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SOCLES OF VERMA MODULES IN QUANTUM GROUPS

A.V. JEYAKUMAR AND P.B. SARASIJA

In this paper the Verma modules M,(X) over the quantum group vt(al(n -f- 1), C) ,
where e is a primitive Zth root of 1 are studied. Some commutation relations
among the generators of U, are obtained. Using these relations, it is proved that
the socle of Me(A) is non-zero.

0. INTRODUCTION

A quantum group Uq = Uq(g) is a g-deforcnation of the classical universal envelop-
ing algebra U of a complex semi-simple Lie algebra g, where q is an indeterminate.
The representations of Uq have recently occupied the attention of many mathematicians
(see for example, [1, 2, 3, 4]). When q is a root of unity, the representation theory
of Uq has a close bearing on the modular representation theory of semi-simple, simply
connected algebraic groups and affine Lie algebras.

In [l], De Concini and Kac defined the notion of Verma modules over Uq and Ue

(where e is a primitive £th root of 1, £ is an odd integer) analogous to the classical
Verma modules. In this paper, we study the Verma module Me(A) over Uc = Ue{g),
where g = sl(n + 1), and in particular prove that the socle of Me(A) over Ue is non-
zero.

1. PRELIMINARIES

1.1. Let us fix some notations which are standard (see for example, [1]).

For a fixed n 6 N, let (oij)i<,- <n ^e the cartan matrix of type An-

Let q be an indeterminate and let A = C\q, q~*] with the quotient field <C(q). For
any integer M ^ 0, we define

[M] = * _! e A,

o
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Let Uq be the C(q) algebra with 1, defined by the generators Eiy Fit Kf1

(1 ^ i ^ n) with the relations:

(a) KiKr1=KrlKi = l, KiKj = KjKi,

(b) KiEjKr* = q-iiEj, KiFjKr1 = q^'Fj,

(c) EiFj - FjEi = By Ki ~ K_\ ,
q-q

(d) EiEj = EjEi if aij = 0,

(e) E}Ej - (q + q-^EiEjEi + EtE} = 0 if <*,- = - 1 ,

(f) FtFj = FjFi if an - 0,

(g) FtFj - (q + q-^FiFjFi + FjF? = 0 if ay = - 1 .

Then Uq is a Hopf algebra over C(q) which is called the quantum group associated
to the matrix {a-ij), with comultiplication A, antipode S and counit v defined by

i = E{ ® 1 + Ki ® Ei, AFi = F> ® Kr1 + l <g> F{,

i = -K^Ei, SFi = -FiKu

i = 0, vFi = 0, vKi = l.

Also introduce the elements

1.2. It is well known that one can introduce a root system associated to the matrix

{aij). We briefly describe the construction here. For details refer to [1, 5].

Let P be a free abelian group with basis w,-, t = 1, 2, . . . , n (P is usually called the

lattice of weights). Let P + denote the subgroup of non-negative integral combinations

of u>i, u>2, . . . , wn and any element of P + is called a dominant weight. Define the

following elements in P :

n

2 w»-» ai = X) aaui U = if • • •»n)
t=l i=l

let Q = J2 Zai, Q+
i

Define a bilinear pairing P x Q —» Z by

(1.2.1) {wi\aj)
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Then (a ; | ay) = a^-, so that we get a symmetric Z-vahied bilinear form on Q

such that (a | a ) G 2Z.

Define automorphisms r^ of P by rni>j = Wj — SijOf (i, j = 1, 2, . . . , n ) .

Then r,-a;- = OLJ — aijcti. Let W be the (finite) subgroup of GL(P) generated by
ri, r2, .. •, rn . Then Q is W-invariant and the pairing P x Q —> Z is W-invariant. Let
II = {ai, a2, . . . , a n } , R - WU. and denote RHQ+ by R+. Then R is a root system
corresponding to the cartan matrix (ay) with Weyl group W and R+ the system of
positive roots. Clearly p is half the sum of positive roots. We introduce a partial
ordering of P by A ̂  /x if A — fi 6 Q+. Let two be the unique element of W such that

1.3. Let UA be the 4-subalgebra of Uq generated by the elements Ei} Fit Kf1, [Ki;Q]
(i = 1, 2, . . . , n ) . Let ETj (respectively Z7J ) be the i4-subalgebra of UA generated by
the Ei (respectively F{) and UA the subalgebra generated by the K{ and [Ki\ 0].

1.4. We shall show how to choose a canonical basis for Uq from the given set of gen-

erators (for details see [1, 5, 6]).

We note that we can define an anti-automorphism u> of Uq defined by

(1.4.1)

For any i, 1 ^ i ^ n, there is a unique algebra automorphism Tt- of Uq such that

(1.4.2) TiEi = -FiKi, TjEi = -EjEi + q^EiEj if aji = - 1

and Tj(Ei) = Ei if tiij = 0

(1.4.3) TiFi = -K^Ei, TjFi = -FjFi + qFiFj if aji = - 1

and Tj(Fi) = Ft if a{j = 0

(1.4.4) TtKj = KjK;aii, Tiu>=u,Ti.

Let w G W and let r^ . . . rik be a reduced expression of w. Then the automor-
phism Tw = 71,-, . . . T{k of Uq is independent of the choice of the reduced expression of
w.

Fix a reduced expression r^ r^, . . . r jw of the longest element of W, where N =
\R+\- Then this gives us an enumeration of the elements of R+ :
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We define the root vectors:

Ep. = TixTi2 ...Tit_YEi,,

Fp, = Tit Ti2 ... 2i,_! F{, which is the same as uEp,.

For j = (juj2,...,jN)eZ? let

(1.4.5) & =E0\...E
j»N, Fi=wE*.

The elements FjK™1 ... K™n ET where j , r 6 Z%, (mi ... mn) e Zn form a basis

of Uq over C(q).

1.5. Given e G C* , we now consider the specialisation Ue — V'A/{<1 — C)UA- We take
e in such a way that e2 ̂  1.

Then Ue is an algebra over C with generators Ei, Fi, K^1 (1 ̂  t ̂  n) (identi-
fying these vectors with their images), and defining relations,

(a ') KtKj = KjKi, KiKr1 = K^Ki = 1,

(b') KiEjKr1 = ea<> Eh KiFjKr1 = e~a'i Fh

(c ' ) EiFj-FjE^SuX'-Xl,1,

(d') E}Ej - (e + e-x)EiEjEi + EjE? = 0 if aij = - 1 ,

(e') FfFj - (e + e " 1 ) ^ ^ ^ + FjFf = 0 if atj = - 1 ,

( f ) EiEj = EjEi = 0, FiFj = FjFi = 0 if o,;- = 0.

1.6. We denote by U+, U~ , U° the images of V\,U^, and UA in Ue. The automor-
phism Ti of Uq defined in (1.4) clearly induces an automorphism Ti of Ue. The vectors
E*, F* et cetera of (1.4.5) can then be taken to represent their images in Ue. Then the
elements Ej , j e Z% form a basis of U+ over C, and the elements F'K™1 ... K™nEr

where j,r 6 Z+ and (mi . . .mn) € Zn form a basis of Ue over C.

2. SOME COMMUTATION RELATIONS

2.1. We shall now introduce certain basic relations among the generators of Ue corre-

sponding to the positive roots.

Consider the following sequence of elements in Ue.

E2, r 2 r ! ( £ 2 ) , Ti+1(Ei) i = 1, 2, . . . , n,

(2.1.1) Ti-tiEi) i = 3,...,n,Ti+3Ti
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For convenience we shall write the above terms in the same order.

E2, Ei, Ea+i, i = 1, 2, . . . , n , Ea-2, i = 3, . . . , n ,

Ea+i i+2> i = 1, • • • , n — 2, . . . , Ei 2...n-

The subscripts correspond to the various positive roots: For example the subscript

1 2 corresponds to ai + 02 , and 12 3 corresponds to 011 + a.2 + <*s .

For A2 and A3 these elements are E2, Ei, Ei2 (see [6]) and E2, Ei, Ei} E12,

J52 3 , £123 respectively.

2.2. Using the identities (1.4.2) we obtain the following commutation formulas among
the elements defined in (2.1.2).

E, »+i...fci?jfc+i k+2...t = eEk+i...iE, ,+i...t + eE, ,+i..x, 1 ̂  a, k ^ n, k + 1 ̂  t ^ n;

E,,+i...kEu+i...k = e~1Eii+i...ieE.,+\...k, 1 < s, k < n, s < I < k;

E,,+i...kE,,+i...t = eE,,-(-1.../S, 1+1...*, 1 ^ a, k ^ n, s ^ £ < k;

E, s+i...kEa+i...m = Eu+i..%mEt ,+1...* + (e — e) Err+i...pEM ,+i...m,

1 ^ s, k < n, j / i , j < ^ K ™ ^ n i I = k =r = p, £ ^r, p ^ k,r ^ p;

Ei 2...kEk+2 = Ek+2Ei2...k, 1 < k < n — 1;

The above commutation formulas give rise, by induction, to commutation formulas
between the basis element of U* •

2 fc ^J L e ' c ' c '

m \u

\ \

k < n, s ^ A;, s < £ ^ f c < t ^ n , £ — k = r = p, £ ̂  r, p^Jfe,
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Fi's.

] ? if aij=O,i^j, i,j = l...n.

By using the relations wE{ = F{, ue = e"1 we obtain similar relations among the

3. VERMA MODULES

3.1. The notion of Verma modules over Uq and Ut was introduced by De Concini and
Kac in [1]. In the rest of the paper, we shall be concerned only with Verma modules
over Ue, where £ is a primitive ^th root of unity. We recapitulate the definition below:

For each A G P the Verma module Afe(A) over Ue is the vector space Me(A) in
which there exists a non-zero distinguished vector v\ such that U*v\ = 0, Kv\ =

£(M<*)VXt K e U° where ( | ) is the pairing from P X W -> Z defined in (1.2) and
{F^v\ (i G Z+)} *s a basis of Me(A) . Let Le{X) denote the unique irreducible quotient
of MC(X) by its unique maximal submodule.

Then we have

(3.1.1) Kvx = eWa)vx.

Also for each h = 1, 2, . . . , N, F^vx is a weight vector of weight A — a^ as easily
seen below.

KFhvx = e-W

- £-<-a^h^a)Fkvx (since (ah | a) = (o | ah))

3.1.2. This shows that for any r G Z+, F£v\ is a weight vector of weight A — rah and

( • ' \ N

therefore each F*vx (= Fp ... Fjfvx) is a weight vector of weight A — £) jh<Xh-
v ' h=i

3.2 VERMA MODULES OVER SOME SUBALGEBRAS OF Ue.

We first define the subalgebras Ur, Z7+, U~, of Ue generated by

j i t n < lr, ( m , . . . m») G Zn},

{Er, H K?*, 0 < r,- < r , (m,... mn) G Zn},

{FJ, 0 ̂  ji < £r} respectively.

1 = 1
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The set

(3.2.1) {if ...F>N
N K^...K™» E? ...Etf, 0 < j u n < r , (m,...mn) G Zn)

is a basis of UT and the set

(3.2.2) {Fl1 ... FJf, 0 ^ ji < £r} is a basis of 17".

We can then define the Verma modules Me>P(A) of weight A over Ur analogously
to MC(X) over Ue, that is, there exists a non-zero vector (say) vx such that U*vx = 0,
Kvx = e(Al°>«A for # € *7° and {.F-'WA, 0 < ji < V} form a basis of M«,r(A).

There is a natural injective homomorphism fr: Me>r(A) —» Me(A) given by

(3.2.3) / r ^ ' S * ) = Fivx.

3.3. We next introduce certain elements defined by IT of U~ , which play an important
role in our future study of the socles of Verma modules and homomorphisms between
Verma modules.

For each positive integer r, let Ir = F{ - 1 . . . FJ^ ~1 which is an element of U~ .
It then follows that ITvx is a weight vector of UTvx of weight A — 2(£ — l)p, where

p is half the sum of the positive roots.
In fact,

(3.3.1)

KIrvx = KFf-1Ff-1...F£-1vx

( A ( r ) | ) ^ Fg-tvx from [3.1.2]

- i r A

[since £r = 1}

In particular, when A — 0, we see that ITVQ is a weight vector of M£ir(0) with
minimal weight — 2(t — l)p.

We observe for later use that IT is an integral of U~. In fact, for a 6 R+ and
a e N such that 0 < a < V, R%Ir and ITF* are in U~. Hence F£Irv0 and IrF^v0 are
weight vectors of M4iP(0) with weight — 2(1 — l)p — aa. By the minimality of the weight
-2{l - l)p, it follows that F£Ir = IrF£ = 0. This shows that IT is an integral of U~ ,
in other works ulr = v(u)Ir for all u £ U~ , where v: U~ -> C is the augmentation
function.
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3.4 A HOMOMORPHISM BETWEEN TWO VERMA MODULES. M e (A) , Me(fJ.) is a m a p

<f>: MC(X) —> Me(fi) such tha t <f> is a vector space homomorphism and <f>(uv) = u(j>(y),

u E Ue, v € Mc{\).

LEMMA 3 . 4 . 1 . If Me(A), Me(/i) are Verma modules over the quantum group
Uc, and there is an injective Uc module homomorphism <j>: Me(X) —> Me(/x), then
A = /i and <j> is multiplication by some element of C.

PROOF: Let v\, vM be non-zero highest weight vectors of MC(X), Me(fj.) respec-
tively. Since v\ generates Me(X), ij> is determined by ip(v\). Say %l>(v\) — uv^,
u 6 U~ . Now by definition, U~ is the union of the subalgebras U~ for r = 1, 2, . . .
and so there is some r for which u E U~. Since IT is an integral for U~,

z/(w)/rv^ = / r B ^ = Irij)(yx) = <f>(Irv\)

where v: U~ —* C is the augmentation function and Irv\ is an element of the basis for
Me(A), so is non-zero, and therefore v{u) ^ 0. But i>{v\) must have weight A, so uvp.
has weight A, which contradicts v(u) ^ 0 unless A = /x. Since uM spans the ji-weight
space of Me(ji), il>{y\) — cv^ = cv\ for some c G C, and <f> is just multiplication by

D

4. SOCLE OF VERMA MODULES

Denote the socle of the Ue module Me(X) by Soc(M«(A)) and the socle of the Ur

module M€,r{\) by Soc(Me,P(A)).

Since for any r > 0, Me<r(X) is finite dimensional, clearly Soc(Me,r(A)) ^ 0 . It
is interesting to note that even for the infinite dimensional module Mt(X), its socle is
non-zero. We proceed to prove this in this section.

LEMMA 4 . 1 . If 0 ^ u € U~ for some r G N, then Uru contains CIr .

PROOF: We shall order the positive roots a(l) , a(2), . . . , ct(N) in such a way that

if cc(i) + a(j) = a(k) then k < i,j.

If 0 < a < lT then clearly

'0(1) '0(1) - 'all) ~ U -

We shall prove by induction on i, with 1 ^ i ^ N, that F^1... F^^F^ = 0

whenever a G {a(l), . - •, a(*)} a n ^ 0 < a < £r .
Suppose there exists some *', 2 ^ * ̂  N, such that
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whenever a € {"(1), a(2)> . . . a(i - 1)} and 0 < a < V.

Now, suppose that there is some a € {<*(1)> " (2) , . . . , «(*)} an<^ choose a such
that 0 < a < lT.

If a = a(i), then F^F^ = 0, andso

If a ^ a(i), then the commutation relations defined in (2.2) imply that

j?lr-i nt'-i
a(l) - ' a ( i )

is a sum of elements of the form

with /3 G {a(l), . . . , a(i - 1)}, 0 < U P , ti G U, and each element of this form
equals 0 by (4.1.1). So (4.1.1) holds for all i.

Using this equation together with the commutation relations defined in (2.2), if
1 < i < N and 0 < a < lT, then

(4.1.2) ^rX^-^rV-co

and so if 1 ̂  t < JV and 0 < a, 6 < V then

= 0 if a + 6 > r .

Suppose u is a non-zero element of U~. Then by the basis of U~ the element it is of
the form

KwKll) • • • K(N) with 0 < a(l), ..., a(JV) < T.

By repeated use of (4.1.2)

= C/r as required.

D
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COROLLARY 4 . 2 . Let r be a positive integer.

Ir+1 G UJT.

PROOF: Lemma 4.1 implies that CIT+i C Ur+ilr, so / P + 1 e Ur+1Ir C UeIr. D

COROLLARY 4 . 3 .

(i) If M is a non-zero Ur submodule of Mc>r(X) and v\ G Afe>P(A), then
IrVxGM.

(ii) If M is anon-zero Uc submodule of Me(X) and v\ G Me(X), then Irv\ G
M for all r.

PROOF:

(i) By the basis of Afeir(A), M contains some vector uv\ with u G U~. By

Lemma 4.1, Irv\ G CIrv\ C Uruvx Q M.
(ii) By the basis of Me(A), M contains some vector uv\ with u G U~ , hence

u G U~ for some r.

By Lemma 4.1, Irv\ G CITv\ C Ueuv\ C M. D

COROLLARY 4 . 4 . Soc(Afei7.(A)) is simple.

PROOF: Soc(Afeir(A)) is a non-zero Ur submodule of Afe<.(A) and by Corollary
4.3 (i) the submodule UTIrv\ is contained in every simple component of Soc(MeiT.(A))
and hence Soc(MCiT{\)) itself is simple. D

LEMMA 4 . 5 . Let A e ? + , the se< of dominant weights. Then for all r > 0, the

highest weight of Soc (Me>r(A)) is wo(\ - 2(£ — l)p) and hence is independent of r.

PROOF: From (3.3.1), the lowest weight of Me>r(A) is A - 2(1 - \)p for all r > 0.

From Corollary 4.3(i), we have seen that any non-zero submodule of Me,r(A) contains

Irv\. Hence Soc(Me|r(A)) contains ITv\ whose weight is A — 2(£ — l)p. Therefore the

lowest weight of Soc(Afeif.(A)) is A — 2(1— \)p for all r > 0 and hence the highest

weight of Soc(M«ir(A)) is wo(\ — 2(1 — l)p) = u)o(A + 2p), which is independent of r.

Hence the result. D

We shall proceed to prove our main result concerning the socle of the Verma mod-

ules.

THEOREM 4 . 6 . Soc (Me(A)) is non-zero for all A G P+ .

PROOF: Let vx, vx be non-zero highest weight vectors of the Verma modules
Me(A) over Ue and MC<T(X) over UT respectively. Let M be an arbitrary non-zero
Ue submodule of Me(\). Then by Corollary 4.3(ii), ITvx G UTuvx Q M for all r and
hence UeIrvx Q M'. Now, let / denote the submodule f) UeITvx of Me(\).

r>0
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Replacing M by each, simple component of Soc(Me(A)), it immediately follows
that Soc(Me(A))D I.

We proceed to prove that I ^ (0). Since Me)t.(A) is finite dimensional,
Soc(Meir(A)) ^ 0. By Corollary 4.3(i), Soc(Miir(A)) is simple and we can take
Soc(M<,)r(A)) to be isomorphic to the simple UT module Le<r(iJ.) (where /i is
wo(\ - 2(1 - l)p)). Also by Corollary 4.3(i), Soc(Me,r(A)) contains Irvx. Therefore
there is some xT in Ur such that xrlrv\ is in the highest weight space of Soc (M£|T.(A)).
In other words, xTIrv\ £ (Me)r(A))**, the /xth weight space of MeiF(A). Now let fr be
the injective Ur module homomorphism from MeiP(A) to Me(A) described in (3.2.3),
then fT(vx) = v\.

So, xrlrvx = U(xrITvx) 6 Me(A)".

This shows that for each r,

UJrVX H (Me(A))" ^ (0)

and is a finite dimensional C-vector space (since (Me(A))M is finite dimensional).

From Corollary (4.2), we have the descending chain of submodules

UJlVx n (Me(A)) D Uehvx n (Me(A))" D . . . .

Hence its intersection which is just I PI Me(A)M is non-zero which implies that / ^ 0.
Since Soc(Me(A)) D I ^ 0, it follows that Soc(Me(A)) ^ 0.

Hence the theorem. U
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