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ON (I: ) FOR GENERAL MEASURE SPACES
H. W. Ellis and D. O. Snow

(received June 16, 1962)

1. Introduction. It is well known that certain results
such as the Radon-Nikodym Theorem, which are valid in totally
o -finite measure spaces, do not extend to measure spaces in
which p is not totally o -finite. (See §2 for notation.) Given
an arbitrary measure space (X,S,u) and a signed measure Vv
on (X,S), thenif v <<p for X, v << p when restricted
to any eeSf and the classical finite Radon-Nikodym theorem

produces a measurable function ge(x) , vanishing outside e ,
with
viet)= [
(e) = [ g (x)du,
el
for every measurable e' Ce. When p is totally o -finite
. 0
there exist disjoint measurable sets e, with X = ui e. and,
i i
[>¢]
defining g(x) =X, 1 ge (x) extends the Radon-Nikodym theorem
1= .

1
to X . Standard arguments then show that every continuous

linear functional on Lp, 1 <p<®, can be expressed in terms
of an integral

G(f) = jfg du ,

-1

with g(x)e Lq, p“1 +q =1, and |G| =1_\I_°°(g) .

When p is not totally ¢ -finite the extension may fail in
several ways. There may exist a function g(x) defined on X
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and such that g(x) = ge(x) a.e. in e for each ec« Sf but g(x)

may fail to be measurable or g(x) may be measurable but the
integral expression be invalid in certain sets of infinite measure
(Example 3). In these cases we say that the finite Radon-Nikodym
theorem has a local extension to X . There may exist no
function defined on X with g(x) = ge(x) a.e. in e for each

e e Sf (Example 4).

Let Ge (D) 1 ees, x_<L’. I |Gle)|/u(e) > 1/n,

Zute) < [otx )| < lolx") = foliuen'’?

)< n o] .

If 1 <p<ow this result can be used to show that there exist
+ ©
disjoint sets s, in S_, X =\w s  with G(x ) =0 if
i f 1 1 1 e

e CX= X1 , €& Sf . Then G can be identified with

R . p* _ .9
g(x) = 21 g (x) and it can be shown that (L") =L

i

1 < p<oo. This method fails when p=1, g = anditis

if

o,

sk o0
well known that (L ) and L need not be isometric.

In §3 we consider three elementary examples illustrating
some of the differences between totally o -finite and non totally
o -finite measure spaces. In §§2 and 3 we introduce a local
theory which permits a description of (L )* in terms of
integrals when the measure space perm{;s the local extension
of the Radon-Nikodym theorem. An analogous description is
possible in every case for the Bourbaki theory of Radon

+ _ ~measures on locally compact topological spaces [1].

Example 4 ([3], p.-131) shows that a local extension need

not be possible and that the local theory is not adequate to

ES

1%
describe (L ) for general non-topological measure spaces.

1 %
J. T. Schwartz [5] has characterized (L) in general in terms
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of measures. In §4 we study decompositions of X into sets

+ 1 %
of Sf and the problem of characterizing (L ) in terms of

integrals in the general case. The principal results are
presented in Lemma 4.1 and Theorem 4. 1.

2. Definitions and notation. We adopt in general the

definitions and notation in [3]. Let (X,S,u) denote an arbitrary
measure space, where X is a space of points x, S a relatively
complemented, countably additive class of measurable sets

(a2 o -ring) and w a positive countably additive measure on S.
When X e S the space is complemented and S is called a

o -algebra. The measure is called o -finite (totally o -finite)

if S is a o-ring (0 -algebra) and every set in S can be
expressed as a union of a countable collection of measurable

sets of finite measure.

If S is a 0-algebra we let Sf and S; denote the

collections of measurable sets of finite, and finite positive
measure respectively, S' the o -ring generated by Sf .
X =X

Let R° and R™ denote the spaces of real and extended
real valued functions on X . A function f is called null if
N(f) = {x: f(x) # 0} 1is a null set (i.e. has measure zero).
The relation f =g if f - g is null is an equivalence relation.
It is usual to extend the equivalence classes to include functions
that are not defined in some null set. A set A (function f)
will be called locally null if for each e € Sf , A Ne (fxe) is null.

The relation f=g if f - g 1is locally null is an equivalence

relation. We can thus also consider spaces where the points

are equivalence classes of functions modulo locally null functions.
=X =X

We let R, El denote the spaces of equivalence classes of

extended real valued functions on X modulo null and locally

null functions respectively. When p is o -finite or totally

¢ -finite, null and locally null coincide.

If S is a ¢ -algebra, a function f in §X is measurable
if the inverse of each extended Borel set on the real line is
measurable. If S is a 0-ring, f is measurable if the inter-
section of the inverse of every extended Borel set with N(f) is
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measurable. A function f in f{-X will be called locally

measurable if, for each e ¢ Sf , fx 1is a measurable function.
e

Locally measurable functions have the same combinatory

properties as measurable functions. We denote by M , Mf

the spaces of measurable and locally measurable functions, by
=X =X
M and M!l the subspaces of R, Rg of equivalence classes

of measurable and locally measurable functions modulo null and
locally null functions respectively. We note that if f is locally
measurable then fXA is measurable for every Ae S'. Thus

if p is o -finite or totally ¢ -finite local measurability implies
measurability.

. 1
For each fe M, NY(f) =[ [|f]Pdp] le 1<p<;

)
N (f) =ess. sup. !f(x)] is defined with 0 < gp(f) < . Since

every null function h is measurable and lil_p(h) =0, gp is

also defined naturally on M . We denote by Lp the space of

functions f in M with I_\I_p(f) <o, by Ep the Banach space

of points f of M with §P(?) < © . Thus, as sets of points,

P

LPcmcRX.

171

When p is not ¢ -finite or totally ¢ -finite we define

P _ P
Ny = sup N . 1< P

We can write

[ |fldp for gz(f).

Then j is defined for every locally measurable function

whereas j is defined only for those locally measurable

functions that are measurable. We denote by LE f

analogues of the spaces Lp and I_:p using local measurability
instead of measurability. Then, as sets of points,

,E the
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tPcMm cR
= ¥ =5

p

The spaces _I__.,p are vector spaces normed by Nl

Definition. A set A will be called purely infinite if it
contains A' € S with p{A!') =0 and if p(A') =0 or o for
every A' e S, A' CA.

3. Elementary examples. The following trivial example
illustrates some of the pathology introduced by purely infinite
sets.

Example 1. X consists of two points xi,x »S = P(X)

2
(the collection of all subsets of X) , p is the measure for which
p(xi) =1, MXZ) = . (We do not distinguish between X, and

XZ as points of X and as one point subsets of X .)

In the example the set x, is purely infinite,
S a o0-agebra and p is not totally o-finite.

Definition. Suppose that v is a signed measure
absolutely continuous with respect to a measure p, v << .

Then a measurable function g(x) will be called a Radon-Nikodym
derivative (RN-derivative) of v with respect to p if

via) = [, glx)du

for every AeS. A locally measurable function g{x) will be
called a local RN-derivative of v with respect to p if

v(e) = feg(X)du

for every ee Sf .

Let v << p in Example 1. Then g(xi) = v(x1) s
g(xz) =0 is a unique RN-derivative if v(xz) =0, there exists
no RN-derivative if 0 < fv(xz)l < © and g(x1) = v (Xi) ,

g(xz)zfa , 0<a<oo, isan RN derivative if V(xz)ztw-
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The functions g(x ) =v(x ), - ©< g(XZ) < o are local

1) 1
RN-derivatives for every v << .

P

Let lf(x1)|<oo, f(x,) =0 . Then fe¢L", 1<p<e

and every fe LP is of this form if 1 < p <o . The equivalence

class of f in LP , 1 <p<o® coincides with f since gz0 is

the only null function. Now f ¢ Li , 1< p< o and its equiva-

P

lence class fﬂe L" consists of the functions f(x) + g(x) where

g(x) is locally null, i.e. g(xi) =0, - o< g(xz) <.

~ - -~

gp(f) = Np(fl) and the correspondence between f{ and fl ,

—L
1 < p< oo, shows that I__,p and Lf are isometric. For the

0
case p= o, f(x)+ g(x) determines different points in L
for different finite values of g(xz) and fﬂ corresponds to

0
the one point with g(xz) =0 . Thus L_ 1is isometric to a

0
subspace of L .

For 1 < p< o the situation illustrated by the example is

typical. If fe Lp , fef isin Lf and determines an equiva-
lence class £, in LP with _Np(fl) =NPo . i £, ¢ _L_}; and
fef, then since Np(f) = sup Np(fxe) , there is an increasing

eeSf

sequence ene S with Np(fx ) > Np(f) -1/n, n=1,2,....
e ' Z

n

f

If A= \Jooe , fx §Lp and Np(AfX ):NP(E ). We have thus
1 n A ’ A L2

shown that for every measure space (X S,u), LP

1 < p< o, are isometric. Thus EIZ , 1< p<o is a Banach

space.

and Lp ,
— —1

Returning to the example we note that Sf =S' consists of
the empty set and the set X, - Here LP(X,S,p) and LP(X, St

© w0
coincide if 1 < p< o but L (X,S',p) and I:!l (X,S,p) are
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isometric, noting that f(x} is non measurable (S') unless it
vanishes at xz .
We next consider the topological dual of I__.p , 1 <p<o,

If ge E—ix, g detérmines an element G of (I__,p)_ﬁ if
le(x,)]| <= by

Gf) = [fgdu = f(x )g(x,)

noting that f(xz) =0 and using the convention for extended real

numbers that 0 . © =0 (or we could replace _) by j‘). Each
g in the same equivalence class modulo locally null functions

o ~
determines the same G with |G| = §l(g2) . Conversely
if Ge(LP)  Ilet glx,) = Glx_ ), -©<glx)<w. Iffe P
1
f) = f = f =f .
G(f) = G(fx_ ) (x)G(x ) =£(x, )g(x )
1 1
All such g belong to the same equivalence class g, in E;

and 132(&1 ) = ||G|| . Thus for this example

q,1<p<co

(L) =L =L

-~ 00
(LH” =L cL”

Example 2. X=(0,1), S=PX), p(A) denotes the
number of points in A if A is finite, = © otherwise.

S isa o -algebra, p not o -finite. The empty set is the
only null set and A€ Sf implies that A 1is finite. Measurability
and local measurability coincide, every v << pu has a unique
RN-derivative and (I._,i)* = I__.00 = Eoz . We note that
LP(X,5,p) = LP(X, 8", ) if 1<p<o butthat L (X,S,p) =
L;o(X,S,p.) ] Lm(X, Sf,pn) since f is not measurable (s') if
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{x: f(x) # 0} is not countably infinite.

Example 3. ([4], p.36). With X and p the same as
in Example 2 let S denote the Lebesgue measurable subsets
of X.

Let v denote Lebesgue measureon S. Then v <<pu.
Suppose that v has an RN-derivative g(x) with respect to u .

Since p(x) =1, v(x) =0 for every one point set xeX , g(x)=0.
This is not compatible with

1 = v(X) = jxg(x) du .

We note that every locally null function is a local RN-derivative
for v with respectto p.

1
If fe L. the points where f(x)# 0 are at most countable

1 00
say x, i=1,2,... and N (f) = 21 lf(x')l. It is easy to show
1 - 1
1 %
that (L ) 1is isometric to B, the space of bounded functions
on X, by
G(f) = jgfdu, with [[G]l = sup [g(x)] .

xe X

Here gf is measurable for every g since the product vanishes
outside a countable collection of points. The only null or locally
1 1 S 0
null set is the empty set. Thus L = E , Ll = El . We note
=X
that every element of R~ is locally measurable and B = I—"Z .
Since there are bounded non-measurable functions, viz. the
characteristic function of a non-Lebesgue measurable set,
o0 0

1 %
ECI__41=(£).

00
We note also that L (X,S,p) D _E.oo(X, St,p) .
0
In the above examples El is a Banach space as the

. 1
topological dual of the Banach space L' . In the general case
completeness can be shown by a slight modification of the
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argument of [2], Theorem 3.1. There is no loss of generality
in assuming that each gi(P) in [2], Theorem 3.1 is defined
and finite everywhere in" X since the equivalence class of

w
each element in L contains such functions. If eoo =

{P:go(P) = o} lzl_;(go) < o implies that, for each e < Sf s
Nzo(goxe) < © whence ene is null. Thus e, is locally
null. The remainder of the argument in Theorem 3.1 goes
through verbatim.

The above examples illustrate two properties of totally
o -finite measures that may become invalid for arbitrary
measures -

1. We call Ae S finitely regular if

p(A) = sup u(e) .
eC A

eESf

Since p is monotone every e € Sf is finitely regular. Thus if
A is not finitely regular

p(A) = o, sup u(e) =a < o.
e CA

eesf

There then exists an increasing sequence { e } of sets in Sf
n
©
with lim p(e ) =a . If A' = u1 e , A' is measurable and
n' ' n n

A-A' is measurable and purely infinite. Thus every set that
is not finitely regular contains a purely infinite measurable
subset.

+
2. If u is totally o -finite x:dfen v;ith e S, .
If AneeS for every eeSf, A=A mX:uiA f\enes.

Example 3 shows that in the general case there may exist non-
measurable sets A with A mneeS for every e ¢ Sf . Replacing

measurability by local measurability restores this property in
the general case.
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Purely infinite sets can always be removed by changing
the measure from p to Hy where

b (A) = sup w(e) .
e CA

eesf

Then by =K on the finitely regular sets but purely infinite

measurable sets become null sets. We note that, even if p
is complete, p will not be complete unless every subset of
o

every purely infinite measurable set is measurable. In Exampble
1, Lf(X,S,p) =1P(X,5,p ), 1<p<w. InExample 3, beh
= = ° =Pz

1. %
and the local theory is needed to characterize (E ) by
integrals.

Purely infinite sets may also be deleted by retaining the
measure p but replacing the 0 -algebra S by a suitable o -ring.
S' was used in Example 1 and is in general adequate in studying

1 sk
Lp , 1< p< o, butwas inadequate for the description of (L)

in Examples 2 and 3. The collection S' of sets in S that
contain no purely infinite measurable subsets is a 0 -ring. In
Examples 2 and 3 it coincides with S .

The local theory has effectively neglected purely infinite
sets, restored property 2, and has provided a natural way of
describing (Ei)* in terms of integrals in all three examples.

In the general case each element of I:OO determines a continuous
linear functional on _lii (compare Theorem 4.1 below).
However I:OE can be isometric to a proper subset of (Ei)*
When the measure space permits a local extension of the Radon-
Nikodym theorem it can be shown that (I;,1)>:< and Ef are
isometric.

1 %
4. (L) for general measure spaces. The following
example ([3], p.131) shows that a local extension of the Radon-

o,

1 3%k
Nikodym theorem is not always possible and that (L) and
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0
L.  need not be isometric.

Example 4. Let X,Y be sets of points with cardinal
numbers «, respectively where « > the first non-countable

cardinal and B>« . We consider the Cartesian product
X XY, call the set of points AY = {(x,yo), x ¢ X}, a hori-
0
zontal line, the set Ax ={ (xo,y), ye Y} a vertical line.
0

A set A will be called full on a horizontal or vertical line if
it consists of all but at most countably many points of the line.
We let S denote the collection of sets which intersect each
horizontal or vertical line in a full set or a countable set.
Then S is a 0-algebra. For each A €S let p(A) equal the
number of horizontal lines on which A 1is full plus the number
of vertical lines on which A is full. Then (XXY,S,u) isa
complemented measure space that is not totally o -finite. If
v(A) denotes the number of horizontal lines on which A is
full v is a positive measure, Vv <<y .

Since for each x¢ X, |.L(AX) =1< o and v <<y on the
subsets of Ax , the classical finite Radon-Nikodym theorem

implies the existence of gX(P) , Pe AX , with

vie) = [ g (P)dy

for every measurable subset e of A . Since the measurable
. X
subsets of A are either full or countable, g (P) =0 for all
X X
but at most countably many points of Ax . Similarly for each

y € Y there exists g (P), Pse AY with
y

v(e) = j‘gy(P)dLL

for every e CA , e€S, and g (P)=1 almost everywhere
Yy Yy
in A . The collection of functions g, x€e X ; gY , yey
Yy

1 %
determine an element of (L) by the argument of Theorem
4.1 below. Suppose now that there exists a locally measurable
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function g(P) with

g(P)

1]

gX(P) a.e. in each AX ,

g (P) a.e. in each A
y Yy

If A={PeXXY: g(P)#0}, asin[3]the x-conditions imply
that A has cardinal number >f , the y-conditions that A has
cardinal number < @ giving a contradiction.

+
We note that in Example 4, X= v A , A ¢ Sf , x€ X,
cex X X
A NA = 6, # x' . Thus there exists a measurable function
x X

f(P) defined on all of X , coinciding with g (P) a.e. in each
X
+
A , namely the function g(P)=0. However each A ¢S
X

y f
but p{A "A )=0, xe X and
X y

L= va) ¢ J, sPydu=0.

y
We note also that X=( W A )u( v A ) = o A,
X
xe X erY e

where A is the set of all x and y indices. Here

p(A)\f’\A)\‘) =0, X\ # M and, for any A€ SJfr,
aa) = T (ana),
e A

where Z p(A mA)\) means the supremum of all finite sums
XeA
of this form. In this case the functions gA (P), \e A,
A
determine a gA(P) for every A € S' but it is impossible to

define g(P) on X coinciding a.e. with g, (P) in A)\ for
N
each he A .

The following lemma shows that similar decompositions
are possible for every complemented measure space.
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Lemma 4.1. To each complemented measure space
(X,S,u) correspond two decompositions (D) and (ND) where,
for both

X = X1 w X with X1 purely infinite or locally null,

2’
X nX. = 0;

1 2
X = v e ,e_ € S5 ,
A
2 xeA X f
and where, for
(D) e)\ﬁe)\'=0,)\#)\’;
(ND) p(e)\ f\e)\’) =0, M# X' and ple) = Z/\ ule Ne
\ €

for every ec¢ Sf .

If p is a complete measure X is locally null in both cases.
The decompositions (D) and (ND) are not in general unique.

Proof. We verify (ND), (D) being simpler and similar.
+
We consider all collections of sets from Sf with pairwise

intersections null and partially order these collections by
inclusion.

If C ,ae A, 1is a chain in this partially ordered set,
a

let C!' denote the collection of all elements e inany C .
a

If e #e , e €C , e e C for some «a,a' and we can
A N X o AT a!
assume that o < a! . Then e , e e C
A At a

and p(e\r‘\e )=0.

1 Al

Thus C!' is an upper bound for the chain. By Zorn's Lemma
+

there is a maximal collection C = {e)\, A€ /\} . If ec€ Sf

maximality implies that p(e M e)\) > 0 for some \e A.
Let X = , X =X-X_. Th X contain
e > I e)\ ’ 5 en . can i

+
no set of Sf and so is purely infinite or locally null.
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+
Let e« Sf . Assume that p(e r\e)\) > 0 for uncountably
many A € A . There would then exist 6§ > 0 and a sequence

X, i=1,2... with p(e /‘\e)\)>0 whence, since p(e)\ r\ex)=0,
1 . . .
i 1 J

i4j,

0 0
0= Z p(eme)\) =p(ef\(u1e>\)<p(e)<00,
i=1 i i

a contradiction. Thus for at most countably many X say X\,

i=1,2,...,1(e f\e)\ ) > 0 and
J
)
Z wlemne )= Z ple Ne ) < ule)
j=1
)\E/\ J
0 +
Let e! =e - \Ji (e /\ex ). Then e! € Sf. If el € Sf there
j
exists \!' # >\j, j=1,2,..., with p(e me)\t)zp(e' r\e)\’)>0
giving a contradiction proving that p(e')=0. If p is complete,
since X1 ~Ne C et | X1 e is in S with }.L(X1 ~e)=0, 1i.e.

X1 is locally null.

The index set in (D) can be countable. Then U e
xeA
is measurable, X1 a measurable null or purely infinite set.

Since Xe)\ e LP , 1<p<wo, \e¢ A, I_:p cannot be separable

when A is not countable.

Remark. If S is a 0 -algebra and u 1is not totally
o -finite, Ep (1 <p<w), cannot be separable unless S
contains a purely infinite set.

Definition. A measure u on a complemented measure
space (X,S,n) will be called locally o -finite if there exists
a decomposition (D) with p(e) = Z p(e /\e)\) for every

Ae A

224

https://doi.org/10.4153/CMB-1963-020-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1963-020-6

When p is locally 0 -finite the finite Radon-Nikodym
Theorem extends locally to X by g{x)= Z g (x), i.e.
AeA oA
every Vv << pu has a local RN-derivative with respect to wu .
We observe that if there is a decomposition (ND) with /\ of
cardinal N1 (the smallest uncountable cardinal), u is

locally o -finite. There is then a well ordering of the sets ey

such that, for each )\0 € \ , at most countably many X\

precede \_. Thus e €S, e ~N( v e ) is null
0 A N
)\<)\O 0 )\<)\O
1
and e)\ = e)\ - e € S;. Since e)\ r‘\e)\ =0 if
0 0 >\<)\O 1 2
1
N #X_, both (D) and (ND) apply for X = W e
1 2 2 Ne A X

Thus if o, B < Ni in Example 4, p is locally o -finite.

We show how a decomposition (ND) can be used to

41 %
characterize every (L') in terms of integrals. We fixa
decomposition (ND) in Lemma 4.1, let g/\ denote a collection

of functions g)\(x), xe A where g (x) vanishes outside ex
[e¢]
i . defi N d
and is measurable. We define N (g/\ =sup, A N (g)\) an

00
denote by L the space of collections g/.\ with g/\ (g)\) < .,

N
0
It is easy to verify that I__,/\ is a vector space semi-normed
0
by N N = 0 if and only if x) =0
y /\( _A(g/\) i y if g, (x)
a.e. in N for each e A . If I:/\ is the corresponding

normed space it is easy to show that it is a Banach space.

0
We note that the space E/\
the (ND) decomposition. Where primes refer to a second

decomposition, to each e A'e A'', corresponds a countable

does not depend on the choice of

A
o0
sequence e)\i,kie A , with eM - e)\' /\(ui:1 e)\.) null.
1
Given g, let g, ={g,,(x)=sup, g)\ (%) X )\, s Ate At
Then N and N <N . Now
A,(g/\, /\(g/\) /\l(g/\, (g/\)

(g/\ -gj‘\)=0-

g/\ , determines g/\ in a similar way and N

N
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0 [¢e]
Thus N (g, ,)=N_ (g, ). Reversingthe roles of A\ , N
SA BN T TSR A

shows that L and L are isometric.

_/\ _/\ 1
1
If fel, e = {x:f(x) # 0} can be expressed as the union

of a countable collection of sets of finite measure and therefore
as the union of a null set and a countable collection ef r\e)\ s

1

x ¢ A . We define
1

gf(x) = sup. EN (x), xce e s = 0 elsewhere.
1 .

1

N i=1,2,.... We note that

Then gf(x):g)\ (x) a.e. in efr‘\e
i i

gaf(X) = gf(X) , a€ R ;

g (x) = sup{g,. (x), g, (¥},
£+, £ £

which coincides with g (x) a.e. in e i=1,2 .

i i
Theorem 4.1. For any complemented measure space
1 =%

(X,S,p1) (L) and L/\ are isometric by the correspondence
G(f) = [fg du,
(%) (6 = J g, dn

S) ] 0
with |G| = N, (g/ ). If X islocally o-finite L, =L .

00 00 )

If X 1is totally o -finite E/\ =I_Jﬁ = L

0 1
. o f, £, f ,
Proof. Let g/\ GI:/\ I £y ZEI___, o€ R and
G(f) is defined by (*) ,

Glef) = [af g, . du =af g du =aG(f) ,

f +f) = [(f +f du = [ f d
GlE, + 1)) J(1+2)gf1+f2” J5 gf1d”+j2gf2 K
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= G(f,) + G(f,) -

Thus G is linear on Ei . Since
‘ 1 0 1 0
GO] = | Jlgdu] <N (DN (g) <N (ON ) (5,)
Ge(L) and |G <N (g, ). Let a=N-(g,). Gi
. a = .
L) an SNA g/\ e NA g/\ iven

e > 0 there exists X ¢ A with N (g\)>a-¢/2 anda

measurable subset e' of ey with [g)\(x)[ >a-¢ in e'

Now fo(x) =[}.L(e')]-1xe, € I_,1 and lil_i(fo) =1 . Thus
1912 | J tgs; ol > -
Since € 1is arbitrary ”G” = No0 (g, ).
=N TN

1 sk
Conversely if Ge (L) the classical theory applied to
1
the restriction of G to L (e)\) gives the existence of

g)\(x) 3 Loo(ex) with

Glix, ) = Jfe, du. N (g ) < o] -
A

0

We let ={g (x), \e . Then N < |llcl .
gn {g, (= A} _/\(g/\)_ﬂ [
i fe Lt © ) wh is null and
€ =
) ef n \J1=1 ef me)\- where n 1S nu an
1
NeA, i=1,2, Thus
1
= " fg du =1,2,
G(fXU e ) Uné/ St ?
A 1\,
1 1

By continuity

G(f) = ffgfdp.
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0
This implies that ||G || < g/\ (g/\ ) . Since the opposite

0
inequality was established, |G| = 1_\1_/\ (g/\ ) .
If p is locally o-finite the condition that p(e)\ r\e)\t) =0
if N # \'" in the lemma can be replaced by ey ."\e)\‘ =0,
X # A' .  The collection g/\ ={g)\(x) , ¢ A} can then be
replaced by the function
glx) = = g, (x)=sup g, (¥
e A e A

0 0 00
Then g(x) is locally measurable and in L£ and :[_Jf =L/\

If u 1is totally o-finite g(x) is measurable.
1 = o0
Example 2 shows that (L ) = L  is possible when p is
not totally o-finite. We do not know if there are examples where

1 sk 0
B is not locally o-finite but (L ) =_I_J!Z .

0 0 )
Remark. L I_Jﬂ are Banach subspaces of L

A

&) 1
L is the conjugate of L  for the length function
1
determined by N . By ([2], Theorem 3.1) it is a Banach

e e}
space. We have shown above that Eﬂ is always complete.
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