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Abstract
For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H
that can be found in every two-colouring of the edges of KN. This is called the Ramsey upper density of H
and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio andMcKenney in general.
Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this
density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney.
We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our
approach relates this problem to the solution of an optimisation problem for continuous functions. We
show that, under certain conditions, the density depends only on the chromatic number ofH, the number
of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.
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1. Introduction
Let KN be the complete graph on the natural numbers. LetH be a countably infinite graph (mean-
ing that the vertex set has the same cardinality asN). Suppose that the edges ofKN are coloured red
or blue. We can find a monochromatic subgraph H′ ⊆KN isomorphic to H. For example, using
Ramsey’s Theorem, we can produce H′ by finding a bijection between V(H) and the vertices of
a monochromatic infinite clique. Out of all possible subgraphs H′, we want to find one which
maximises its density. To measure the density, we use the following definition:

Definition 1.1. Let S⊆N. We define the upper density of S (in this paper shortened to
density) as

d̄(S)= lim sup
n→∞

|S∩ [n]|
n

.

If H′ ⊆KN, we define d̄(H′)= d̄(V(H′)).
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We are interested in an extremal question: if H is a fixed graph, what is the maximum density
of H′ that we can find in every red-blue colouring of KN? We call this value the Ramsey upper
density of H.

Definition 1.2. Let H be a countably infinite graph. We define its Ramsey upper density ρ(H)
as the supremum of the values of λ for which, for every two-colouring of E(KN), there exists a
monochromatic subgraph H′ ⊆KN, isomorphic to H, with d̄(H′)≥ λ.

The study of this parameter was initiated by Erdős and Galvin [8] for the particular case H =
P∞, the one-way infinite path. They proved that 2/3≤ ρ(P∞)≤ 8/9. After some improvements
on these bounds in [6, 10], the exact value

ρ(P∞)= 12+ √
8

17
≈ 0.87226

was determined by Corsten, DeBiasio, Lamaison and Lang [4]. The parameter ρ(H) for generalH
was first introduced by DeBiasio and McKenney [6].

Our aim in this paper is to give bounds on ρ(H) for a wider family of graphs H. These results
can be found further down in the introduction, although some of the more general bounds, with a
more involved statement, are left for later. As it will turn out, three parameters play an important
role in the value of ρ(H): its chromatic number, the number of components and the expansion
properties of its independent sets.

1.1 Notation
An infinite graph is locally finite if every vertex has finite degree. The bounds that we will show in
this paper apply only to locally finite graphs H.

Given S⊆V(H), we will denote by N(S)= (∪v∈S N(v)) \ S the set of vertices outside S with a
neighbour in S. We let μ(H, n) be the minimum value of |N(I)|, where I is an independent set in
H of size n. We say that a set I is doubly independent if both I and N(I) are independent.

We say that a family {S1, S2, . . . } of subsets of V(H) is concentrated in at most k components
if there are components C1, C2, . . . , Cs of H, with s≤ k, such that all but finitely many sets Si
intersect some component Cj. We say that V(H) is concentrated in at most k components if
{{v} : v ∈V(H)} is concentrated in at most k components.

On some occasions we will use C ∈ {R, B} to designate a colour (red or blue). When this hap-
pens, C̄ will denote the other colour. In a graph G with coloured vertices, we will use CG to refer
to the set of vertices of colour C. If there is no ambiguity, we will omit the subindex G.

If F is a finite graph, we denote by ω · F the graph obtained by taking the disjoint union of a
countably infinite number of copies of F.

Finally, we define a function f (x) which will be crucial in relating the values of ρ(H) and
|N(I)|/|I|, where I is an independent or a doubly independent set of H. Unfortunately, there is
no satisfying intuition for why this particular choice of f (x), and not another, is behind the rela-
tion between these two parameters. It is interesting however that the same function f (x) arises
from the study of upper bounds and lower bounds for ρ(H).

Since the definition of f (x) is quite complicated and its comprehension is not essential to
the appreciation of our results, we encourage the reader to skip it for now. For the reading of
the introduction, knowing that such a function exists is enough. Of course, for the reading of
the proofs, the precise definition becomes necessary.

Definition 1.3. Let γ ∈ (−1, 1). For a continuous function g(x) : [0,+∞)→R, define

�+
γ (g, t)=min{x : γ x+ g(x)≥ t}, �−

γ (g, t)=min{x : γ x− g(x)≥ t},
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where we take the minimum of the empty set to be +∞. We define h(γ ) to be the infimum, over
all 1-Lipschitz1 functions g with g(0)= 0, of

h(γ )= inf
g
lim sup
t→∞

�+
γ (g, t)+ �−

γ (g, t)
t

. (1)

Define f : (0,+∞)→R as

f (λ)= 1− 1
2λ

(1+λ)2 h
(

λ−1
λ+1

)
+ 2λ

1+λ

.

We define f (0)= 1 and f (+∞)= 1/2 (by (2) below, we have lim
t→0

f (t)= 1 and lim
t→+∞ f (t)= 1/2.)

In an appendix to this paper, which can be found in the arXiv version (arXiv:2003.06329), we
prove some properties of f (x), including the following bounds:

x+ 1
2x+ 1

≤ f (x)≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x2 + 3x+ 7+ 2
√
x+ 1

4x2 + 4x+ 9
for 0≤ x< 3,

x+ 1
2x

for x≥ 3.

(2)

The upper bound is sharp for x ∈ [0, 1], and we conjecture2 that it is sharp everywhere. Observe
that f (1)= (12+ √

8)/17= ρ(P∞).

1.2 Results
We will now give a few bounds on ρ(H), some of which apply for all locally finite graphs and
some of which apply only for particular families. In many cases the specific results follow from
other results which are more general, but which have more involved statements. These will be
stated in later sections.

For locally finite graphs, knowing the chromatic number and the number of components is
enough to determine ρ(H) up to a factor of 2.

Theorem 1.4. Let H be a locally finite graph.

1. If H has infinitely many components, then ρ(H)≥ 1/2.
2. If H has finitely many components:

(a) If H has infinite chromatic number, then ρ(H)= 0.
(b) If H has finite chromatic number, then

min
{

b
2(χ(H)− 1)

,
1
2

}
≤ ρ(H)≤min

{
b

χ(H)− 1
, 1

}
,

where b is the number of infinite components of H.

This theorem answers a question in [6], which asks whether for every � there exists a constant
c> 0 such that every graph with maximum degree at most � has Ramsey upper density at least c:

Corollary 1.5. If H has maximum degree at most �, then ρ(H)≥ 1/(2�).

1A 1-Lipschitz function is a function satisfying |f (x)− f (y)| ≤ |x− y| for every x, y in the domain.
2An extended abstract for this paper, published in Acta Math. Univ. Comenianae for EUROCOMB 2019, stated this as

proved. Since then, a mistake in the proof has been found.
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Let Pk∞ be the kth power of the infinite path, that is, the graph on N in which x and y are
connected if |x− y| ≤ k. Elekes, Soukup, Soukup and Szentmiklóssy [7] showed that, in every two-
colouring of KN, the vertex set can be partitioned into at most 22k−1 monochromatic copies of Pk∞
plus a finite set, and the number of copies can be reduced to four for P2∞. DeBiasio andMcKenney
[6] pointed out that this implies ρ(P2∞)≥ 1/4 and ρ(Pk∞)≥ 21−2k. Theorem 1.4 improves the
bound for k≥ 3 to ρ(Pk∞)≥ 1/(2k).

The case 2a in Theorem 1.4 connects to a result of Corsten, DeBiasio and McKenney [5].
While we show that every locally finite graphH with finitely many components and infinite chro-
matic number has ρ(H)= 0, they show that these graphs are ‘2-Ramsey-dense’, as they call it
(see Corollary 1.7 in their paper). This property means that, in every two-colouring of E(KN),
there exists a monochromatic copy of H with positive upper density. Of course this is not a
contradiction, because there exists a sequence of colourings in which the density of the densest
monochromatic copy of H tends to 0.

While no graph H is known for which the lower bound in 2b is tight and not equal to 1/2,
the upper bound is tight in the following example. Let T be the tree formed by an infinite path
v1v2v3 . . . , in which we attach i leaves to vi for every i ∈N. Then ρ(b · T +Ka)= b/(a− 1) for
every 1≤ b< a, where b · T +Ka denotes the disjoint union of b copies of T and an a-clique. The
lower bound will follow from Theorem 3.1.

Another upper bound that applies to all locally finite graphs is related to the expansion of its
independent sets:

Theorem 1.6. Let H be a locally finite graph. Then

ρ(H)≤ f
(
lim inf
n→∞

μ(H, n)
n

)
.

There are many graphs for which the bound in Theorem 1.6 is tight. The following theorem
captures some of them.

Theorem 1.7. Let H be a locally finite forest, or a locally finite bipartite graph in which every orbit
of the automorphism group acting on V(H) has infinite size. Then

ρ(H)= f
(
lim inf
n→∞

μ(H, n)
n

)
.

This is a particular case of a more general condition on bipartite graphs that is sufficient for
Theorem 1.6 to be tight. That condition is stated later as Theorem 4.1. The following corollaries
illustrate some examples of graphs for which Theorem 1.7 applies:

Corollary 1.8. Let Tk be the infinite k-ary tree, that is, the rooted tree in which every vertex has k
children. Then ρ(Tk)= f (k).

Corollary 1.9. Let Gridd be the infinite d-dimensional grid, that is, the graph on Z
d where two

vertices are connected if they are at Euclidean distance 1. Then ρ(Gridd)= f (1)= (12+ √
8)/17≈

0.87226.

Corollary 1.10. Let F be a finite bipartite graph. Then

ρ(ω · F)= f

⎛
⎜⎝ min

I indep. in F
I �=∅

|N(I)|
|I|

⎞
⎟⎠ .

In particular, we have ρ(C2k)= f (1) for every k≥ 2, and for every 1≤ a≤ b we have
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Figure 1. Plot of the function f (x) on the interval [0, 1], and the upper and lower bounds elsewhere. The conjectured value is
given in blue.

Figure 2. Four non-bipartite graphs F for which ρ(ω · F) equals f (1), f (1), f (2) and f (3/2) respectively, with their doubly
independent sets indicated.

ρ(ω ·Ka,b)= f
(a
b

)
=

2
( a
b
)2 + 3

( a
b
) + 7+ 2

√
a
b + 1

4
( a
b
)2 + 4

( a
b
) + 9

.

In a finite bipartite graph F, there is always an independent set satisfying |N(I)| ≤ |I| (one of
the two partition classes has this), so the value of ρ(ω · F) always falls on the range in which f (x)
is known explicitly.

Finally, we will give two more lower bounds in the particular case of infinite factors ω · F. The
first one is analogous to Corollary 1.10:

Theorem 1.11. Let F be a finite connected graph, and let I ⊆V(F) be a non-empty doubly
independent set. Then ρ(ω · F)≥ f

( |N(I)|
|I|

)
.

If the independent set I ⊆V(F) that minimises |N(I)|/|I| is doubly independent, then
Theorems 1.6 and 1.11 together give the exact value for ρ(ω · F). This is always true in bipar-
tite graphs, giving another reason why Corollary 1.10 holds. Figure 2 shows four non-bipartite
graphs F for which this holds. If the graph F does not contain any non-empty doubly independent
sets (such as K3), the following lower bound can be used:

Theorem 1.12. For every finite graph F, we have

ρ(ω · F)≥ |V(F)|
2|V(F)| − α(F)

.

This theorem gives the best known lower bound for ρ(ω ·K3). Combining Theorems 1.12 with
1.6 and (2) we obtain
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3/5≤ ρ(ω ·K3)≤ f (2)≤ 21+ √
12

33
≈ 0.74133.

This paper is organised as follows: we prove the general upper bounds in Section 2, and the
general lower bounds in Section 3, besides a lemma that is instead proved in the appendix (the
bulk of this proof is a rather long series of calculations without any interesting ideas behind). In
Section 4, we discuss the application of the general bounds to particular families of graphs and
obtain the remaining results above. In Section 5 we state some open questions. In the appendix,
available in the arXiv version of the paper, we prove some properties of f (x).

2. General upper bounds
We will prove two upper bounds in this section: the first one implies the upper bound from items
2a and 2b from Theorem 1.4, while the second one is Theorem 1.6. In both cases we will construct
a colouring of E(KN) in which no dense monochromatic copy of H exists.

Theorem 2.1. Let H be a locally finite graph with chromatic number at least a, such that V(H)
is concentrated in at most b components. There exists a two-colouring of E(KN) in which every
monochromatic copy of H has density at most b/(a− 1).

Proof. Consider the colouring of E(KN) in which the edge uv is red iff a− 1 divides v− u. The
graph formed by the blue edges has chromatic number a− 1 and thus does not contain H as a
subgraph. Every monochromatic copy H′ of H in this colouring is red.

The red graph consists of a− 1 cliques C1, . . . , Ca−1, each with d̄(Ci)= 1/(a− 1). The b com-
ponents that concentrate V(H′) must be each contained in a clique Ci. Because modifying finitely
many elements does not affect the density of a set, we have d̄(H′)≤ d̄(C1 ∪ · · · ∪ Cb)= b/(a− 1).
We conclude that ρ(H)≤ b/(a− 1). �

Next we will prove Theorem 1.6. As before, the goal is to construct a two-colouring of E(KN)
without dense monochromatic copies of H.

The intuition behind the construction to prove Theorem 1.6 is as follows: suppose that we are
trying to find a red copy H′ of H. If we have a blue clique K which has fewer than k vertices
neighbouring K through some red edge, and μ(H, t)= k, then we know that fewer than t vertices
from K can be in H′, because those vertices correspond to an independent set in H. Our goal is to
find a construction that maximises the number of vertices from [n] that can be excluded from a
potential red or blue H′ using this method.

This same approach was used, in the case of the infinite path, by Erdős and Galvin [8]. The
improvement that Corsten, DeBiasio, Lamaison and Lang [4] made over their colouring came
from a two-step construction: we start with an infinite set of vertices, we first decide the colour of
the edges between them and then we choose the element of N that will correspond to each vertex.
The same two-step technique is used here.

Proof of Theorem 1.6. Denote λ = lim inf
n→∞

μ(H,n)
n . We assume that λ > 0, as otherwise the

statement becomes the trivial inequality ρ(H)≤ 1.
Let ε > 0. Let g be a 1-Lipschitz function such that the upper limit in (1) is less than h(γ )+ ε,

for γ = λ−1
λ+1 . Take an infinite set of vertices v1, v2, . . . and arrange them from left to right in this

order. Colour these vertices red and blue, in such a way that, for every n ∈N, among the n leftmost
vertices there are exactly �(n+ g(n))/2� red vertices (this is possible because g is 1-Lipschitz).
Form a two-coloured complete graph by giving each edge the colour of its leftmost endpoint.

There must be infinitely many vertices of each colour. Indeed, if there are finitely many red
vertices then the non-decreasing function x+g(x)

2 is bounded, while if there are finitely many blue
vertices the non-decreasing function x−g(x)

2 is bounded. Note that if x± g(x) is bounded, then
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γ x± g(x) has an upper bound, as γ ≤ 1. In the first case �+
γ (g, n)= +∞ for every n large enough,

while in the second case �−
γ (g, n)= +∞.

Let the red vertices be r1, r2, r3, . . . and the blue vertices be b1, b2, b3, . . . , according to the
left-to-right order. Let αi be the smallest value such that rαi has at most λ(αi − i) blue vertices to
its left, and βi the smallest value such that bβi has at most λ(βi − i) red vertices to its left. The
following discussion will not only prove the existence of αi and βi, but also give a bound on them.

For a fixed value of i, let w= 2
1+λ

(λi+ 2λ + 2). Let z+ = �+
γ (g,w) and z− = �−

γ (g,w). By
continuity of g and definition of �+

γ and �−
γ , we have

g(z+)=w− γ z+, g(z−)= γ z− −w.

One can check that the following identity holds by substution of g(z−):
z− + g(z−)

2
+ 2= λ

(
z− − g(z−)

2
− i− 2

)
.

Among the �z−� leftmost vertices there are
⌊ �z−�+g(�z−�)

2

⌋
red vertices and �z−� −⌊ �z−�+g(�z−�)

2

⌋
blue vertices. Observe that

⌊�z−� + g(�z−�)
2

⌋
≤ �z−� + g(�z−�)

2
≤ z− + g(z−)

2
< λ

(
z− − g(z−)

2
− i− 2

)

≤ λ

(
�z−� −

⌊�z−� + g(�z−�)
2

⌋
− i

)
.

If the last blue vertex among those �z−� is bτ , then the number of red vertices to its left is less
than λ(τ − i), meaning that βi ≤ τ , and in particular βi exists. Hence

βi ≤ �z−� −
⌊�z−� + g(�z−�)

2

⌋
≤ z− − g(z−)

2
+ 2= 1− γ

2
z− + w

2
+ 2.

Analogously, one has the identity

z+ − g(z+)
2

+ 2= λ

(
z+ + g(z+)

2
− i− 2

)

and the inequality

�z+� −
⌊�z+� + g(�z+�)

2

⌋
≤ λ

(⌊�z+� + g(�z+�)
2

⌋
− i

)
.

Hence we find

αi ≤
⌊�z+� + g(�z+�)

2

⌋
≤ z+ + g(z+)

2
= 1− γ

2
z+ + w

2
.

Adding the two values together, for i large enough we have

αi + βi ≤ 1− γ

2
(z+ + z−)+w+ 2≤

(
1− γ

2
h(γ )+ ε + 1

)
2λ

1+ λ
i+ o(i). (3)

Let φ :N→ {v1, v2, . . . } be an arbitrary bijection satisfying φ([αj + βj])= {r1, r2, . . . , rαj , b1,
b2, . . . , bβj} for every j. The function φ defines a colouring of E(KN), where the colour of the edge
ij is the colour of the edge φ(i)φ(j).

Let R and B be the sets of positive integers i whose image φ(i) is red or blue, respectively. Let
H′ ⊆KN be a monochromatic copy of H in this colouring. Suppose that H′ is red. Let n be a
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positive integer, and let Bn =V(H′)∩ [n]∩ B. Because the vertices of Bn form a monochromatic
blue clique in our colouring of E(KN), the set Bn must be independent in H′.

Let j be the minimum value such that φ(B∩ [n])⊆ {b1, b2, . . . , bβj}. We claim first that there
are at least (1−O(ε))j vertices in [n] which do not belong to H′. Indeed, let B′n =V(H′)∩
φ−1({b1, b2, . . . , bβj−1})⊆ Bn. From the construction of the colouring, the vertices that are con-
nected to a vertex of {b1, b2, . . . , bβj−1} through a red edge are precisely the red vertices to
the left of bβj−1 , of which there are at most λ(βj−1 − (j− 1)). This means that μ(H, |B′n|)≤
λ(βj−1 − (j− 1)). For j large enough, this implies |B′n| ≤ (1+ o(1))(βj−1 − (j− 1)), and since the
vertices in φ−1({b1, b2, . . . , bβj−1}) which are not in B′n are not in V(H′),

|[n] \V(H′)| ≥ βj−1 − |B′n| ≥ (1+ o(1))(j− 1)− o(1)βj−1.
Since βj ≤ αj + βj =O(j) by (3), the right hand side in the inequality above is (1− o(1))j.

Observe next that we cannot have βj = βj+1. This is because bβj−1, which is to the left3 of bβj ,
has more than λ((βj − 1)− j)= λ(βj − (j+ 1)) red vertices to its left. We thus have,
by minimality of j, that bβj+1 /∈ φ([n]), and by construction of φ we have φ([n])⊂
{r1, r2, . . . , rαj+1 , b1, b2, . . . , bβj+1}. This leads to the desired bound:

|V(H′)∩ [n]|
n

≤ 1− (1− o(1))j
n

≤ 1− (1− o(1))j
αj+1 + βj+1

≤ 1− 1− o(1)(
1−γ
2 h(γ )+ ε + 1

)
2λ
1+λ

which for ε small enough and n large enough can take values arbitrarily close to f (λ).
The case in which H′ is monochromatic blue is analogous. Indeed, besides the direction of the

rounding, it is equivalent to taking the function −g(x) instead of g(x). �

3. General lower bounds
In this section we will prove three lower bounds. One is item 1 from Theorem 1.4, another is the
lower bound of item 2b in the same theorem, and the final one is the following, which will be used
in the proof of Theorems 4.1 and 1.11:

Theorem 3.1. Let H be a locally finite graph, a, b, r, s be positive integers with a> b, and
� :V(H)→ [a] be a proper colouring. Suppose that there exists an infinitely family of pairwise
disjoint doubly independent sets I1, I2, . . . in H, not concentrated in fewer than b components and
each Ii contained in a single component of H, such that |Ii| = r, |N(Ii)| ≤ s and �(v)= a for all
v ∈N(Ii). Then

ρ(H)≥ b
a− 1

f
( s
r

)
.

As an example of a graph whose Ramsey density can be computed from Theorem 3.1, but not
from the other lower bounds mentioned in this paper, let H = b · T +Ka be the graph described
shortly before the statement of Theorem 1.6. We can define a proper colouring � :V(H)→ [a]
in which the vertices of Ka all receive different colours, and the trees T are properly two-coloured
with colours {1, a}. Then for every r ∈N there exist infinitely many pairwise disjoint independent
sets I, in every T-component, where N(I) is a single vertex with colour a (just take r leaves of
a vertex with label greater than r and colour a). Theorem 3.1 then tells us that ρ(b · T +Ka)≥
b

a−1 f
(
r−1) for all r ∈N, and so ρ(b · T +Ka)≥ b

a−1 . We will have equality here, as this matches
the upper bound from Theorem 1.42b.

Another example is the graph 2 · P∞ +K3 (disjoint union of two infinite paths and a trian-
gle). The graph can be properly coloured with colours {1, 2, 3} in a way that both paths use only

3We cannot have βj = 1 for j≥ 2, because then b1 would have at most λ(1− j)< 0 red vertices to its left.
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colours {1, 3}. Then for every r, each P∞-component contains infinitely many pairwise disjoint
independent sets I with |I| = r, |N(I)| = r + 1 and N(I) being monochromatic in colour 3 (just
take r consecutive vertices receiving colour 1). By Theorem 3.1, we have ρ(2 · P∞ +K3)≥ f

( r+1
r

)
and, by continuity of f (x), we have ρ(2 · P∞ +K3)≥ f (1), which matches the upper bound from
Theorem 1.6.

However, for every graph for which we know that Theorem 3.1 produces the correct lower
bound, we either have a− 1= b or s/r → 0, as in the two examples above.

We start with the proof of Theorem 1.41. This result follows easily from the infinite version of
Ramsey’s theorem:

Proof of Theorem 1.41. Let χ : E(KN)→ {R, B} be an edge-colouring. Let F be an inclusion-
maximal family of pairwise disjoint monochromatic infinite cliques in χ . Then N \V(F) is finite,
because otherwise by Ramsey’s theorem there would be an infinite monochromatic clique in χ

restricted toN \V(F), contradicting themaximality ofF . LetFR andFB be the families of red and
blue cliques in F . Since d̄(V(FR)∪V(FB))= 1, we have max{d̄(V(FR)), d̄(V(FB))} ≥ 1/2. Wlog
assume d̄(FR))≥ 1/2.We can suppose thatFR contains infinitely many cliques, because otherwise
we can take one clique K ∈FR and divide it into infinitely many infinite cliques. Let K1,K2, . . . ,
be the cliques in FR. We can partition the vertex set of H into infinitely many parts S1, S2, . . . ,
each of which is made up of infinitely many components of H. Now take any � :V(H)→V(KN)
which is a bijection from each Si to each Ki. The image of H is a monochromatic graph H′ and
d̄(V(H′))= d̄(FR)≥ 1/2. �

The proofs of Theorems 1.42b and 3.1 will both be (partially) algorithmic: given a colouring
χ : E(KN)→ {R, B}, we will define an algorithm that constructs a dense monochromatic copy of
H. The algorithms will be similar, so we will first prove Theorem 3.1 and then explain how to
adapt the proof to Theorem 1.42b.

Let H, a, b, r, s,� be as in Theorem 3.1, and let χ : E(KN)→ {R, B}. Our goal is to find a copy
ofH in KN with density at least b/(a− 1)f (s/r). In order to find such a copy ofH, it will be helpful
to also colour the vertices of KN, in a way that encodes information about how the vertices are
connected through red or blue edges. The following colouring is a variant of one used in [7].

We denote by NC(v) the set of vertices connected to v through an edge of colour C. When C is
a colour that is either red or blue, we denote the other colour by C̄.

Definition 3.2. Let χ : E(KN)→ {R, B} be a colouring, and let a be a positive integer. An a-good
colouring of V(KN) is a partition N= ∪a

i=1(Ri ∪ Bi)∪ X into 2a+ 1 classes (some of which might
be empty), where X is finite, with the following properties:

• For every colour C ∈ {R, B}, every 1≤ i≤ a− 1 and every nonempty finite subset S⊆ Ci,
the set (∩v∈S NC(v))∩ Ci is infinite.

• For every colour C ∈ {R, B}, every 1≤ i≤ a− 1 and every nonempty finite subset S⊆ Ca ∪
(∪a−1

j=i+1 C̄j), the set (∩v∈S NC(v))∩ C̄i is infinite.

The colouring from [7] is constructed using ultrafilters. We define ours algorithmically, even
though ultrafilters would have worked just as well, in order tomake the properties of this colouring
more intuitive and, in the process, avoiding an appeal to the axiom of choice.

We call each class Ri a shade of red and each class Bi a shade of blue. X can be seen as a residual
set, which can be removed without affecting the density of the graph. The choice of a is related to
the chromatic number of themonochromatic subgraphs that we can find in this graph. Indeed, say
that we want to find a red clique of size a containing v ∈ Ri. If i≤ a− 1, then we can set v= v1 and
then iteratively select v2, v3, . . . , va ∈ Ri, each adjacent to the previous ones through a red edge. If
i= a, we can set v= va and then iteratively select va−1, va−2, . . . , v1, with vj ∈ Bj, each adjacent to
the previous ones through a red edge.

https://doi.org/10.1017/S0963548323000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000093


712 A. Lamaison

We denote by KC
r,s a complete bipartite graph in which all edges have colour C, all vertices in

the part of size s have colour C and all vertices in the part of size r have colour C̄. These subgraphs
will be used to embed the sets Ii ∪N(Ii) in our coloured graph.

The proof of Theorem 3.1 will have three main steps, which are captured by these lemmas:

Lemma 3.3. Let χ : E(KN)→ {R, B} be a colouring, and let a be a positive integer. There exists an
a-good colouring in which at least two of (Ra ∪ Ba−1), (Ba ∪ Ra−1) and X are empty.

Lemma 3.4. Let χ : E(KN)∪V(KN)→ {R, B} be a colouring, and let r, s be positive integers. There
exists a colour C and a subgraph W ⊆KN, with d̄(W)≥ f (s/r), in which every component is either
an isolated vertex with colour C, or a KC

r,s. Furthermore, if V(KN) is further subdivided into finitely
many shades, then W can be taken in such a way that each KC

r,s only uses one shade of each colour.

Lemma 3.5. Let χ : E(KN)→ {R, B} be an edge-colouring, let a≥ a′ ≥ b be positive integers. Let
N→ {R1, . . . , Ra, B1, . . . , Ba, X} be an a-good colouring in which at most a′ shades of each colour
are non-empty. Let W ⊆KN be a subgraph in which every component is either an isolated vertex
with colour C, or a KC

r,s which uses only one shade of each colour. Let H be a graph satisfying the
conditions of Theorem 3.1 for some positive integers r and s (except possibly a> b). Then there exists
a monochromatic H′ ⊆KN of colour C, H′ �H, with d̄(H′)≥ b/a′d̄(W).

It is straightforward to combine these three lemmas to deduce Theorem 3.1:

Proof of Theorem 3.1. Let χ : E(KN) be given. Apply Lemma 3.3 to this edge-colouring to obtain
an a-good colouring where at most a− 1 shades of each colour are non-empty. Assign the colour
red to the vertices in X. Apply Lemma 3.4 to obtain C and W. Remove from W every compo-
nent which uses a vertex of X (this does not affect d̄(W) because it only removes finitely many
vertices). By Lemma 3.5, we can find a monochromatic H′ ⊆KN with d̄(H′)≥ b/(a− 1)d̄(W)≥
b/(a− 1)f (s/r). �
Proof of Lemma 3.3. For each vertex v, we will denote by c(v) and s(v) the colour and the shade
that we assign to it, respectively. The colour assigned to a vertex might change while the algorithm
is running, but the shade of each vertex is final once assigned and it will match the colour that the
vertex has at that time.

At some points, the shade assigning algorithm will call the basic colouring algorithm to colour
an infinite set V = {v1, v2, . . . } of vertices. We will first describe this algorithm.

Basic colouring algorithm: First, the colour c(v1) is assigned, satisfying that Nc(v1)(v1)∩V
is infinite. Once the colours of v1, . . . , vn−1 have been assigned, assuming by induction that
(∩n−1

i=1 Nc(vi)(vi))∩V is infinite, the colour c(vn) is chosen so that (∩n
i=1 Nc(vi)(vi))∩V is infinite.

The colouring produced satisfies that (∩n
i=1 Nc(vi)(vi))∩V is infinite for every n. We say that

a colour C is dominant in this colouring if, for every n, (∩n
i=1 Nc(vi)(vi))∩V contains infinitely

many vertices v with c(v)= C. Observe that at least one of the colours is dominant.
Now we define the shade assigning algorithm:

1. For every v ∈N, start with c(v) and s(v) unassigned.
2. If finitely many vertices v remain with s(v) unassigned, assign s(v)= X and END.
3. Let V be the set of vertices without a shade. Colour V with the basic colouring algorithm.

Choose a colour C that is dominant. Let i be the minimum value such that Ci is empty. For
every v ∈V with c(v)= C, set s(v)= Ci.

4. If i= a− 1, set s(v)= C̄a for every v ∈V with c(v)= C̄ and END. If i �= a− 1, return to
Step 2.

https://doi.org/10.1017/S0963548323000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000093


Combinatorics, Probability and Computing 713

The algorithm runs the loop 2–4 at most 2a− 3 times before ending. Whenever a set Ci with
i≤ a− 1 is defined, the colour C is dominant in the corresponding colouring, meaning that in
particular (∩v∈S NC(v))∩ Ci is infinite for every finite non-empty S⊆ Ci, as it is a superset of
the colour C vertices of (∩n

i=1 Nc(vi)(vi))∩V for n large enough. For the same reason, for any
finite subset S of vertices whose shade is not assigned when Ci is defined, we have that (∩v∈S
NC̄(v))∩ Ci is infinite. If Ca is defined at some point in the algorithm (namely at the end), then
C̄1, C̄2, . . . , C̄a−1, Ca are defined in this order. This proves that the colouring that we obtained is
a-good.

To conclude the proof of Lemma 3.3, simply observe that X is nonempty only if the algorithm
terminates at Step 2, the set (Ra ∪ Ba−1) is nonempty only if the algorithm terminates at Step 4
with C = B and (Ba ∪ Ra−1) is nonempty only if the algorithm terminates at Step 4 with C = R.�

The proof of Lemma 3.4 divides KN into infinitely many finite graphs and then combines the
regularity lemma and a max flow/min cut argument, to reduce the problem to an optimisation
problem equivalent to (1). We will now state the lemmas that we will need for this:

Lemma 3.6 (Regularity Lemma [9]). For every ε > 0 and m0, � ≥ 1 there exists M =M(ε,m0, �)
such that the following holds. Let G be a graph on n≥M vertices whose edges are coloured in red and
blue and let d > 0. Let {Wi}i∈[�] be a partition of V(G). Then there exists a partition {V0, . . . ,Vm}
of V(G) and a subgraph H of G with vertex set V(G) \V0 such that the following holds:

1. m0 ≤m≤M;
2. {Vi}i∈[m] refines {Wi ∩V(H)}i∈[�];
3. |V0| ≤ εn and |V1| = · · · = |Vm| ≤ �εn�;
4. degH (v)≥ degG (v)− (d + ε)n for each v ∈V(G) \V0;
5. H[Vi] has no edges for i ∈ [m];
6. all pairs (Vi,Vj) are ε-regular and with density either 0 or at least d in each colour in H.

The max flow-min cut result that we will use can be seen as a weighted version of König’s
Theorem:

Lemma 3.7. Let G be a finite bipartite graph on V = (X, Y), and let r, s be positive integers. There
exists a unique value of D for which both of these exist:

• A function h : E(G)→N∪ {0} such that
∑

e�v h(e)≤ r if v ∈ X,
∑

e�v h(e)≤ s if v ∈ Y and∑
e∈E(G) h(e)=D.

• A vertex cover Z of G such that r|Z ∩ X| + s|Z ∩ Y| =D.

Proof. Take an orientation of every edge inG fromX to Y and give it an infinite capacity. Connect
every vertex in X to a source σ through an edge with capacity r, and every vertex in y to a sink τ

through an edge with capacity s. Let D be the maximum flow in this network. D is the maximum
value for which a function h as in the statement exists (by the integrality theorem, there exists
a maximum flow in which the flow of every edge is an integer). D is also the minimum value
for which a cut (C1, C2) with σ ∈ C1 and τ ∈ C2 exists. Observe that (C1, C2) is a cut with finite
capacity iff (C2 ∩ X)∪ (C1 ∩ Y) is a vertex cover of G, in which case the capacity of the cut is
r|C2 ∩ X| + s|C1 ∩ Y|. Our lemma follows from the Ford–Fulkerson theorem. �

The next lemma that we will introduce requires the definition of two parameters, which up to a
change of coordinates are equivalent to �+

γ and �−
γ . The change of coordinates is a rotation of the

axes by 45 degrees, in the following sense: if we denote the 1-Lipschitz function fromDefinition 1.3
as g and the non-decreasing function below as g′, then the point (x, y) is in the graph of g′ if and
only if (x+ y, x− y) is in the graph of g.
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Definition 3.8. Let g : [0,+∞)→ [0,+∞) be a continuous, non-decreasing function. Let λ, t be
positive real numbers. We define the following two parameters:

�+
λ (g, t)=min

{
x : g(λx)− x≥ t

}
, �−

λ (g, t)=min
{
x : x− g(x)

λ
≥ t

}
,

where we take the minimum of the empty set to be +∞.

Lemma 3.9. For λ, ε > 0 there exists γ > 0 with the following property: for every non-decreasing
continuous function g : [0,+∞)→ [0,+∞)with g(0)= 0 and every m> 0 there exists t ∈ [γm,m]
such that

�+
λ (g, t)+ �−

λ (g, t)
t

≥ f (λ)
1− f (λ)

− ε.

The proof of Lemma 3.9 can be found in the appendix. Combining Lemmas 3.7 and 3.9, we can
obtain the following:

Lemma 3.10. For every ε, r, s> 0 there exists γ , η > 0 and N for which the following hold: for every
graph G on [n], with n>N and δ(G)≥ (1− η)n, and for every total colouring χ :V(G)∪ E(G)→
{R, B}, there exists t ∈ [γ n, n], a colour C, and h : E(G)→N∪ {0}, such that the following hold:

• For every edge e= uv, if h(e)> 0 then χ(e)= C and χ(u) �= χ(v).
•

∑
e�v

h(e)≤ r for every v with χ(v)= C and
∑
e�v

h(e)≤ s for every v with χ(v)= C̄.

• |C∩[t]|
t +

∑
v∈(C̄∩[t])

∑
e�v h(e)

st ≥ f (s/r)− ε.

Proof. Let λ = s/r. Our constants will follow the hierarchy

η,N−1 � γ � κ � ξ � ε, λ.

That is, after ε and λ are given we pick ξ small enough, after fixing ξ we pick κ small enough, and
so on.

For every red vertex v, we define its blue degree dB(v) as the number of blue vertices w such
that vw is blue. Let v1, v2, . . . , v|R| be the set of red vertices, sorted from smallest to largest blue
degree, and let di = dB(vi). Define additionally d0 = 0 and dk = d|R| for k> |R|. Let g : [0,+∞)→
[0,+∞) be the function that satisfies g(k)= dk for every integer k and which is linear between
every pair of consecutive integers.

By Lemma 3.9 there exists τ ∈ [γ n, κn] for which �+
λ (g,τ )+�−

λ (g,τ )
τ

≥ f (λ)
1−f (λ) − ξ . Adding 1 on

each side of the expression, �+
λ (g,τ )+�−

λ (g,τ )+τ

τ
≥ 1

1−f (λ) − ξ . Let t =
(

1
1−f (λ) − ξ

)
τ . Then, since

t ≤ �+
λ (g, τ )+ �−

λ (g, τ )+ τ , we have either |R∩ [t]| < �−
λ (g, τ ) or |B∩ [t]| ≤ �+

λ (g, τ )+ τ . We
consider both cases, in the former we will have C = B and in the latter (mostly) C = R:

Case 1: |R∩ [t]| < �−(g, τ ). Let R′ = R∩ [t]. Let G′ be the graph of blue edges in G between
R′ and B. Let h, Z and D be as in Lemma 3.7 applied to G′, with X = B and Y = R′. Suppose
that D≤ s(|R′| − τ ). Every vertex v ∈ R′ \ Z must have all its blue neighbours in B∩ Z, and so
dB(v)≤ |B∩ Z|. Therefore

d|R′|−|Z∩R′| ≤ |Z ∩ B| = D− s|Z ∩ R′|
r

≤ s
r
(|R′| − |Z ∩ R′| − τ ).

Setting x= |R′| − |Z ∩ R′|, this expression rearranges to x− g(x)
λ

≥ τ , so by definition of �−
λ this

means that x≥ �−
λ (g, τ ). But this is a contradiction, because x≤ |R′| < �−

λ (g, τ ). This means that
we have D> s(|R′| − τ ), and
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|B∩ [t]|
t

+ D
st

≥ t − |R′|
t

+ s(|R′| − τ )
st

= 1− τ

t
= 1− 1

1
1−f (λ) − ξ

≥ f (λ)− ε.

Case 2: |B∩ [t]| ≤ �+(g, τ )+ τ . Let B′ = B∩ [t]. Let G′ be the graph of red edges between R
and B′. Let h, Z and D be as in Lemma 3.7 applied to G′, with X = R and Y = B′. Suppose that
D< s(|B′| − τ − ηn− 1

λ
). Every edge between R \ Z and B′ \ Z is blue. Every vertex v has at most

ηn vertices to which it is not connected, and so dB(v)≥ |B′ \ Z| − ηn for all v ∈ R \ Z.
If R \ Z is empty, then r|R| ≤D≤ s|B′| ≤ st ≤ s τ

1−f (λ) ≤ s κ
1−f (λ)n. This leads to |R| ≤

κs
r(1−f (λ))n≤ (1− f (λ))n and |B| ≥ f (λ)n. In this case we can take t′ = n, h= 0 and C = B for
Lemma 3.10. Thus we can assume that R \ Z is not empty, and so d|R∩Z|+1 ≥ |B′ \ Z| − ηn.

d|R∩Z|+1 ≥ |B′| − |B′ ∩ Z| − ηn≥ |B′| − D− r|R∩ Z|
s

− ηn

= s|B′| −D
s

+ 1
λ
|R∩ Z| − ηn≥ τ + ηn+ 1

λ
+ 1

λ
|R∩ Z| − ηn

≥ τ + 1
λ
(|R∩ Z| + 1).

Setting x= 1
λ
(|R∩ Z| + 1), this expression rearranges to g(λx)− x≥ τ , so by definition of �+

λ

this means that x≥ �+
λ (g, τ ). On the other hand, x= |R∩Z|+1

λ
≤ D

s + 1
λ

< |B′| − τ − ηn− 1
λ

+ 1
λ

<

|B′| − τ ≤ �+
λ (g, τ ), which is a contradiction. This means that we have D≥ s(|B′| − τ − ηn− 1

λ
),

and
|R∩ [t]|

t
+ D

st
≥ t − |B′|

t
+ s(|B′| − τ − ηn− 1

λ
)

st
≥ 1− τ

t
− η

γ
− 1

λγN
≥ f (λ)− ε.

�
To prove Lemma 3.4, we apply the regularity lemma to the graph and use Lemma 3.10. We

also use the fact that, by the Kővári-Sós-Turán theorem, every large enough dense bipartite graph
contains a large complete bipartite subgraph:

Proof of Lemma 3.4. Let λ = s/r. We first claim that, for every ε > 0, there exists γ (ε)> 0 and
N(ε) such that, for every n>N, there exist t ∈ [γ n, n], a colour C and a subgraph F ⊆KN con-
tained in [n] in which every component is either an isolated vertex of colour C or a KC

r,s using only
a shade of each colour, with

|V(F)∩ [t]|
t

≥ f (λ)− ε.

Let a be the total number of shades (from both colours). Our constants will follow the
hierarchy

N−1 �M−1 � ρ � δ � ζ � γ , η � ε, r−1, s−1, a−1.
Let G be the restriction of our colouring to [n]. Take a partition of [n] into � = a�ρ−1� parts

{Z1, . . . , Z�}, such that each Zi is contained in one shade, and max Zi −min Zi < ρn. Applying
Lemma 3.6 to G with d = 2δ, we find a subgraph H ⊆G and a partition [n]= {V0,V1, . . . ,Vm},
with � ≤m≤M, as in the statement of Lemma 3.6, replacing ε with δ.

We suppose that the labelling of the parts is such that minV1 <minV2 < · · · <minVm. We
define an auxilliary graph H′ as follows: the vertex set is [m]. The colour of every vertex i is the
same as the colour of each of its vertices in G. Between any two vertices ij, we draw an edge if the
bipartite graph ViVj is nonempty in H, and we colour it in the most dense colour in ViVj.

Let y= |V1| = · · · = |Vm|. Then (1−δ)n
m ≤ y≤ n

m . The minimum degree in H′ is at least (1−
η)m. Indeed, given i and v ∈Vi, we have dH′(i)≥ dH(v)−δn

y ≥ dG(v)−4δn
y ≥ (1− 4δ

1−δ
)m> (1− η)m.

https://doi.org/10.1017/S0963548323000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000093


716 A. Lamaison

Apply Lemma 3.10 toH′, with parameters ε/2, r, s to obtain a colour C, a function h : E(H′)→
N and a value τ ∈ [γm,m] as in the statement of Lemma 3.10, replacing t with τ . Subdivide each
Vi with colour C into r parts Vi,1, . . . ,Vi,r , each of size at least �y/r� and each Vi with colour C̄
into s parts Vi,1, . . . ,Vi,s, each of size at least �y/s�. Construct a matchingM of pairs (Vi,k,Vj,k′),
where for any fixed values of i and j, the number of pairs (Vi,k,Vj,k′) inM is h(ij).

Within each pair (Vi,k,Vj,k′), where Vi has colour C and Vj has colour C̄, find a maximum
family Fi,k,j,k′ of disjoint copies of KC

r,s. Since N �M, δ−1, r, s, and therefore δy� r, s, then
min{|Vi,k \V(Fi,k,j,k′)|, |Vj,k′ \V(Fi,k,j,k′)|} < δy. That is because otherwise the bipartite graph
between Vi,k \V(Fi,k,j,k′) and Vj,k′ \V(Fi,k,j,k′) would have density at least δ in the edges of colour
C, and for δy large enough this implies the existence of a copy of KC

r,s, which would contradict the
maximality of Fi,k,j,k′ .

Let F be the union of all families Fi,k,j,k′ . Let t =minVτ . We will now bound |(V(F )∪C)∩[t]|
t .

If v≥ t + ρn, and v ∈Vi with i �= 0, then minVi >maxVi − ρn≥ v− ρn≥ t =minVτ , and thus
i> τ . This means that |(∪τ

i=1 Vi) \ [t]| ≤ ρn, and t ≥ τy− ρn≥ (1−δ)τn
m − ρn. On the other hand,

if v≤ t then either v ∈V0 or v ∈Vi with minVi ≤ v≤ t =minVτ , and thus i≤ τ . This implies
that t ≤ ∑τ

i=0 |Vi| ≤ δn+ τy≤ δn+ τn
m .

Every Vi with colour C and i ∈ [τ ] will trivially be contained in (V(F)∪ C)∩ (∪τ
i=1 Vi). For

any Vi with colour C̄ and i ∈ [τ ], there are
∑

e�i h(e) parts Vi,k which are paired up with a
different part Vj,k′ . We either have |Vi,k \V(F)| ≤ δy or |Vj,k′ \V(F)| ≤ δy. In the first case,
|Vi,k ∩V(F)| ≥ �y/s� − δy≥ (1/s− 1/y− δ)y. In the second case, |Vj,k′ ∩V(F)| ≥ �y/r� − δy≥
(1/r − 1/y− δ)y. But F is a family of copies of Kr,s, so |Vi,k ∩V(F)| = r

s |Vj,k′ ∩V(F)| ≥ (1/s−
λ−1(1/y+ δ))y. In either case we have |Vi,k ∩V(F)| ≥ (1− ζ )y/s.

Putting our bounds together:
|(V(F)∪ CG)∩ [t]|

t
≥ |(V(F)∪ CG)∩ (∪τ

i=1 Vi)| − ρn
t

≥ y|CH′ ∩ [τ ]|
t

+ (1− ζ )
y
s

∑
v∈(C̄

H′∩[τ ])
∑

e�v h(e)

t
− ρn

t

≥ (1− ζ )
τy
t

⎛
⎝ |CH′ ∩ [τ ]|

τ
+

∑
v∈(C̄

H′∩[τ ])
∑

e�v h(e)

sτ

⎞
⎠ − ρn

t

≥ (1− ζ )
τy
t

(
f (λ)− ε

2

)
− ρ

τ (1−δ)
m − ρ

≥ (1− ζ )
τy

δn+ τy

(
f (λ)− ε

2

)
− ρ

γ (1− δ)− ρ

≥ (1− ζ )
1

1+ δ n
my

m
τ

(
f (λ)− ε

2

)
− ε

4

≥ (1− ζ )
1

1+ δ
(1−δ)γ

(
f (λ)− ε

2

)
− ε

4

≥ f (λ)− ε.

To conclude the proof of our initial claim, notice that t ≥
(
(1−δ)τ

m − ρ
)
n≥ ((1− δ)γ − ρ)n≥

γ ′n for a constant γ ′ > 0.
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We are now ready to construct W. Take a sequence f (s/r)> ε1 > ε2 > · · · > 0 with εi → 0.
Start by applying the claimwith ε = ε1 and n1 =N(ε) to obtain a subgraphF1 with colourC1 with
density at least f (s/r)− ε1 in [t1]. Now proceed by induction and set ni =max{N(εi/2), 2ni−1(r +
s)/(εiγ (εi/2))}. Applying the claim with ε = εi/2 we find a subgraph Fi′ with colour Ci contained
in [ni] and with density at least f (s/r)− εi/2 in [ti], for some ti ∈ [γ (ε)ni, ni]. Remove fromFi′ all
components that intersect [ni−1] (this represents at most ni−1(r + s) vertices) to obtain Fi. Then
Fi is disjoint from all previous Fj, and by the choice of ni, it still has density at least f (s/r)− εi
in [ti].

Select a colourC such thatCi = C for infinitelymany i. LetW = ∪Ci=CFi. Then by construction
d̄(W)≥ f (s/r), since the ti tend to infinity, and the components ofW are isolated vertices of colour
C or KC

r,s. This concludes the proof of Lemma 3.4. �
Finally, we prove Lemma 3.5 by defining an algorithm that constructs a monochromatic H′.

This algorithm uses enough components fromW (mapping to them either single vertices of H or
sets Ii ∪N(Ii)) to keep a fraction of its density and takes advantage of the properties of the a-good
colouring to map the remaining vertices of H.

Proof of Lemma 3.5.Without loss of generality, assume that C is red, let Sj denote the vertices in
W of shade Rj, plus the blue vertices contained in a copy of KR

r,s in W in which the red side has
shade Rj. Removing from W the finite sets Sj does not affect its density, so suppose that each
Sj is either empty or infinite. We will show that there exists a set J ⊆ [a], of size b, such that
d̄(∪j∈J Sj)≥ b/a′d̄(W).

By definition of density, there exists a sequence n1 < n2 < . . . of positive integers such that
|V(W)∩ [ni]|/ni → d̄(W). For each i there exists a subset Ji ⊆ [a] of b indices such that

|(∪j∈Ji Sj)∩ [ni]|
ni

≥ b
a′

|V(W)∩ [ni]|
ni

.

For infinitely many i, the set Ji is the same, which we denote J. By taking an appropriate sub-
sequence of n1, n2, . . . , we can suppose without loss of generality that Ji = J for all i and that
ni+1/ni → ∞. Let Fi be the union of components fromW contained in some Sj with j ∈ J, which
contain a vertex from [ni] but no vertex from [ni−1]. Let I = {I1, I2, . . . } be the family of dou-
bly independent sets. We can suppose that the elements in I are such that the sets Ii ∪N(Ii) are
pairwise disjoint. Indeed, because H is locally finite, each Ii ∪N(Ii) intersects finitely many sets
Ij ∪N(Ij), so we can find an infinite subfamily I ′ by including in it only the sets Ii such that
Ii ∪N(Ii) does not intersect a set Ij ∪N(Ij) for some j< i with Ij ∈ I ′. This does not change the
components in which I is concentrated.

Let J′ ⊆ J be the set of indices in j for which Sj is non-empty. We assign to each component
C ⊆H a number κ(C) ∈ J′, in such a way that for every j ∈ J′ there are infinitely many sets Ii in
components with κ(C)= j. Indeed, if finitely many components intersect I , there are at least b
components that contain infinitely many elements of I , so give different values of κ(C) to |J′| ≤ b
of them, whereas if there are infinitely many components that intersect I , we can assign each value
of J′ to infinitely many of them. The purpose of κ(C) will be to identify the shade of red to be used
in the vertices while embedding C in the red edges of χ .

We will define an injective graph homomorphism � :H →KN which maps edges to red edges,
whose image contains Fi for infinitely many i. This is enough to prove Theorem 3.1, because for
infinitely many large enough values of i we have

|�(V(H))∩ [ni]|
ni

≥|V(Fi)∩ [ni]|
ni

≥ b
a′

|V(W)∩ [ni]|
ni

− (r + s)ni−1
ni

≥ b
a′ d̄(W)− o(1).
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We will define � in steps. Recall that � here denotes the proper vertex colouring of H from
Theorem 3.1. On every step, we will define the image of finitely many vertices of H. After every
step, the following conditions must hold. Let u, v be two adjacent vertices in some component C
of H, such that �(v) is defined and �(u) is not. Then:

• If κ(C) �= a, then �(v) ∈ Rκ(C).
• If κ(C)= a and �(v)= a, then �(v) ∈ Ra.
• If κ(C)= a and �(v) �= a, then �(v) ∈ B�(v) and �(u)< �(v).

The algorithm will consist of two operations that alternate: defining the image of a vertex v ∈
V(H) and adding some Fi to the image of �. If we identify V(H) with N and always apply the
first operation to the least vertex v with undefined �(v), at the end of the algorithm �(v) will be
defined for every vertex in V(H).

Define the image of a vertex v ∈V(H): Suppose first that v ∈ C and κ(C)= k �= a. Let w1, . . . ,wq
be the neighbours of v which have �(wi) defined. By our invariant, the vertices �(wi) all have
shade Rk, and therefore there are infinitely many vertices x in shade Rk which are connected to
every �(wi) through a red edge. Select one such x which is not yet in the image of � and set
�(v)= x.

Now suppose that κ(C)= a. Let �(v)= k. For every edge uw of H, define an orientation −→uw
such that �(u)< �(w). Let T be the set of vertices that can be reached from v in this orientation.
Because T is connected, does not contain a path of length greater than a, and the degree of every
vertex is finite, T is finite. Also, T does not have an oriented cycle. Observe that, by our invariant,
if −→uw is an edge and �(u) is defined, then �(w) is defined.

Now define �(w) for every w ∈ T for which the image is still undefined, in decreasing order
of �(w). If �(w)= a, choose an arbitrary vertex x ∈ Ra which is not yet the image of any vertex
and set �(w)= x. If �(w)= k< a, then for every w′ ∈N+(w) the image �(w′) is defined and in
Bk+1 ∪ · · · ∪ Ba−1 ∪ Ra. By the properties of a-good colourings, there are infinitely many vertices4
x ∈ Bk which are connected to every �(w′) through a red edge. Choose one which is not yet in the
image of � and set �(w)= x.

Add some set Fi to the image: Select some Fi which is so far disjoint with the image of �. For
each KR

r,s component Z ⊆Fi ∩ Sj, choose a doubly independent set I ∈ I in a component C with
κ(C)= j, such that no vertex from I ∪N(I)∪N(N(I)) has a defined image. If V(Z)= X ∪ Y with
|X| = r blue and |Y| = s red, then set � to be bijective from I to X, and injective from N(I) to Y .
The vertices v of Fi ∩ Sj that remain outside of the image at this point all have shade Rj. For each
of them, choose a vertex w with �(w)= a in a component C with κ(C)= j (there are infinitely
many of these vertices), such that no vertex in w∪N(w) has a defined image and set �(w)= v.
After doing this for every isolated vertex in Fi ∩ Sj for every j ∈ J′, the set Fi is contained in the
image.

After both steps are applied alternatingly infinitely many times, the image of � is a
monochromatic red graph H′ ⊆KN which contains infinitely many sets Fi, and therefore
d̄(H′)≥ b/a′d̄(W). �

To prove the lower bound of Theorem 1.42b, we just need the following variant of Lemma 3.5.
The proof is then analogous to the proof of Theorem 3.1, except we bypass completely the use of
Lemma 3.4, and we only need that in the a-good colouring we have max{d̄(R), d̄(B)} ≥ 1/2.

Lemma 3.11. Let χ : E(KN)→ {R, B} be an edge-colouring, let a≥ a′ ≥ b be positive integers.
Let N→ {R1, . . . , Ra, B1, . . . , Ba, X} be an a-good colouring in which at most a′ shades of each
colour are non-empty. Let C ∈ {R, B}. Let H be a graph with chromatic number a and at least

4If N+(w) is empty, how do we know that Bk is infinite? Because κ(C)= a, we know that Ra is not empty. By the properties
of a-good colourings, every vertex y ∈ Ra has infinitely many red neighbours in Bk, and in particular Bk is infinite.
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b infinite components. Then there exists a monochromatic H′ ⊆KN of colour C, H′ �H, with
d̄(H′)≥ b/a′d̄(C).
Proof. Let � :V(H)→ [a] be a proper colouring, in which in every component of H the most
common colour is a.Without loss of generality suppose thatC is red. As in the proof of Lemma 3.5,
there exists J′ with |J′| ≤ b, such that d̄(∪j∈J′ Rj)≥ b/a′, and all Rj with j ∈ J′ are infinite. Let F =
∪j∈J′Rj. Define a function κ from the components of H to J′ for which the pre-image of every
value contains infinitely many vertices. The algorithm now alternates between define the image
of a vertex v ∈V(H), as above, and add a vertex of Fto the image. At the end of the procedure,
we obtain a red H′ ⊆KN isomorphic to H which contains F and thus has density at least d̄(F)≥
b/a′d̄(R).

Add a vertex ofF to the image: Let v ∈F be a vertex in Rj. Choose a vertex w in a component
C with κ(C)= j, such that no vertex in w∪N(w) has a defined image and with �(w)= a and set
�(w)= v. �

4. Bounds for particular families of graphs
The goal of this section is to prove the remaining results from Section 1. We will start by stating
and proving the more general result for bipartite graphs, which will be used to imply Theorem 1.7.

Theorem 4.1. Let H be a locally finite bipartite graph, and let λ = lim infn→∞ μ(H,n)
n . Suppose that

for every λ′ > λ there exist infinitely many pairwise disjoint independent sets I1, I2, . . . , all of the
same (finite) size, with |N(Ii)||Ii| ≤ λ′. Then ρ(H)= f (λ).

Proof. The upper bound follows from Theorem 1.6. We will show that, for every ε > 0, we have
ρ(H)≥ f (λ)− ε. Our goal is to show that H satisfies the condition of Theorem 3.1 for a= 2,
b= 1, a certain colouring � and some doubly independent sets I′i. Let � :V(H)→ {1, 2} be a
proper colouring. Choose λ′ > λ such that f (λ′)> f (λ)− ε (it exists by continuity of f ). There
exist infinitely many pairwise disjoint independent sets Ii, all with the same size, such that |N(Ii)||Ii| ≤
λ′ (by the condition from the statement). Partition each set Ii into non-empty sets Ii,1, . . . , Ii,ki ,
where each vertex v is classified according to its colour by � and the component it belongs to. If
two vertices v,w have a common neighbour, then they are in the same component and �(u)=
�(v). For this reason, |N(Ii)| = ∑ki

j=1 |N(Ii,j)|. There exists some τi such that

|N(Ii,τi)|
|Ii,τi |

≤
∑ki

j=1 |N(Ii,j)|∑ki
j=1 |Ii,j|

= |N(Ii)|
|Ii| ≤ λ′.

Set I′i = Ii,τi . Set ri = |I′i| and si = |N(I′i)|. There is a pair (r, s) satisfying (r, s)= (ri, si) for
infinitely many values of i. Considering only the values of i for which this equality holds, we
have our set of independent sets. Note that, because H is bipartite, N(I′i) is monochromatic
and thus independent, meaning that I′i is doubly independent. If �(N(I′i))= 2 does not hold
for infinitely many i, replace � with �̄ = 3− � . We can now apply Theorem 3.1 to obtain
ρ(H)≥ f (s/r)≥ f (λ′). �

Wewill prove Theorem 1.7 using Theorem 4.1. To do this we need to show that, in both graphs
with infinite orbits and forests, the condition in the statement of Theorem 4.1 holds.

Proof of Theorem 1.7. Let λ = lim inf
n→∞

μ(H,n)
n . Fix λ′ > λ. We will show that, in both cases, there

exist infinitely many pairwise disjoint independent sets I1, I2, . . . , all with the same size, with
|N(Ii)||Ii| ≤ λ′.
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For graphs with infinite orbits:Choose n such that μ(H,n)
n < λ′. Let I be an independent set of size

n with |N(I)| = μ(H, n). We will show that there are infinitely many automorphisms σi ∈Aut(H)
such that the sets σi(I) are pairwise disjoint. Then we can take Ii = σi(I) to conlude the proof. We
proceed by induction on n. For n= 1, if I = {v}, this is equivalent to the orbit of v being infinite.

Suppose that the result is true for n− 1. Suppose that we have already found σ1, σ2, . . . , σk
such that the sets σi(I) are pairwise disjoint. Let X = ∪k

i=1σi(I). We will construct σk+1 ∈Aut(H)
such that σk+1(I) is disjoint from X. Choose v ∈ I. By the induction hypothesis, there is an infinite
family {τi}∞i=1 ⊆Aut(H) such that the sets τi(I − v) are pairwise disjoint. If τi(v) �∈ X for some i,
then we can take σk+1 = τi, and we are done. Therefore, assume that τi(v) ∈ X for every i. By
pigeonhole principle, there exists w such that τi(v)=w for infinitely many i. Choose φ ∈Aut(H)
such that φ(w) �∈ X (it exists because the orbit of w is infinite). The set φ−1(X) intersects finitely
many sets τi(I − v), therefore there exists some iwith τi(I − v) disjoint from φ−1(X) and τi(v)=w.
Putting this together, φ(τi(I)) is disjoint from X, as we wanted.

For forests: The following lemma will be used to find independent sets of bounded size with
bounded expansion within larger independent sets:

Lemma 4.2. For every λ′ > λ there exists M =M(λ, λ′) such that, for every independent set I in a
forest with |N(I)| ≤ λ|I|, there exists I′ ⊆ I with |N(I′)| ≤ λ′|I′| and |I′| ≤M.

Knowing this lemma, choose λ′′ < λ′′′ ∈ (λ, λ′) and set M =M(λ′′′, λ′). Suppose that we have
already constructed pairwise disjoint independent sets I1, I2, . . . , Ik with |Ii| ≤M and |N(Ii)| ≤
λ′|Ii|. We will find a new set Ik+1, disjoint from the others. Let S= ∪k

i=1Ii. There exists n large
enough such that n

n−|S| ≤ λ
′′′

λ
′′ . By definition of lim inf and μ(H, n), there exists an independent set

I with |I| ≥ n and |N(I)| ≤ λ′′|I|. Then
|N(I \ S)| ≤ |N(I)| ≤ λ′′|I| ≤ λ′′(|I \ S| + |S|)≤ λ′′′|I \ S|.

By our claim, there exists Ik+1 ⊆ I \ S such that |Ik+1| ≤M and |N(Ik+1)| ≤ λ′|Ik+1|. Once we have
constructed an infinite family of independent sets I1, I2, . . . , simply take a pair (r, s) which is equal
to (|Ii|, |N(Ii)|) for infinitely many i (which is possible because this pair can only take finitely many
values), and we are done.

Proof of Lemma 4.2. Let δ = δ(λ, λ′)> 0 be small enough, which we will fix later. Let F be the
forest with vertex set I ∪N(I) and containing only the edges between I and N(I) in our original
graph. It is enough to prove our result in F. Denote J =N(I). For every component of F take a
vertex of I as the root.

There exists a set S⊆V(F) with |S| ≤ δ|V(F)|, satisfying that every component of F \ S has size
at most δ−1. Indeed, start with S= ∅ and consider the set U of vertices whose component in F \ S
contains at least δ−1 vertices. The rooted forest structure in F induces a rooted forest structure in
F \ S. Let U ′ be the set of vertices in F \ S which have at least δ−1 − 1 descendants. If U �= ∅ then
U ′ �= ∅, because the root of the largest component will be in U ′. Select a minimal vertex v in U ′
and add it to S. This removes v and all its descendants from U and thus reduces the size of U by
at least δ−1. After at most δ|V(F)| steps, U will be empty.

Let X be the union of S and the parents of the vertices of S∩ J. This set has |X| ≤ 2|S| ≤
2δ|V(F)|, and every component T of F \ X (which has the structure of a rooted tree) is adjacent to
at most one vertex in X ∩ J, in which case that vertex is the parent (in F) of the root of T. This is
because a vertex v in T cannot have a child in X ∩ J, as that child would be in S∩ J and v would
be its parent, and hence in X. As a consequence, every component of F \ (X ∩ I) contains at most
one vertex from X ∩ J.
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Let C = {C1, . . . , Ck} be the components of F \ (X ∩ I). Then∑k
j=1 |Ci ∩ J|∑k
j=1 |Ci ∩ I| = |J|

|I| − |X ∩ I| ≤ |N(I)|
|I| − 2δ(|I| + |N(I)|) ≤ λ

1− 2δ(1+ λ)
=: λ′′.

There exists some component Ci such that |Ci ∩ J| ≤ λ′′|Ci ∩ I|. If Ci ∩ I has size not greater
than M := 2δ−1, then set I′ = Ci ∩ I and we are done, because N(I′)⊆ Ci ∩ J. Otherwise Ci has
size greater than 2δ−1, hence it must contain a (unique) vertex v ∈ X ∩ J. Let C′

1, C′
2, . . . , C′r be the

components obtained from Ci by removing v, labelled in decreasing order of |C′j ∩ J|/|C′j ∩ I|.
Consider the minimum integer t such that

∑t
j=1 |C′j ∩ I| ≥ δ−1. Because every component in

F \ X has size at most δ−1, we have
∑t

j=1 |C′j ∩ I| ≤ ∑t−1
j=1 |C′j ∩ I| + δ−1 ≤ 2δ−1 =M. Set I′ =

∪t
j=1(C′i ∩ I). Then

|N(I′)|
|I′| = 1+ ∑t

j=1 |C′j ∩ J|∑t
j=1 |C′j ∩ I| ≤ δ +

∑r
j=1 |C′j ∩ J|∑r
j=1 |C′j ∩ I| ≤ δ + λ′′.

This proves Lemma 4.2, for δ > 0 small enough such that δ + λ′′ < λ′. �
Next we will prove Corollaries 1.8–1.10 as direct applications of Theorem 1.7:

Proof of Corollary 1.8.Wewill show thatμ(Tk, n)= kn. For every independent set I of size n, the
set of children of the vertices of I has size kn and is contained in N(I), thus |N(I)| ≥ kn. Equality
can hold, for example for I = {v1, . . . , vn} where v1 is the root of Tk and vi+1 is a grandchild of vi.
We therefore have μ(Tk, n)= kn. Since Tk is a forest, Theorem 1.7 applies and ρ(Tk)= f (k). �
Proof of Corollary 1.9. Let I be an independent set. The set I + (1, 0, . . . , 0) is contained in N(I),
so |N(I)| ≥ |I| and μ(Gridd, n)≥ n for all n. On the other hand, let Ik be the set of vertices in [2k]d
with odd sum of coordinates. Ik is an independent set of size (2k)d/2, and Ik ∪N(Ik) is contained
in [2k+ 2]d − (1, 1, . . . , 1). Since Ik and N(Ik) are disjoint,

|N(I)|
|I| = |I ∪N(I)|

|I| − 1≤ (2k+ 2)d

(2k)d/2
− 1,

which tends to 1 as k→ ∞. We have lim inf
n→∞

μ(Gridd,n)
n = 1. The graph Gridd is vertex-transitive,

so by Theorem 1.7 we have ρ(Gridd)= f (1). �
Proof of Corollary 1.10. The graph ω · F satisfies that every orbit of the automorphism group on
V(ω · F) is infinite (because it intersects every copy of F), so we are in the setting of Theorem 1.7.
We need to show that lim inf

n→∞
μ(ω·F,n)

n = min
I⊆V(F) indep.

|N(I)|
|I| .

Let I be an independent set in F that minimises |N(I)|
|I| , and let J ⊆V(ω · F) be an independent

set of size n. Partition J into independent sets J1, J2, . . . , Jm, according to the component in which
the vertices are contained. Then

|N(J)|
|J| =

∑m
i=1 |N(Ji)|∑m
i=1 |Ji| ≥min

|N(Ji)|
|Ji| ≥ |N(I)|

|I| .

This implies that μ(ω·F,n)
n ≥ |N(I)|

|I| . Equality holds infinitely many times, since for all n divisi-
ble by I we can take the union of the sets I in n/|I| different copies of F. Therefore ρ(ω · F)=
f
(
lim inf
n→∞

μ(ω·F,n)
n

)
= f

( |N(I)|
|I|

)
.

In an even cycle C2k, each independent set satisfies |N(I)| ≥ |I|, because C2k contains a perfect
matching. Since each chromatic class in the bipartition satisfies |N(I)| = |I|, we have ρ(ω · C2k)=
f (1). For 1≤ a≤ b, in Ka,b, every independent set has size at most b, and its neighbourhood
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has size at least a. Both inequalities are sharp if I is the side of the bipartition with size b. Thus
|N(I)|

|I| ≥ a
b , and ρ(ω ·Ka,b)= f (a/b). �

Next we will deduce Theorem 1.11 from Theorem 3.1:

Proof of Theorem 1.11. Let a= |V(F)|, and let b= a− 1. Let � :V(F)→ [a] be a colouring that
assigns the value a to every vertex in N(I), and where the remaining vertices in F all get different
values in [a− 1]. Because I is doubly independent, this is a proper colouring. � extends to a
colouring of ω · F, by colouring all copies of F equally.

Let I1, I2, . . . be the sets I of all copies of F. Each Ii is contained in a component of F,�(N(Ii))=
a and the family of sets Ii is not concentrated in fewer than b components. Thus, by Theorem 3.1,
setting r = |I| and s= |N(I)|, we have ρ(ω · F)≥ f

( |N(I)|
|I|

)
. �

Finally, we will prove Theorem 1.12 using a result of Burr, Erdős and Spencer [3] for the Ramsey
number of n · F:
Theorem 4.3 ([3]). Let F1, F2 be two finite graphs without isolated vertices. The two-colour Ramsey
number R(n · F1, n · F2) satisfies

R(n · F1, n · F2)= (|V(F1)| + |V(F2)| −min{α(F1), α(F2)})n+O(1),

where α(G) is the size of the largest independent set in G. In particular, R(n · F, n · F)= (2|V(F)| −
α(F))n+O(1).

Proof of Theorem 1.12. Let χ : E(KN)→ {R.B} be a colouring. Let n1, n2, . . . be an increasing
sequence of positive integers with ni+1/ni → ∞. Let ki be the maximum value such that R(ki · F,
ki · F)≤ ni+1 − ni. By Theorem 4.3, we have

ki =
(

1
2|V(F)| − α(F)

+ o(1)
)
(ni+1 − ni)=

(
1

2|V(F)| − α(F)
+ o(1)

)
ni+1.

There exist a family Fi of ki monochromatic disjoint copies of F with vertices in [ni + 1, nn+1],
all with the same colour Ci. Choose a colour C which is equal to Ci for infinitely many i. Then
H′ = ∪Ci=CFi is a copy of ω · F with

lim sup
n→∞

|V(H)∩ [n]|
n

≥ lim sup
i:Ci=C

ki|V(F)|
ni+1

= |V(F)|
2|V(F)| − α(F)

.
�

5. Open problems and remarks
In a previous version of this paper, we asked to improve the bounds on ρ(ω ·K3): using the results
in this paper, from Theorem 1.12 we find a lower bound of 3/5, and from Theorem 1.6 we find
an upper bound of f (2)≤ (21+ √

12)/33≈ 0.74133. This was answered in a later paper of Balogh
and the author [1], which shows that ρ(ω ·K3)= f (2), and proves an explicit lower bound f (2)≥
1− 1/

√
7≈ 0.62203.

As noted in the introduction, f depends on the solution of a certain optimisation problem of
Lipschitz functions. It would be helpful to remove such dependency and obtain a closed formula
for f (perhaps the upper bound of (2)). In particular, if the upper bound of (2) is sharp then we can
observe that the behaviour of f (x) changes at x= 3, which corresponds to lim supμ(H, n)/n= 3
(the independent sets have similar expansion ratio as in the infinite ternary graph). The cause of
this is that the optimal colouring of KN changes.

Problem 5.1. Find a closed formula for f (x). In particular, prove or disprove that it matches the
upper bound from (2).
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[3] Burr, S. A., Erdős, P. and Spencer, J. H. (1975) Ramsey theorems for multiple copies of graphs. Trans. Amer. Math. Soc.

209 87–99.
[4] Corsten, J., DeBiasio, L., Lamaison, A. and Lang, R. (2019) Upper density of monochromatic infinite paths. Adv. Comb

4 16.
[5] Corsten, J., DeBiasio, L. and McKenney, P. (2020) Density of monochromatic infinite subgraphs ii. https://arxiv.org/

abs/2007.14277
[6] DeBiasio, L. and McKenney, P. (2019) Density of monochromatic infinite subgraphs. Combinatorica 39(4) 847–878.
[7] Elekes, M., Soukup, D. T., Soukup, L. and Szentmiklóssy, Z. (2017) Decompositions of edge-colored infinite complete

graphs into monochromatic paths. Discrete Math. 340(8) 2053–2069.
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