J. Aust. Math. Soc. **88** (2010), 429–430 doi:10.1017/S1446788710000133

CORRECTION TO

'SPREADABLE ARRAYS AND MARTINGALE STRUCTURES'

B. GAIL IVANOFF and N. C. WEBER

doi:10.1017/S1446788700010491, Published by Cambridge University Press, 9 April 2009

Communicated by M. G. Cowling

The statement of Lemma 3.6 in Ivanoff and Weber [2] is incorrect. In fact, conditions (2) and (3) of Lemma 3.6 are equivalent, and necessary but not sufficient for (1). Lemma 3.6 should be stated as follows.

LEMMA 3.6. Let X be a finite or infinite weak \mathcal{F} -SS array. Then:

- (1) X is \mathcal{F} -stationary; and
- (2) μ_{ij} forms an \mathcal{F} -martingale.

The following counterexample satisfies both (1) and (2) but is not separately spreadable. Let X be a 4 × 2 array ($X = (X_{ij})$, i = 1, 2, 3, 4; j = 1, 2) that takes the following values, each with probability $\frac{1}{4}$:

$$\begin{pmatrix} -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix}, \\ \begin{pmatrix} -1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

We recall the shift operator $\theta_{ab} \circ X = (X_{ij} : i \ge a + 1, j \ge b + 1), a, b \ge 0$. We see that (1) (and hence (2)) above is satisfied, that is, for $i, j \ge 0$ and all $h \ge i, k \ge j$,

$$\theta_{hk} \circ X =_{\mathcal{D}|\mathcal{F}_{ii}} \theta_{ij} \circ X,$$

where \mathcal{F}_{ij} denotes the minimal σ -field generated by (X_{ab}) for $a \leq i, b \leq j$.

^{© 2010} Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

However the array X is not separately spreadable and so not weak \mathcal{F} -separately spreadable. If column 2 is deleted, then the first two columns of the resulting 3×2 array are identical, which is clearly not the case with the original array X.

In fact, necessary and sufficient conditions for the weak \mathcal{F} -separately spreadable property follow from the observation that X is weak \mathcal{F} -separately spreadable if and only if for every $h, k \ge i$ and $l, m \ge j$ and $s, t, u, v \ge 0$,

$$\phi_{uv} \circ \theta_{hl} \circ X =_{\mathcal{D}|\mathcal{F}_{ii}} \phi_{st} \circ \theta_{km} \circ X,$$

where $\phi_{uv} \circ X$ is the matrix X with column u and row v deleted $(u, v \ge 0)$.

THEOREM 1. *The following are equivalent for a finite or infinite array X.*

- (1) *X* is weak \mathcal{F} -separately spreadable.
- (2) If $(S, T) \ge (0, 0)$ and $(U, V) \ge (0, 0)$ are any bounded random times such that for every $(i, j) \ge (0, 0)$ and $(h, l) \ge (0, 0)$,

$$\{(S, T) = (i, j), (U, V) = (h, l)\} \in \mathcal{F}_{ij},$$

then $\phi_{UV} \circ \theta_{ST} \circ X =_{\mathcal{D}} X$.

The proof of the theorem is similar to that of [2, Lemma 4.5] and [1, Theorem 1].

The foregoing can be expressed in terms of a four-dimensional martingale structure by defining $\mathcal{H}_{ijkl} := \mathcal{F}_{ij}$ for all *i*, *j*, *k*, *l* with associated prediction array

$$v_{ijkl} := P(\phi_{kl} \circ \theta_{ij} \circ X \in \cdot | \mathcal{H}_{ijkl}).$$

Next ((S, T), (U, V)) is an \mathcal{H} -adapted random time if

$$(S = i, T = j, U = k, V = l) \in \mathcal{H}_{ijkl} = \mathcal{F}_{ij} \quad \forall i, j, k, l.$$

The four-dimensional martingale property can be defined in a manner analogous to the two-dimensional version in [2, Section 4.2]. As in [2, Lemma 4.5], it is straightforward to show that (1) and (2) of Theorem 1 are equivalent to:

(3) (v_{ijkl}) is an *H*-martingale.

References

- [1] B. G. Ivanoff and N. C. Weber, 'Some characterizations of partial exchangeability', *J. Aust. Math. Soc. (Series A)* **61** (1996), 345–359.
- B. G. Ivanoff and N. C. Weber, 'Spreadable arrays and martingale structures', J. Aust. Math. Soc. 79 (2005), 277–296.