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1. Introduction

Throughout this paper H will denote a complex separable Hilbert space and L(H)
denotes the algebra of all bounded linear operators on H. If T lies in L{H), its spectrum
a(T) is the set of all complex numbers z such zI-T is not invertible in L(H) and its
compression spectrum acomp(T) is the set of all complex numbers z such that the range
(zI-T)(H) is not dense in H ([3, p. 240]). This paper is concerned with the Sturm-
Liouville operator problem

(1.1)

where k is a complex parameter and X(t), Q, Eb Fh for i=l ,2, and te[0,a], are
bounded operators in L(H). For the scalar case, the classical Sturm-Liouville theory
yields a complete solution of the problem, see [4], and [7]. For the finite-dimensional
case, second order operator differential equations are important in the theory of damped
oscillatory systems and vibrational systems ([2, 6]). Infinite-dimensional differential
equations occur frequently in the theory of stochastic processes, the degradation of
polymers, infinite ladder network theory in engineering [1, 17], denumerable Markov
chains, and moment problems [10, 20]. Sturm-Liouville operator problems have been
studied by several authors and with several techniques ([12, 13, 14, 15, 16]).

In order to solve the operator differential equation

X<2\t)-XQX(t)=0 (2.1)

and in an analogous way to the scalar case, we obtain a fundamental set of solutions for
the equation (2.1), from the existence of solutions for the algebraic characteristic
operator equation

X2-?.Q = 0. (3.1)
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Thus, explicit expressions for any solution of (2.1) are given in terms of solutions of the
algebraic equation (3.1). In this sense, this paper can be regarded as a continuation of
[8] and [9]. Notice that for the operator case, the equation (3.1) can be unsolvable, for
example, if AQ is an unilateral weighted shift operator, the equation (3.1) is unsolvable
([19, p. 63]).

The resolution problem of the equation (3.1) is related to the problem of the existence
of a linear factorization of the polynomial operator L\z) = z2 — XQ. So, for the finite-
dimensional case, the equation (3.1) is solvable, if and only if, the companion operator

A ° '
is diagonable. The infinite-dimensional case is treated in [18], in a more general context.
In order to obtain explicit solutions of the equation (3.1), the Riesz-Dunford functional
calculus yields such an expression. In fact, if a is a real number with 0^a<27i, Hx is the
half-line { —rexp(ia), r^O}, and Dx is the complementary set of Ha in the complex
plane, there is an analytic determination of the complex logarithm loga, defined in Da.
Thus, if the spectrum a(XQ) is contained in Dx, from the Riesz-Dunford functional
calculus, [5], a solution of the equation (3.1) is given by the expression Xo =
exp(loga(/l0/2). Moreover, if the operator XQ has a finite spectrum, this operator Xo

can be computed as a polynomial in XQ, see [5, Th. VII. 16]. In particular, this
computation is available for the finite-dimensional case. The above condition o{XQ) c Da

is satisfied by a lot of operators, as it is shown in the following example.

Example 1. Let Q be an operator in L(H) such that its spectrum o(Q) is contained in
C~L, where L is a half-line, L = { — rexp(is); r^O}. If we write the complex number X,
in the form A = |A| exp (it), for some t in [0,2rc[, then one has a(XQ) = {Xz; zea(Q)} and
taking oc = s + t, it turns out that a{XQ)ciDot, notice that if s + t^27t, then DX = DX_2K, and
<x' = a — 2n, satisfies a(XQ)cDa.. In particular, any operator Q whose spectrum a(Q) is
contained in a proper sector of the complex plane satisfies the above condition.

We study separately the cases X = 0 and Xj=O, and we suppose that for A=/=0, the
spectrum o(lQ) is contained in Da, for some a in [0, 2JI[.

2. Explicit solutions for Sturm-Liouville operator problems

Let us consider the operator matrix

Al2]:H®H^H@H (1.2)

where Atj, 1 ^ij5S2, are operators in L(//). If A22 is invertible, then it follows that

[
| 0

o i r / ol
A22]lA^A21 Ij
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Since the first and third factor in the right hand side of this identity are invertible in
L(H®H), it follows that A is invertible if and only if the operator W = All — A12A2~2A2l

is invertible. In this case, it is easy to show that

Otherwise, if Atl is invertible, one gets

V I OJA
lA22AX /J|_ 0

1p
A22-A21A->A12]l0

Thus, A is invertible if and only if, V = A22 — A21Af1M12 is invertible. In this case one
easily computes that

From here the following result is proved.

Lemma 1. Let A be the operator defined by (1.2). Then it follows that:

') If A22 is invertible, the operator A is invertible if and only if, the operator W =
Ai\—Al2A22A2i is invertible. In this case A'1 is given by (2.2).

(ii) If Atl is invertible, the operator A is invertible if and only if the operator V =
An — A1XA\{Al2 is invertible. In this case A'1 is given by (3.2)

The following result yields an explicit expression for any solution of the operator
differential equation (2.1) under the compatibility hypothesis of the algebraic equation
(3.1).

Lemma 2. Let us consider the operator differential equation (2.1), where Xj=O and Q is
an invertible operator such that a{XQ)^DaL, for some ae[0,2n[. Let -Yo = exp((loga(/l0/2)
be a square root of XQ, then for any solution X of (2.1), there are operators C and D such
that

tX0)D. (4.2)

These operators C and D are uniquely determined by the expressions

= X(0)/2-Xo1Xli\0)/2. (5.2)

Proof. It is clear that X given by (4.2) is a solution of the equation (2.1). From the
uniqueness for a Cauchy problem, [11], it is sufficient to show that given Co = X(0) and
Cj =X(1)(0), there are operators C and D in L(H) which satisfy the condition (5.2). From
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(4.2), it is equivalent to prove the existence of operators C and D such that

that is,

u. -
From the spectral mapping theorem, [5, p. 569], Xo is an invertible operator and from
Lemma 1, the first operator matrix in the left hand side of (6.2) is invertible in
L(H@H). Thus, from (6.2) and Lemma 1, it follows that

rci=r / / i-ircoi=

ID] lx0 xoj |_cj
/2

From here the result is concluded.

The following result yields a characterization in order to assure that the only solution
of the problem (1.1) is the trivial one. In the terminology of the scalar case, this means
that X is not an eigenvalue of the Sturm-Liouville problem (1.1).

Theorem 1. Let us consider the boundary value problem (1.1), where 1^=0 and Q is an
invertible operator such that

o(AQ) = {lz;z belongs to o(Q)}<=Da (7.2)

for some a in [0,2n\_, and let Xo = exp ((loga(A0/2). If the operator matrix

is invertible, then the only solution of the Problem (1.1) is the trivial X(t) = 0 for all t in
[0, a]. If H is finite-dimensional, the invertibility of S is a necessary and sufficient condition
in order to assure that the only solution is the trivial one.

Proof. From Lemma 2, the general solution of the operator differential equation
(2.1) takes the form expressed by (4.2). If we impose that X(t) given by (4.2) satisfies the
boundary value conditions of (1.1), it follows that the operators C and D must verify the
conditions

D) + E2(X0C-X0D) = 0

Ft(exp (aX0)C + exp ( - aX0)D) + F2(exp (aX0C - exp ( - aX0)X0D) = 0
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or equivalently,

+ F2X0) exp (aX0)C+(F, - F2X0) exp ( - aX0)D=0

(9.2)

If S is invertible, the only solution of (9.2) is C = Z) = 0. If H is finite-dimensional, the
invertibility of S is also a necessary condition in order to assure that the only solution
of equation (9.2) is C = D = 0.

Remark 1. If // is infinite-dimensional and the complex number 0 belongs to the
compression spectrum of S, that is, if S(H®H) is not dense in ff®//, then there are
nonzero operators C and D such that (9.2) is verified and S is not invertible. A lot of
concrete examples are shown in the following.

Example 2. Let us consider the Problem (1.1) where E2 = F2 = l, H is a complex
separable Hilbert space with orthonormal basis {en; n ^ l } and let {"„}„§i be a sequence
of complex numbers convergent to a complex number u. Let us consider that Q is the
operator defined on H by Q(ej) = O if lrgj^/c, and Q(ej) = uJ_kcJ, if j>k, and let Fi=0
and El an injective unilateral weighted shift operator, defined by El(en) = wnen+k, for
some bounded sequence of complex numbers {wn}ngl, and for a fixed positive integer k.
Then it follows that Xo is given by the infinite diagonal matrix

0

U/2

\ l / 2

that is, Xofe^O if l^j^k, and X0(ej)={Xuj-k)
ll2ej, for j>k. Let us consider a = \. It

is easy to show that (F, + F2X0)exp(A'0)(eJ) = 0 if 1 ^ j^k, and (Ft + F2X0)exp(X0)(ej) =
(Xuj-k)

li2exp((?Mj-k)
112), for j>k. Moreover, as the ranges (F^ +E2X0)(H) and

(Ei-E2X0)(H) are contained in the orthogonal complementary of the subspace
M = LIN({ef, 1 ^j-gk}). It turns out that considering C and D as any finite-dimensional
projection with ranges contained in M, the condition (9.2) is satisfied.

Corollary 1. Let us consider the Problem (1.1) where A=fcO, Q is an invertible operator
which satisfies the condition (7.2) and S is the operator defined by (8.2). Then there are
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nontrivial solutions of (I.I), if and only if

0e<rcomp(S). (10.2)

In this case the operator function defined by (4.2) is a solution of this problem, where C
and D satisfy (9.2). / / N is a closed subspace of H@H that is orthogonal to the subspace
S(H®H), and Nt and N2 are the subspaces ofH@H defined by

then C and D can be chosen as the projections on H with ranges Nt and N2 respectively.

Proof. It is a consequence of Theorem 1 and Remark 1.

Notice that different solutions for the Problem (1.1) can be found depending on the
codimension of the subspace S(H@H). Lemma 1 permits us to find more concrete
conditions than (10.2) in terms of data problem.

Corollary 2. Let us consider the Problem (1.1) where A=fcO, Q is an invertible operator
which satisfies (7.2) and S is the operator defined by (8.2).

(i) If Fl—F2X0 is invertible, the condition (10.2) is equivalent to the condition

0 e acomp((£1 + E2X0)-(El -E2X0)(exp(aXo^F, -F2X0)~
 1(F1 + F2X0)exp(aX0).

(11.2)

(ii) If Ex + E2X0 is invertible, the condition (10.2) is equivalent to the condition

0 e ff^pHF, - F2X0) exp ( - aX0) - (F, + F2X0) exp (aX0)(£1 + E2X0) - » ( £ , - E2X0)).

(12.2)

Proof. It is an easy consequence of the proof of Lemma 1, taking into account that
if A22 is invertible, the subspace A(H®H) is not dense in FH&H, if and only if
(All — Al2A22

1A2l)(H) is not dense in H. By application of this fact to the operator S,
part (i) is proved. An analogous consideration related to the proof of Lemma 1 (ii), yields
the proof of (ii).

Corollary 3. Let us consider the Problem (1.1) where Aj=O, Q is an invertible operator
which satisfies the condition (7.2) and S is the operator defined by (8.2).

(i) If Fl—F2X0 is invertible and the condition (11.2) is satisfied, then a solution of the
Problem (1.1) is given by (4.2), where C is any operator that satisfies

((E1 + E2X0) -(Et- E2X0) exp (flX0KFi - F2X0) ~l(Fl + F2X0) exp (aX0))C = 0
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and

(ii) If El + E2X0 is invertible and the condition (12.2) is satisfied, then the operator
function defined by (4.2) where D is any operator that satisfies

and C= -(El + E2X0)~
i(E1-E2X0)D, defines a solution o/(l.l).

Proof. It is a consequence of Corollary 2 and the proof of Theorem 1. Moreover,
notice that from (11.2) and (12.2), the operators C and D can be chosen in such way
that X(t) given by (4.2) is a non trivial solution of (1.1).

The following is concerned with the study of the boundary value problem (1.1) where
A = 0. In this case, the operator differential equation (2.1) takes the form Ar<2)(t) = 0, and
it is clear that the only solution of this equation which satisfies the initial conditions
X(0) = Co and X(1)(0) = C1, is the operator function X(t) = Co + Clt, for all t in [0,a].

Theorem 2. Let us consider Problem (1.1) where 1 = 0. Let T be the operator matrix

(13.2)

(i) Problem (1.1) with A = 0 has only the trivial solution if and only if the subspace
T(H®H) is dense in H®H, that is, if 0<£ffcomp(T). In particular, if H is finite-
dimensional, there are. non trivial solutions if and only if, T is invertible.

(ii) Under the hypothesis o/(i), if Ev is invertible, the operator function X(t) = C0 + Clt,
is a non trivial solution o/(l.l), I / C J is any operator that satisfies

(F. + F^al-E^E^C^O (14.2)

and Co= — £j"1£2C1.

(iii) Under the hypothesis of (i), if aFv + F2 is invertible, the operator function X(t) =
CQ + CJJ, is a non trivial solution of (1.1) if Co is any nonzero operator on H which
satisfies

-1F1)Co = 0 (15.2)

and C, = -(aFi+F^-^iCo.

Proof. If the general solution X(t) = C0 + Clt, satisfies the boundary value condition
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of Problem (1.1), then it must verify the conditions

ElCo + E2C1 = 0
(16.2)

Fl(Co + aCl) + F1Cl=0

or equivalently

E
a F 1 + F 2

ircoi
J|_cJ

thus, the existence of nonzero operators Co, Cx is equivalent to the condition T(H © H)
not dense in H®H. From here (i) is proved.

(ii) If £j is invertible, then solving in (16.2) the result is immediate.
(iii) Solving in (16.2) the result is a consequence of the invertibility of the operator
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