{r}, R_{\alpha}^{a} I_{r}$ and $I_{r} F_{\alpha}^{a}$ are in U_{r}^{-}. Hence $F_{\alpha}^{a} I_{r} \widehat{v}_{0}$ and $I_{r} F_{\alpha}^{a} \widehat{v}_{0}$ are weight vectors of $M_{e, r}(0)$ with weight $-2(\ell-1) \rho-a \alpha$. By the minimality of the weight $-2(\ell-1) \rho$, it follows that $F_{\alpha}^{a} I_{r}=I_{r} F_{\alpha}^{a}=0$. This shows that I_{r} is an integral of U_{r}^{-}, in other works $u I_{\Gamma}=\nu(u) I_{r}$ for all $u \in U_{\Gamma}^{-}$, where $\nu: U_{\Gamma}^{-} \rightarrow \mathbb{C}$ is the augmentation function.
3.4 A homomorphism between two Verma Modules. $M_{\varepsilon}(\lambda), M_{\varepsilon}(\mu)$ is a map $\phi: M_{e}(\lambda) \rightarrow M_{e}(\mu)$ such that ϕ is a vector space homomorphism and $\phi(u v)=u \phi(v)$, $u \in U_{\varepsilon}, v \in M_{e}(\lambda)$.

Lemma 3.4.1. If $M_{e}(\lambda), M_{e}(\mu)$ are Verma modules over the quantum group U_{e}, and there is an injective U_{e} module homomorphism $\phi: M_{e}(\lambda) \rightarrow M_{e}(\mu)$, then $\lambda=\mu$ and ϕ is multiplication by some element of \mathbb{C}.

Proof: Let v_{λ}, v_{μ} be non-zero highest weight vectors of $M_{\epsilon}(\lambda), M_{\varepsilon}(\mu)$ respectively. Since v_{λ} generates $M_{\varepsilon}(\lambda), \psi$ is determined by $\psi\left(v_{\lambda}\right)$. Say $\psi\left(v_{\lambda}\right)=u v_{\mu}$, $u \in U_{e}^{-}$. Now by definition, U_{e}^{-}is the union of the subalgebras U_{r}^{-}for $r=1,2, \ldots$ and so there is some r for which $u \in U_{r}^{-}$. Since I_{r} is an integral for U_{r}^{-},

$$
\nu(u) I_{r} v_{\mu}=I_{r} u v_{\mu}=I_{r} \psi\left(v_{\lambda}\right)=\phi\left(I_{r} v_{\lambda}\right)
$$

where $\nu: U_{r}^{-} \rightarrow \mathbb{C}$ is the augmentation function and $I_{r} v_{\lambda}$ is an element of the basis for $M_{\varepsilon}(\lambda)$, so is non-zero, and therefore $\nu(u) \neq 0$. But $\psi\left(v_{\lambda}\right)$ must have weight λ, so $u v_{\mu}$ has weight λ, which contradicts $\nu(u) \neq 0$ unless $\lambda=\mu$. Since v_{μ} spans the μ-weight space of $M_{\varepsilon}(\mu), \psi\left(v_{\lambda}\right)=c v_{\mu}=c v_{\lambda}$ for some $c \in \mathbb{C}$, and ϕ is just multiplication by c.

4. Socle of Verma modules

Denote the socle of the U_{e} module $M_{e}(\lambda)$ by $\operatorname{Soc}\left(M_{e}(\lambda)\right)$ and the socle of the U_{r} module $M_{\varepsilon, r}(\lambda)$ by $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$.

Since for any $r>0, M_{\varepsilon, r}(\lambda)$ is finite dimensional, clearly $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right) \neq 0$. It is interesting to note that even for the infinite dimensional module $M_{s}(\lambda)$, its socle is non-zero. We proceed to prove this in this section.

Lemma 4.1. If $0 \neq u \in U_{r}^{-}$for some $r \in \mathbb{N}$, then $U_{r} u$ contains $\mathbb{C} I_{r}$.
Proof: We shall order the positive roots $\alpha(1), \alpha(2), \ldots, \alpha(N)$ in such a way that if $\alpha(i)+\alpha(j)=\alpha(k)$ then $k<i, j$.

If $0<a<\ell^{r}$ then clearly

$$
F_{\alpha(1)}^{\ell^{r}-1} F_{\alpha(1)}^{a}=F_{\alpha(1)}^{\ell^{r}-1+a}=0
$$

We shall prove by induction on i, with $1 \leqslant i \leqslant N$, that $F_{\alpha(1)}^{\ell^{r}-1} \ldots F_{\alpha(i)}^{\ell^{r}-1} F_{\alpha}^{a}=0$ whenever $\alpha \in\{\alpha(1), \ldots, \alpha(i)\}$ and $0<a<\ell^{r}$.

Suppose there exists some $i, 2 \leqslant i \leqslant N$, such that

$$
\begin{equation*}
F_{\alpha(1)}^{\ell^{r}-1} F_{\alpha(2)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1} F_{\alpha}^{\alpha}=0 \tag{4.1.1}
\end{equation*}
$$

whenever $\alpha \in\{\alpha(1), \alpha(2), \ldots \alpha(i-1)\}$ and $0<a<\ell^{r}$.
Now, suppose that there is some $\alpha \in\{\alpha(1), \alpha(2), \ldots, \alpha(i)\}$ and choose a such that $0<a<\boldsymbol{e}^{r}$.

If $\alpha=\alpha(i)$, then $F_{\alpha(i)}^{\ell^{r}-1} F_{\alpha}^{a}=0$, and so

$$
F_{\alpha(1)}^{\ell^{r}-1} F_{\alpha(2)}^{\ell^{r}-1} \ldots F_{\alpha(i)}^{\ell^{r}-1} F_{\alpha}^{a}=0
$$

If $\alpha \neq \alpha(i)$, then the commutation relations defined in (2.2) imply that

$$
F_{\alpha(1)}^{\ell^{r}-1} \ldots F_{\alpha(i)}^{\ell^{r}-1} F_{\alpha}^{a}
$$

is a sum of elements of the form

$$
F_{\alpha(1)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1} F_{\beta}^{b} u
$$

with $\beta \in\{\alpha(1), \ldots, \alpha(i-1)\}, 0<b<\ell^{r}, u \in U_{e}$ and each element of this form equals 0 by (4.1.1). So (4.1.1) holds for all i.

Using this equation together with the commutation relations defined in (2.2), if $1 \leqslant i \leqslant N$ and $0<a<\ell^{r}$, then

$$
\begin{align*}
F_{\alpha(1)}^{\ell^{r}-1} & F_{\alpha(2)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1} F_{\alpha(i)}^{a} \tag{4.1.2}\\
& -\varepsilon^{-1(i-1)\left(\ell^{r}-1\right)} F_{\alpha(i)}^{a} F_{\alpha(1)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1}=0
\end{align*}
$$

and so if $1 \leqslant i \leqslant N$ and $0<a, b<\ell^{r}$ then

$$
\begin{aligned}
F_{\alpha(i)}^{a} & F_{\alpha(1)}^{l^{r}-1} F_{\alpha(2)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1} F_{\alpha(i)}^{b} \\
& =\varepsilon^{-(i-1)\left(l^{r}-1\right) a} F_{\alpha(1)}^{\ell^{r}-1} \ldots F_{\alpha(i-1)}^{\ell^{r}-1} F_{\alpha(i)}^{a+b} \\
& =0 \text { if } a+b \geqslant \ell^{r}
\end{aligned}
$$

Suppose u is a non-zero element of U_{r}^{-}. Then by the basis of U_{r}^{-}the element u is of the form

$$
F_{\alpha(1)}^{a(1)} F_{\alpha(2)}^{a(2)} \ldots F_{\alpha(N)}^{a(N)} \text { with } 0 \leqslant a(1), \ldots, a(N)<\ell^{r}
$$

By repeated use of (4.1.2)

$$
\begin{aligned}
\mathbb{C} F_{\alpha(N)}^{\ell^{r}-1-a(N)} \ldots F_{\alpha(1)}^{\ell^{r}-1-a(1)} u & =\mathbb{C} F_{\alpha(N)}^{\ell^{r}-1} \ldots F_{\alpha(1)}^{\ell^{r}-1} \\
& =\mathbb{C} I_{r} \text { as required. }
\end{aligned}
$$

Corollary 4.2. Let r be a positive integer.

$$
I_{r+1} \in U_{\varepsilon} I_{r}
$$

PROOF: Lemma 4.1 implies that $\mathbb{C} I_{r+1} \subseteq U_{r+1} I_{r}$, so $I_{r+1} \in U_{r+1} I_{r} \subseteq U_{e} I_{r} \quad \square$
Corollary 4.3.
(i) If M is a non-zero U_{r} submodule of $M_{c, r}(\lambda)$ and $\widehat{v}_{\lambda} \in M_{e, r}(\lambda)$, then $I_{r} \widehat{v}_{\lambda} \in M$.
(ii) If M is a non-zero U_{ε} submodule of $M_{\varepsilon}(\lambda)$ and $v_{\lambda} \in M_{e}(\lambda)$, then $I_{r} v_{\lambda} \in$ M for all r.

Proof:
(i) By the basis of $M_{e, r}(\lambda), M$ contains some vector $u \widehat{v}_{\lambda}$ with $u \in U_{r}^{-}$. By Lemma 4.1, $I_{r} \widehat{v}_{\lambda} \in \mathbb{C} I_{r} \widehat{v}_{\lambda} \subseteq U_{r} u \widehat{v}_{\lambda} \subseteq M$.
(ii) By the basis of $M_{e}(\lambda), M$ contains some vector $u v_{\lambda}$ with $u \in U_{e}^{-}$, hence $u \in U_{r}^{-}$for some r.
By Lemma 4.1, $I_{r} v_{\lambda} \in \mathbb{C} I_{r} v_{\lambda} \subseteq U_{\varepsilon} u v_{\lambda} \subseteq M$.
Corollary 4.4. $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$ is simple.
Proof: $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$ is a non-zero U_{r} submodule of $M_{\varepsilon_{r}}(\lambda)$ and by Corollary 4.3 (i) the submodule $U_{r} I_{r} \widehat{v}_{\lambda}$ is contained in every simple component of $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ and hence $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ itself is simple.

Lemma 4.5. Let $\lambda \in P^{+}$, the set of dominant weights. Then for all $r>0$, the highest weight of $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$ is $w_{o}(\lambda-2(\ell-1) \rho)$ and hence is independent of r.

Proof: From (3.3.1), the lowest weight of $M_{\varepsilon, r}(\lambda)$ is $\lambda-2(\ell-1) \rho$ for all $r>0$. From Corollary 4.3(i), we have seen that any non-zero submodule of $M_{\varepsilon, r}(\lambda)$ contains $I_{r} \widehat{v}_{\lambda}$. Hence $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$ contains $I_{r} \widehat{v}_{\lambda}$ whose weight is $\lambda-2(\ell-1) \rho$. Therefore the lowest weight of $\operatorname{Soc}\left(M_{c, r}(\lambda)\right)$ is $\lambda-2(\ell-1) \rho$ for all $r>0$ and hence the highest weight of $\operatorname{Soc}\left(M_{c, r}(\lambda)\right)$ is $w_{o}(\lambda-2(\ell-1) \rho)=w_{0}(\lambda+2 \rho)$, which is independent of r. Hence the result.

We shall proceed to prove our main result concerning the socle of the Verma modules.

Theorem 4.6. $\operatorname{Soc}\left(M_{e}(\lambda)\right)$ is non-zero for all $\lambda \in P^{+}$.
Proof: Let $v_{\lambda}, \widehat{v}_{\lambda}$ be non-zero highest weight vectors of the Verma modules $M_{\varepsilon}(\lambda)$ over U_{e} and $M_{e, r}(\lambda)$ over U_{r} respectively. Let M be an arbitrary non-zero U_{ε} submodule of $M_{\epsilon}(\lambda)$. Then by Corollary 4.3(ii), $I_{r} v_{\lambda} \in U_{\boldsymbol{r}} u v_{\lambda} \subseteq M$ for all r and hence $U_{\varepsilon} I_{r} v_{\lambda} \subseteq M$. Now, let I denote the submodule $\bigcap_{r>0} U_{\varepsilon} I_{r} v_{\lambda}$ of $M_{e}(\lambda)$.

Replacing M by each simple component of $\operatorname{Soc}\left(M_{e}(\lambda)\right)$, it immediately follows that $\operatorname{Soc}\left(M_{e}(\lambda)\right) \supseteq I$.

We proceed to prove that $I \neq(0)$. Since $M_{e, r}(\lambda)$ is finite dimensional, $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right) \neq 0$. By Corollary 4.3(i), $\operatorname{Soc}\left(M_{\varepsilon, r}(\lambda)\right)$ is simple and we can take $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$ to be isomorphic to the simple U_{r} module $L_{e, r}(\mu)$ (where μ is $\left.w_{o}(\lambda-2(\ell-1) \rho)\right)$. Also by Corollary 4.3(i), Soc $\left(M_{\varepsilon, r}(\lambda)\right)$ contains $I_{r} \widehat{v}_{\lambda}$. Therefore there is some x_{r} in U_{r} such that $x_{r} I_{r} \widehat{v}_{\lambda}$ is in the highest weight space of $\operatorname{Soc}\left(M_{e, r}(\lambda)\right)$. In other words, $x_{r} I_{r} \hat{v}_{\lambda} \in\left(M_{e, r}(\lambda)\right)^{\mu}$, the μ th weight space of $M_{e, r}(\lambda)$. Now let f_{r} be the injective U_{r} module homomorphism from $M_{\varepsilon, r}(\lambda)$ to $M_{\varepsilon}(\lambda)$ described in (3.2.3), then $f_{r}\left(\widehat{v}_{\lambda}\right)=v_{\lambda}$.

So, $x_{r} I_{r} v_{\lambda}=f_{r}\left(x_{r} I_{r} \widehat{v}_{\lambda}\right) \in M_{\epsilon}(\lambda)^{\mu}$.
This shows that for each r,

$$
U_{\varepsilon} I_{r} v_{\lambda} \cap\left(M_{\varepsilon}(\lambda)\right)^{\mu} \neq(0)
$$

and is a finite dimensional \mathbb{C}-vector space (since $\left(M_{e}(\lambda)\right)^{\mu}$ is finite dimensional).
From Corollary (4.2), we have the descending chain of submodules

$$
U_{\varepsilon} I_{1} v_{\lambda} \cap\left(M_{\varepsilon}(\lambda)\right) \supseteq U_{\varepsilon} I_{2} v_{\lambda} \cap\left(M_{\varepsilon}(\lambda)\right)^{\mu} \supseteq \ldots
$$

Hence its intersection which is just $I \cap M_{e}(\lambda)^{\mu}$ is non-zero which implies that $I \neq 0$. Since $\operatorname{Soc}\left(M_{e}(\lambda)\right) \supseteq I \neq 0$, it follows that $\operatorname{Soc}\left(M_{\varepsilon}(\lambda)\right) \neq 0$.

Hence the theorem.

References

[1] De Concini and V.G. Kac, 'Representations of quantum groups at roof of 1', in Operator algebras, unitary representations, enveloping algebras and invariant theory, Progr. Math. (Paris 1989) 92 (Birkhauser Boston, Boston), pp. 471-506.
[2] V.G. Drinfield, 'Quantum group', Proc. ICM, Berkely (1986), 798-820.
[3] M. Jimbo, 'A q-difference analogue of $U(g)$ and the Yang-Baxter equation', Lett. Math. Phys. 10 (1985), 63-69.
[4] G. Lusztig, 'Modular representations and quantum groups', Contemp. Math. 82 (1989), 58-77.
[5] G. Lusztig, 'Finite dimensional Hopf algebras arising from quantum groups', J. Amer. Math. Soc. 3 (1990), 259-296.
[6] G. Lusztig, 'Quantum group at root of 1', Geom. Dedicata (1990).

[^1]
[^0]: Received 9 March 1992

[^1]: Department of Mathematics
 Madurai Kamaraj University
 Madurai 625021
 India

