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EXTENSION OF CR STRUCTURES ON THREE
DIMENSIONAL PSEUDOCONVEX CR MANIFOLDS

SANGHYUN CHO1

Abstract. Let M be a smoothly bounded orientable pseudoconvex CR mani-
fold of finite type and dim^M = 3. Then we extend the given CR structure on
M to an integrable almost complex structure on S^ which is the concave side
of M and M C bS+.

§1. Introduction

Let M be a smooth orientable manifold of dimension 2n — 1 and let
M c M b e a smoothly bounded CR manifold with a given CR structure S of
dimension n — 1. Since M is orientable, there are smooth real nonvanishing
1-form η and smooth real vector field XQ on M so that η(X) = 0 for all
X G S and η(X0) = 1. We define the Levi form of S on M by iη([X'J?'\).

In [4], Catlin has considered an extension problem of a given CR struc-
ture on M to an integrable almost complex structure on a 2n-dimensional
manifold Ω with boundary so that the extension is smooth up to the bound-
ary and so M lies in 6Ω. Under certain conditions on the Levi form (cf.,
[4, Theorem 1.1, Theorem 1.3]), this leads to a solution of the Kuranishi
problem [1, 9, 13], which is to show that an abstract CR manifold can be
locally embedded in Cn.

In this paper, we consider an extension problem of a given CR structure
on M when M is a pseudoconvex CR manifold of finite type and dim^ M —
3. For a given positive continuous function g on M, where g = 0 on 6M,
we define

5+ = {(a:, t) 6 M X [0, oo); 0 < t < g{x)}.

Then our main result is the following theorem:

THEOREM 1.1. Let M C M be a smoothly bounded orientable pseu-

doconvex CR manifold of finite type with given CR structure S on M and
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dim^M = 3. Then there exists a positive continuous function g on M
and a smooth integrable almost complex structure C on 5+ such that for all
x e M, £(a. |0) Π CTM = Sx. Furthermore, if JC' TS+ -• TS+ is the map
associated with the complex structure C, then dt(Jc(Xo)) < 0 at all points
o/M0 = {(z,0); xeM}.

Note that we extend the given CR structure on M to the concave side
(instead of convex side) of M. We also note that if M is strongly pseudo-
convex, this case was handled in [4, Theorem 1.1]. Theorem 1.1, in general,
would not imply the local embedding of M into C2 (cf., [2, 6]). But we
have the following theorem as an application of Theorem 1.1.

THEOREM 1.2. Let D be a complex manifold with C°° boundary and
ά\m<cD = 2. Suppose that the almost complex structure on D extends
smoothly to a manifold M C bD where M is compact pseudoconvex CR
manifold of finite type with smooth boundary and dim^M = 3. Then D can
be embedded in a larger complex manifold Ω so that M lies in the interior
of Ω as a real hypersurface.

Remark 1.3. In [5], the author showed that any smooth compact pseu-
doconvex complex manifold D of finite type with dimcD = n, n > 2, can
be embeded into a larger complex manifold Ω. Theorem 1.2 is a generaliza-
tion of this result to non-compact complex manifolds of complex dimension
2.

In [4], Catlin has introduced certain nonlinear equations which come
from deformation theory of an almost complex structure. The linearized
forms of these equations are simply the 9-operator from Λ0'1 ® T 1 ' 0 to
Λ0'2 ® T 1 ' 0. The solutions of these equations represent sucessive correc-
tions that must be made in the iterative process of solving the nonlin-
ear equation. To overcome difficulties in subelliptic estimates for d near
6M, we choose a Hermitian metric on S+ so that S+ takes on the form
Sε = M x [0,ε], where M is a complete noncompact manifold. To this end,
we choose, for each XQ G M, a noneuclidean ball that is of size δ = g(xo)
in the transverse holomorphic direction and of size τ(xo,δ) in the tangen-
tial holomorphic direction. Some technical difficulties in constructing the
quantity τ(xo,δ) is handled in Section 3. Here we introduce special coor-
dinate changes (Proposition 3.1) so that the tangential vector field L\ can
be written in a suitable form. These change of coordinates will have an

https://doi.org/10.1017/S0027763000006814 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006814


CR STRUCTURES ON THREE DIMENSIONAL MANIFOLDS 99

independent interest in studying the CR manifolds of finite type. To study

the behavior of τ(xo,δ), we introduce a smoothly varying function μ(x^δ)

which is defined invariantly. Then it follows that τ(#, δ) « μ(x, δ) (Propo-

sition 3.2), and hence τ(x,δ) is defined invariantly. Also τ(x,δ) satisfies

"doubling property" (Corollary 3.3), which is one of a crucial property of

τ(x,δ). Equipped with all of these necessary properties of τ(x,<5), we per-

form some careful subelliptic estimates of the d type equation on each of

these noneuclidean balls (Section 4). Then this will give us the estimates so

called "tame estimates", which are required in the Nash-Moser method for

the approximate solution to the linearized equation. Then the rest of the

procedure is similar to those of Catlin's, which uses the simplified version

of Nash-Moser theorem [12].

I would like to thank David Catlin for his helpful discussion during the

preparation of this paper.

§2 Deformation of almost complex structures

Let M be a CR manifold as in section 1 and set Ω = M x (-1,1). In

this section we extend a given CR structure on M to an almost complex

manifold Ω, and we consider a deformation problem of an almost complex

structure on Ω so that the new (deformed) amost complex structure is

integrable (or close to be integrable).

Since Ω is an almost complex manifold of dim^ Ω = 4, there is a sub-

bundle C of CTΩ of dimension 2 (over C) such that C Π £ == {0}. Let A

be a smooth section of Γ1(£) = Λ°'1(£) ® £, where ΛO j l(£) denotes the set

of (0,1) forms with respect to £. Observe that if A is sufficiently small,

then the bundle CA = {L + A(L); L E C} defines a new almost complex

structure and if L and L are sections of £, then L + A(L ) and L + A(L )

are sections of CA. Similarly, if ω is a section of Λ l j 0(£), then ω — A*ω is a

section of Λ1 > 0(£A) where the adjoint A* maps from Alfi(C) to Ao>1(£) and

is defined by

(2.1) (A*ω)(L)=ω(A(L)),

for all L E C and ω G Λ1)0. We want to choose A so that

(ω - A*ω)([Lf + A(L'), L" + A(L")}) = 0.

By linearizing, i.e., by ignoring terms where A or A* appear more than

once, we obtain

(2.2) ω([L', A(L")]) + ω([A(L'), L"]) - A*ω([L', L"]) = -ω([L', L"\).
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Let L = L' + L" denote the decomposition of a vector L € CTZ where
V E Cz and L" £ Cz. For sections Li, L2 of A we define

(2.3) (D2A)(LUL2) = [Lu A(L2)}' - [L2, A(L{)\' - A([LUL2}").

Note that this definition is linear in L\ and L2 so D2A is a section of
Γ2 = Λ°'2(£) ® £. It follows from (2.1) and (2.3) that (2.2) is equivalent to

the equation

(2.4) D2A = - F ,

where F is a section of Γ2 defined by

(2.5) II II

Note that F measures the extend to which C fails to be integrable. If C

defines a CR structure on M C 6Ω and if we want CA to define the same

CR structure on M, then this means that A must satisfy A(L ) = 0 on

M whenever L is a section of C that is tangent to M. This is a Dirichlet

condition on some of the components of the solution of (2.4).

Since d im c Ω = 2, it follows that D3B = 0 for all B e Γ2, where

D3:Γ
2 —> Γ 3 is defined by

D3B(LUL2,L3)

= [LuB(L2Js)}r - [I2, B(LUL3)Y + [I3, B(LUL2)]'

- B([LUL2]"M + B([LUL3}",L2) -

Now setΩ = M x ( — 1 , 1 ) . Then we have the following formal solution

of the extension problem [4, Theorem 4.1].

THEOREM 2.1. Suppose that M is an orientable CR manifold of di-

mension 2n — 1 such that the CR dimension equals n — 1. Then there exists

an almost complex structure C* on Ω = M x (—1,1) such that C* is an ex-

tension of the CR structure on M, and such that it is integrable to infinite

order at M in the sense that if ω is a section o/Λ l5°(£*) and L\, L2 are

sections of C , then ω{[Lι,L2]) vanishes to infinite order along M.

The next theorem shows that the above formal extension is essentially

unique.
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THEOREM 2.2. ([4, Theorem 4.2]) Let M and Ω be as in Theorem 2.1.

Suppose that C and X are almost complex structures on Ω that extend the

CR structure on Mo = {(x,0);x G M}, and that are integrable to infinite

order on Mo as in Theorem 2.1. Then, there exists a diffeomorphism GofQ

onto itself that is the identity when t = 0 and such that G*X approximates

C to infinite order near MQ in the sense that if X is a section of C, then

G*X differs from a section of C by a vector field which vanishes to infinite

order on Mo.

Now assume that dim^M = 3 and let Ω = M x (-1,1). By Theo-

rem 2.1, we have an almost complex structure £* that is integrable to infi-

nite order along Mo = {(#,0); x G M}. Let 77 be a smooth non-vanishing

one form on M that satisfies η{L) = 0 for all L G Sx x G M, and that

defines the Levi form of M as in Section 1. We can clearly extend η to

all of Ω so that it still annihilates S^xt^ for all (x,t) G Ω, where S(xψ now

denotes the space of vectors in C*,χ ^ that are tangent to the level set of the

auxiliary coordinate t.

Choose a smooth real vector field Xo on Ω that satisfies Xot = 0 and

η(Xo) Ξ 1 in Ω. Set YQ = —JC*(XQ) SO that Xo + iYo is a section of £*

that is transverse to the level set of t. Let G: Ω —> Ω be a diffeomorphism

such that G fixes Mo and

Since M is orientable, we may assume that dt(Jc*(Xo)) is always negative.

Thus dt{Yo) > 0 along Mo, which shows that G preserves the sides of Mo;

i.e., G maps Ω+ = {{x, £); 0 < t < 1} into itself. If we set £° = G*£*, then

clearly Z — —iG*(Xo + ilo) is a section of £° such that along Mo,

Z = -iXo + ~7.
σt

If we write Z = X + ̂ ( x , t ) ^ , where Xt = 0, then we set L<ι = g~λZ.

Then L2 = Jj + X where Xt = 0. We fix a smooth metric ( , )o that is

Hermitian with respect to the structure £° on Ω, and let {Li,L2} be an

orthonormal frame defined in a neighborhood of p G M. Note that along

M, we have L2 = §1 — iXo and dt — \{dt + iη) + \{dt — iη), which implies

that dt = \{dt + iη). Hence dt(L) = \dt(L) + \η(L) and

(2.6) dt{[XuX2])=l-η{[XuX2])
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for all X\,X2 € «S(ar,t)> along M.

DEFINITION 2.3. We say p E M is of finite type if there exist a list
of vector fields L 1 , . . . , L m , with i7 = Li or Li, i = l ,2 , . . . r a , so that
dt([Lm, [L™"1,... [L2, L1]...]) φ 0 at p. The smallest integer m satisfying

dt([Lm, [Lm-\ . . . [L2, L1}...]) # 0 is called the type a t p G M .

It is obvious that this definition is an open condition. Observe also
that, if p E M is of type ra, then Lχ,Li, [ L m , . . . , [L2,!/1]...] span all local
vector fields tangent to M because dt(Lχ) = 0.

§3. Special Frames for Almost—Complex Structures

Let M, Ω, Xoj Lι,L2 and £° be as in Section 2. In this section, we will
construct special coordinate functions defined in a neighborhood of ZQ E M.

First, we note that X$t = 0 on Ω and hence there is a neighborhood
VZo of zo such that there exist coordinates (^1,^25^35^4) with the property
that U4 = t and u^{vl\t) = Uk(u',0), fc < 4 for (V,£) € V^, and that
d/duz = —Xo at all points of M Π V ô. For any point XQ G V^O Π M, we
define an affine transformation C^rlR4 —> M4 so that if (^ό,0) E R4 are
the coordinates of xo5 then

where the 3 x 3 constant matrix PXo is chosen so that if new coordinates
x = ( # 1 , . . . ? χ 4 ) are defined by x = CXo(u), then

Note that the second equality actually implies that Xo = ~~ ai~ a^ a

of VZo Π M and that L2 — ^ — ig |- along M Π y z o. We also note that

the matrix PXo is uniquely determined by (3.1) and depends smoothly on

x0 E Vzo Π M.

PROPOSITION 3.1. For each xo E VZoΠM and positive integer m, there

are smooth coordinates x = (xi,X2,X3,X4), z{xo) — 0, defined near xo such

that in x coordinates the vector field L\ can be written as

(3 2) ( έ έ )
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where 6χ(0) = 62(0) = 0, and e(x), a(x) are real functions satisfying

(3.3) &+ke(xo) = j + k <

Proof. Let us write the vector field L\ in terms of the coordinate

functions (xχ,X2,X3,t) satisfying (3.1):

where e(a ), α(x) and 6J, 1 < i, Z < 2 are smooth real valued functions

satisfying e(0) = α(0) = fe}(0) = 0. Therefore (3.3) holds for j + k < 0. By

induction, assume that we have coordinate functions xi5X25^3 a nd t such

that L\ can be written as (3.4), where the coefficient functions e(x) and

a{x) satisfy:

&e dka
(3.5) —j—-(0) = 0, j + fc<Z-l, and, .-^(0) - 0, k < I - 1.

Set

Then, in terms of ^-coordinates, L\ can be written as:

(
d

dx3

2

where

dx\dx\

dhα
= 0, 1 < j + k < /, and —^(0) = 0, h < I - 1.

dx%
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We also perform another change of coordinates:

1
x2 = x2,

Then, in terms of x-coordinates, L\ can be written as in (3.4) satisfying
(3.5) with I — 1 replaced by ί. If we proceed up to m steps, we will have
coordinate functions (#i,ίC2j#3>£) defined near XQ G MΓ\VZQ satisfying (3.2)
and (3.3). D

We first construct continuously varying non-isotrophic balls that are
defined invariantly. Let {Xv}v€l be a partition of unity subordinated to the
coordinate neighborhoods {ί/j/jve/ of Ω. Let m be a given positive integer.
Let us fix 6 > 0 for a moment. For any j , k with j > 0, define

Cv

jtkddη(x) = iLΓ'lί^dXi.IiDCx), x G Uu,

\\ / = l,.. ,m, and,

Set M - (m + 1)! and define

(3.6) M(x,ί)

By (2.6) and Proposition 2.4 it follows that £ X i ci(x) > 0 if the type at
x is less than or equal to m. Therefore μ(x, 6) is defined intrinsically and
it is a smooth function of 6 > 0 and x for x satisfying X]]^! C\{x) > 0.

We want to define another quantity, T(XQ,6), related to the coordi-
nate functions defined in Proposition 3.1. Let XQ E M be a point whose
type is less than or equal to m. Let us take the coordinate functions
x — [x\->X2')x^',ΐ) defined near XQ where the vector field L\ has the rep-
resentation as in (3.2), where the coefficient functions e(x) and a(x) of

satisfy the estimates in (3.3).
Set

<Λ Γ O "1

2(O a(x) = Re —-a(x)
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and set z\ — \{x\ — 1x2) and z<ι = | ( t — 1x3). Since a(xo) = 0, the Taylor

expansion of α(x) at XQ has the expression (in terms of (21, ^-coordinates)

as:

Σ + \z2\\z\), z = (zuz2).
0<j+k<m-l

Now set

Aι(x0) = max{|αjfc(xo)|; j + k = l}, / = 0 , 1 , . . . ,m - 1,

and set

(3.7) φ 0 , δ) = min
0<i<

Assuming that the type at XQ is less than or equal to ra, it follows that
ajk(χo) Φ 0 for some j + k = l<m — 1 and hence r(xo5 #) is w e l l defined.

It also satisfies the estimate:

Let us consider the following balls defined in terms of τ(xo,δ):

Qδ(x0) = {(xi,X2, X3, t): |xi |, \x2\ < r(x 0 ,«),

We want to study the relations between τ(xo5 δ) and /x(x, 5) for x G

where μ(x,δ) is defined as in (3.6). Set D\ = d/dz\ for a convenience. If

we combine the definition of τ(xo? <$) a n d the fact that η{L\) = 0, we obtain

by induction that

(3.8) |DίSίi7(^:)(xo)| < δφo,δ)-U+k+1\ forj + fc < m, * = 1,2.

Note that τy([Li,Li]) can be written as

(3.9) ^ A

where i?o satisfies, from the estimates in (3.3) and (3.8) that,

(3.10) |DίDΪi2o(a:o)| ^ ^ r ( x o , ί ) " ( i + f c + 1 ) , j + k + 1 < m.

Combining (3.7)-(3.10), we get:

ί I i ] ) ( x o ) | < ί r ( x o , 5 ) " ( i + f c + 2 ) , j + k + 2 < m.
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Similarly, by applying L\ or L\ to η([L\,Lι\) sucessively, we obtain by

induction that

(3.11) Chkη{x) = D^D

where Ej+^-i satisfies

(3.12) \DΪDt

1Ej+k-1(x0)\<δτ(x0,δ)-ϋ+k+β+t\ j + k + s + t<m.

Therefore for any j , fc, 5, t with j + k + s + t < ra, it follows from (3.11)

that

(3.13) \D(D\cjtkη(x0)\ < δφQ,5)-( +*+i+*+D.

If we use the Taylor series method and the estimates in (3.13), we obtain

that

\£j,kΦ)\ S δφo,δ)-^k+1\ x e Qδ(xQ).

Since this implies that

Q(x) < « 2r(x 0,«)" 2 ( / + 1 ), x G Qs(xo), I < m,

we conclude from the definition of //(x, 6) in (3.6) that

(3.14) r(ar0,«) < ^(^,«) when x G C&O&o).

Conversely, let us prove that μ(x,δ) < T(XQ^6). Define

(3.15) T(x0, δ) = min{/: (δ/Aι(xo))1/l+2 = τ(x0, δ)}.

By the definition of τ(xo, δ) and T(xo, δ), there must exist integers j , fc with

(j - 1) + k = T(x0, δ), j > 1, so that

If we apply the estimates in (3.12) and (3.13) with s + t = 0 and the fact

that r(xθ) 5) <§C 1 if 6 is small, it follows that

Then, again by using the estimates in (3.13) and the Taylor series method,

we obtain that
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which implies that

(3.16) μOM) < τ(xo,δ), x G Qδ(xo)

If we combine (3.14) and (3.16), we have proved the following proposition.

PROPOSITION 3.2. If x e Qefao), then

(3.17) τ(xo,δ)&μ(x,δ).

COROLLARY 3.3. Suppose x G Qβ(χo) Then

Proof. If we set x = XQ in (3.17), then we see that μ(xo > δ) « τ(x$, δ).

Since this holds for XQ = £, it follows that μ(x, δ) « τ(x, £). Hence we have

τ(zo,<5) ~ τ(α,£). D

Remark 3.4. μ(#, <5) is defined intrinsically, that is, independent of co-

ordinate functions. Therefore, Proposition 3.2 shows that the quantity

τ(xo,δ) is defined invariantly, up to a universal constant, with respect to

coordinate functions.

Assume M C M and let φ E C°°(M) be a smooth real-valued function

such that φ(x) > 0 for x G M, and φ{x) — 0, dy?(x) / 0 for x G 6M. We

can extend ψ to Ω by requiring that it be independent of t. Let us denote

by Tp the type at a point p G M and define

T(M) = max{Tp; peΉ}.

Since type condition is an open condition, we see that T(M) is well defined

and is finite. In the sequal, we assume that T(M) = m < oo. We define

r G C°°(Ω) by r(x,i) = t(φ(x))-2m and for any ε, σ, 0 < ε < σ < 1, we

define

5 ε ? σ = {(x,t) G 0; (^(x) > 0 and 0 < r(x,t) < εσ*'2™"1}.

The quantities e and σ will be fixed later. If we set g{x) = 6 cr3"2™

(/?(x)2m, then 5 e ? σ will be the required manifold S+ of Section 1. We define

a subbundle of C° on 5 ε ? σ by letting ^(χ,t) = { i G >C? ^ Lr = 0}. Clearly

the map H defined by H{L) = L — (Lr)(L,2r)~1L2 defines an isomorphism
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of S onto TZ (at all points of 5 ε ? σ ). We define a weighted metric ( , ) on £°

by the relations

), H{LX)) = μ(z, εφ{zfm)-2{L

ε-2φ(z)-4m, and

{L2iH(L1)} = 0,

where L\ £ <S. Since μ(x, (5) is a smooth function of x and 5, it follows that

( , ) is a smooth Hermitian metric on £°.

We now show how 5 ε ? σ can be covered by special coordinate neighbor-

hoods such that on each such neighborhood there is a frame C that satisfies

good estimates:

PROPOSITION 3.5. There exist constants εo and 0o such that if 0 <

ε < εo and 0 < σ < σo, £/&en on S£j(T there exist for all XQ £ M

¥>(a;o) > 0 α neighborhood W{x$) C 5 ε ? σ w iί/i ί/ie following properties:

(i) On VΓ(α:o) ίΛere are smooth coordinates τ/ i , . . . , 3/4 50 ^Λaί W(a o) =

{y; |ί/;| < cΓjO < t/4 < σ3'2™ }, tϋ/iere y ; = (2/1,2/2,2/3) w independent

of t and where the function 2/4 is defined by 2/4 = ε~1φ(x)~2mt. Thus,

MQΠW(XQ) and MσΓ)W(xo) correspond to the points in W(xo) where

2/4 = 0 and cr3'2™ y respectively. Moreover, the point (a?o,O) G Ω

(which we identify with XQ) corresponds to the origin.

(ii) The above coordinate charts are uniformly smoothly related in the

sense that if W(po) and W(XQ) intersect, and if y and 2/0 are the

associated coordinates, then

holds on that portion 0/M4 where y o {yo)~ι is defined. The constant

Cj a | is independent of po and XQ.

(iii) On W(XQ), there exists a smooth frame L\,L<ι for C such that if ω1,

ω2 is the dual frame, and if Lk and ωk are written as Σ)t=i ^jW^

,j=1 dkjdyj, then

sup

where Cjα | is independent of x$, j , k.
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(iv) There are independent constants c > 0 and C > 0 such that if B\>{x)

denotes the ball of radius b about x G S£i<r with respect to the metric

( , ), then

(3.19) Bcσ(x0) C W(xo) C BCσ(xo),

and ifVolB^xo) denotes the volume of B^XQ) with respect to ( , ) ,

then

(3.20) cδV' 2 " 1 " 1 < Vol Bb(x0) < Ctfσ3'2™'1.

Proof. We first cover M by a finite number of neighborhoods Vv^ v —

1,...,7V, in Ω such that in each Vv there exist coordinates (u^... ,u±)

with the property that u± = t and that Uk(u',t) = 1^(1^,0), fc < 4, for

(IΛ7, ί) G K) and that ^~- = —XQ at all points of MΓ\VU.

For any point xo € MΠV^, we take coordinate functions x = (a?i,..., X4)

constructed as in Proposition 3.1. In terms of x-coordinates, L\ and Lυ

2 can

be written as:

A

where £13(0;) = β(x) + iα(x), and where e(x), α(x) satisfy estimates in (3.3).

Set z\ = \j2{x\ — 1x2) and 2:2 = l/2(ί — 2x3). Since as(xo) = 0, the Taylor

expansion of 03(2;) at XQ has the expression:

(3.22) α3(x)

Set 6 = ε<^(xo)
2m, and set

= T m (x 1 ,x 2 ,0,0)

for a convenience. We take the quantity μ(xo,δ) and the corresponding

quantity τ(xo,δ), for the function a%(x) (or a(x) = d/dx\a(x)), as defined

in (3.6) and (3.7). By virtue of Proposition 3.1, and by the definition of

r(xo5^)j it follows that |α? fc(xo)| ^ <5τ(xo5<5)~~ 7~~fc~1, j + k < m, and hence

Proposition 3.2 implies that

(3.23) \ajk(x0)\
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We define new coordinates y = (yi,. . . ,2/4) by means of dilation map

Dε,X0:R
A—>R4:

y = Dε,Xo(χ)

= (μ(xo, ^)~1a:i, μ(x0, ^)~1^2, ε" V(^o)~ 2 m ^3, ε~ 1<p(x)~2mX4),

where φ(x) is the function ψ expressed in the x-coordinates of #o In terms

of the ^-coordinates, we define an open set W^XQ) by

Wh(x0) = {xeVvnSey, \yk(x)\<b, k = 1,2,3, 0 < y4(x) < σ3'2""1}.

Note that in WI,(XQ), y± = 0 and ΐ/4 = cr3'2™ coincide with r = 0 and

r = εσ3'2™ , respectively, the boundaries of S£j(T. We define a frame Zq,

L2 in Wft(xo) by setting

(3.24) Li = μ(x, 'ί), and

where d = {L^r^L^r) ι . Assuming that L\ and L\ have the expressions as

in (3.21) in Vv, we set Aι(y) — aιoD~lQ(y), D(y) = doD~lQ, Φ = φoDj^,

Bι(y) = bι o D~lQ(y), and Φ/ = -g£ o D ^ o . Then we conclude that in the

y-coordinate of

1=1

Observe that since the diameter in the ^-coordinates of Wf)(xo) is

O(bμ(xo,δ)) <C ̂ (^o), it is clear that μ(x,<5)μ(xo, δ)~λ and Φ(^(xo)~1 are

very close to 1 in WI(XQ) if b is small. We set

\f\m,wb(xo) , |α | < rn},

and we extend this norm to vector fields and 1-forms by using the coefficients

of g^ or άyy From the expression of.αa(x) in (3.22) and by virtue of the

estimates in (3.3) and (3.23), it follows that

lim \δ μ(x, δ)A3(y) - = 0,
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when b < \fσ. Similarly, by direct calculation, one obtains that

1 + 2iεmΦ2m-1Φ32/4 - Σ/=i

Note that μ(x,6) « τ(xo,δ) < ε 1 / m + V(^o) 2 m / m + 1 < φ(xo), and hence it
follows that

liin\δ-1μ(x,δ)D\KWb{xo) = 0.

Combining all these facts, we conclude that if b <

(3.27) lim ' ( d 9 d

where Tm{y) = Tm(3/i,3/2,O,O), and that

.. , , . „ d
lim = 0.

Setting W(XQ) = Wσ(x$), for sufficiently small σ, we obtain (i) and (iii).
By Proposition 3.2, it follows that τ(xo,δ) « μ(x>δ) for x G W(XQ). Since
Li, î 2 is orthonormal with respect to ( , ), we conclude that if σ is small,
then (3.19) and (3.20) hold.

To prove (3.18), we note that τ(xo,δ) « τ(x,δ) if a? £ W{XQ) and that
τ(xoiδ) is defined independent (up to a universal constant) with respect to
coordinate functions (Remark 3.4). These two facts give us (3.18). Π

We need the following proposition to prove the subelliptic estimates
for d equation in dilated coordinates y. We take the orthonormal frame
{Lχ,L2} and its dual frame {u;1,^2}.

PROPOSITION 3.6. There exist a constant Co > 0 ; independent of XQ,
and a list of vector fields {L S ,L S - 1 , . . . ,L1}, where U — L\ or L\, 1 < j <
s, s < m, such that

(3.28) \ω2([Ls,[Ls-\...,[L2,L1}...])(x)\>2c0,

for allx G W(x0).
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Proof. Set L° = L\ and L1 = L\. For {i\ -is) of an s-tuple of O's
and l's, we define inductively by L^1'"^ = [L*',^*1'"*-1)] and set

(3.29) A2l"^(y) = ω2(φ-"^), and

Let /2 be the ideal generated by λ10 = α;2([Li,Li]), and Is be the ideal
generated by /s_χ and both λlo'"Zs. By induction, it is not hard to show
(see [8, 10]) that

(3.30) λ l o" * (y) = CJ9hω
2(y), mod / s_1 ?

where j is the number of O's in (10 is).
Set ηδ = δ~ιη and set wλ = l/2(yi - iy2), w2 = l/2(y4 - 27/3), Dfc =

d/dwk, k = 1,2. Then it follows that ηs(d/dy3) = 1 along M Π K, and
£jtkω2(y) = i/2Cjijiτjδ(y) From the estimates in (3.8), we have:

(3.31) \D{Diηs(d/dyi)(xo)\ < Cjtk, i = 1,2,

for some constants Cj^, independent of x$. Note that L\ has the represen-
tation as in (3.25). Therefore, as in the proof of Proposition 3.2, it follows
that

Cιkω
2(y) = -δ-ιμ(x0,δ) [D{-1ΊDk

1(ΊmDίA3)ηδ(d/dy3)\+Ej+k.lt

where Ej+k-ι satisfy, by virtue of (3.26) and (3.31), that

(3.32) IDlDl

Note that we may write As(y) = E(y) + iA(y), where E(y) satisfies the
estimates as in (3.32). If we combine the definition of τ(xo,δ) and the fact
that τ(xo,δ) « μ(xo,δ), it follows that there exist a constant c\ > 0 and
integers ji, &i, {j\ — 1) + k\ = T(XQ,S), such that

(3.33) \δ-1μ(x

Here T(xo,δ) is defined as in (3.15). Combining (3.32) and (3.33), we get:

(3.34) \CjlMω2(0)\ > 2C l,
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provided that δ is sufficiently small. Set j \ + k\ = T\ and assume that

9i £ Iτi-1- Then by virtue of (3.29) and (3.30), we can write

Ti-l
/Q Or\ \ ~ ^ V~^ rP r 2/ \
\ / ^ x 2 l ^ Z^/ JJ,κ J,κ V^>"

where /^.'s are bounded (by M > 0) independent of #o. If for all j + k < Γi,

then by (3.30), it follows that

for some list {L5, Ls~1

1..., L1} of Li or Li. If not, then there exist J2,

with j 2 + h = T2 < Ti such that

For 2̂ ^ ^τ2?
 w e represent 2̂ &s in (3.35) and proceed as above with ci, Ti

replaced by c2 and T2 respectively. Note that if we iterate down to 1, then

the required inequality vacuously holds. Therefore there exist a constant

co > 0, independent of xo, and a list {L s , . . ., L1} of L\ and L\ such that

Now, by a simple Taylor's theorem argument, it follows that (3.28) holds

for all x £ Wσ(#o) provided that σ is sufficiently small. Π

Using the special frames constructed above, we now want to define 1?-

operators with mixed boundary conditions. We first define nearby almost

complex structures in terms of these special frames. We define a norm

l^-lfc^zo) f° r ^ e restriction of A to W(XQ) by writing A — Σj ι-\ Ajiωι<g>Lj

and then by defining

\A(y)\k = Σ Σ
\a\<k j,l=l
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and \A\ktw(x0) — suP{|^-(l/)U; V £ W(#o)} It is obvious that there exists
εo > 0 so that if |A|0?vκ(x0) < εo> then we can define an almost-complex
structure in W(XQ) by

CA = [L + Λ(L); LeC°z, ze Sε,σ}.

In terms of the frame Li, L2? ωι, ω2 in W(xo), we define

and let 77̂  be the dual frame. Set

(3.36) L? = Xf- - (X1

Λr)(X2

Λr)-1X^1, L$ = X?, and

Obviously, the frame ωι

A, I = 1, 2, is dual to L^, j = 1,2, and Lf r = 0. If

we set

hA _ (vA \(XA N-i _ r x ^

then it follows that

2

(3.37) Lf = Li - 7 i A L 2 + YJλjx - hA~Aj2)L^ and,

In order to measure how L^, j = 1, 2 depend on A, we define

AT

(3.38) Σ

LEMMA 3.7. // A satisfies |A|0>vκ(x0) ^ εo / o r sufficiently small
Λe following pointwise estimates hold for y E W(xo) '

(3.39) |L/ - Lj\k < CkPk(A; y),

(3.40) μ^-Vlfc
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Proof. If we differentiate the expressions in (3.37), then we obtain sums

of terms, each of which contains a finite product of derivatives of A, as in

(3.38). Hence we get (3.39). Similarly, we can get (3.40). Π

Suppose that A satisfies

(3.41) \A\rn+S,W{x0) <
 ε0

Then it is clear that there is an independent constant C > 0 such that

\Lj \m+5,W(x0) < C> |̂ Alm+5,Vf(z0) < C, j , / = 1,2.

In terms of LA, LA, and ω 1, ω2 frame, we define inductively by

^A — l^A'^A J' a n C l ' ΛA \V)— ωA\LA λ

where L^ = L^, L^ = L^ Using Proposition 3.6 and Lemma 3.7, we prove

the following proposition which is crucial in proving subelliptic estimates

in Section 4.

PROPOSITION 3.8. Assume that (3.41) holds for sufficiently small εo >

0. Then there exist a constant c$ > 0, independent of x$, and T = T{XQ),

2 < T < πι, such that for some j + k — T we have:

(3.42) \*T'iT(y)\>co, yew(Xo).

Proof By Lemma 3.7, it follows that we can write, for each s > 1, as:

where \n'"ls{y) is defined as in (3.29). From Proposition 3.6, there is T =

T(x0), 2 < T < m, such that \λlo'"iτ(y)\ > 2c0 for all y G W(x0). Hence

(3.42) follows provided that εo > 0 is sufficiently small. Q

Next, we show that there exists a smooth Hermitian metric on 5 ε ? σ such

that for all xo £ M the frame LA,LA given by (3.24) is orthonormal. For

L G £° and A G rO ' 1(S£ ) ( J) satisfying (3.31), define a bundle isomorphism

PA:C° -* CA by PA(L) = L + A(L). Define a homomorphism HA:C
A ->

, where TlA = {L G £ A ; Lr = 0}, by

JT ( T λ _ τ L T

 Y A _ r Ly* TA
tlA\L>) — L, — —7-Λ2 — L, - —τ L,2
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Then HA ° PA is an isomorphism of TZ onto ΊZA. We define a metric ( , )A

on CA by

((HA o PA)LU (HA o PA)TX)A = (Ii,Ii>, I i , G π,

(L$,L£)A = 1, and

((HAoPA)LuL
A)A = 0, Lxen.

Note that L^ is actually globally defined, so that the above conditions

determine a metric on £ Λ . Since Lj, j = 1,2, defined in (3.24) are an

orthonormal basis of £, it follows that L^, j — 1,2 are an orthonormal

basis of CA with respect to ( , ) A .

Let d F denote the volume form associated with the Riemannian metric

( , ). In the coordinates (t/i,... ,y±) in W(XQ), we can write dV = V(y)dyy

where dy = dy\ dy±, and where V satisfies

\V\k,w(x0) < Ck, and inf V(y) > c> 0,
yeWXxo)

where c is independent of σ, ε, and xo We will define the inner product

for two functions #, h G C°°(Sε ) σ) by

(̂ f5 /ι) = j gh dV.

Then the following lemma follows from the Divergence Theorem.

LEMMA 3.9. Let LA, LA be the frame constructed in W(XQ). Then

there exist functions βj G C°°(W(xo)), j = 1,2; and a function P —

(LA)V) G C°°(W(XQ)), v a unit normal vector, such that for all g, h G

(3.43) (Lfg, h) = -(g,Lfh) - (eι9, h), and

(3.44) (L^,h) = -(gjth) - (e2g,h) - ί PghdS + / PghdS,
JMo JMσ

where dS = V ds, M o = {z; r(z) = 0} and Mσ = {̂  r(z) — eσ 3 ' 2" 1" 1}.

TΛe function P satisfies c < P(^/) < C, y G W(xo); where c and C are

independent of ε, σ, and XQ.
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Let A°>q(Sε^σ] A) denote the space of (0, g)-forms with respect to CA on

Sε,σ, and set

Now let us define, for a given structure CA satisfying (3.41) for small εo, the

L2-operators corresponding to D2 and its adjoint. We define Sc'
q(S£y1A)

to be the set of smooth sections U of r O ' 9 (5 £ j C r ; A) such that support of U

is a compact subset of S£^σ. Let €0'
q(Sε^σ] A) denote the set of sections of

£ c '
ς(Sε ? σ; A) with compact support in the interior of 5 ε ? σ . Suppose that

U = Σι=i Σ | j | = σ ^ J ^ A ' Lf is an element of Γ°iq(Sε^σ; A) with compact

support in W(XQ). We define

(3-45) \\Uf=ί
1=1 \J\=q

where dV is the volume form given by the metric of £°. Since LA, LA is

an orthonormal frame, the quantity in (3.45) is independent of the frame

neighborhood W{XQ). Thus, by using a partition of unity, it follows that

the norm in (3.45) extends to all of Γ°>q(Sεy, A). Let L2

q(Sε,σ,T^°) denote

the set of sections of Γ°>q(Sεy,A) such that (3.45) is finite.

Define Bq_(Sε^σ;A) to be the set of forms in £c"
q(Sεy, A) such that

Uι vanishes on Mo whenever 2 ^ J . (This is also independent of the frame

neighborhood W(XQ).) Similarly, define B^_(S£jσ; A) to be the set of forms in

£ c ' ς ( S ε ? σ ; A) such that Uf vanishes on Mσ whenever 2 G J. We now define

the formal adjoint D'q of Dq on ε^q(Sεy, A) by D'qU = Ge S^q~\S£y, A)

where ( , ) corresponds to the norm in (3.45). Also, by D2 we obviously

mean the operator defined in (2.3) for the structure CA. By combining

(2.3) and (3.43)-(3.44), it follows that if U = Σv Ujωn LA E Γ°'2(Sε;A)

is supported in W(XQ), then

(3.46) D'2U =
ι/=l
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where

(3.47) Tυv = -(LfUv + eλυv)ω\ - (L$UU + e2Uv)ω\

1=1

We now extend the definition of the operator Dq and Dq to the L2-spaces.

We define an operator

by the condition that U 6 Dom(T) and TU = F € L*(Sε,σ,T%°) if for all

V e B9_(Sεy,A), we have

(U,D'qV) = (F,V).

Similarly, if U € L2

q(Sεy, T%°), then U £ Dom(S) and SU = G €

L2

q+1(Sεy, T1/) if for all V e Bq_+1(Sε>σ;A),

(U,D'q+1V) = (G,V).

Note that these definitions imply that if U G Dom(T) (or Dom(S)), then

TU = DqU (or SU = Dq+ιU) as in the sense of distribution theory.

Let T".Ll(Sey,Ti°) — . L^S^ T1/) and S^.L^S^ T1/) — ,

L2

q{S£i(T\TA ) be the Hubert space adjoints of Γ and S respectively. It

follows that if U G Dom(T*), then T*U = D'qU and that if U G Dom(S*),

then S*U = D'q+1U, as in the sense of distributions. Therefore it follows

that

ε*«-\Serf A) ΠDom(T) = β f \Se%σ; A), and,

£c° *(Se,σ; A) Π Dom(Γ ) = ̂ ( 5 ε ? σ ; A).

Similar relations hold for S. Set

; A) = β^.(5ε,σ; A) Π ̂ ( S ε , σ ; A).

Then we can approximate U E Dom(S) ΠDom(T*) by Uμ G β g (5 ε > σ ; A) in

the graph norm of 5 and T* [4, Lemma 6.4]:
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LEMMA 3.10. Let U G Dom(S) Π Dom(T*). Then there exists Uμ G
Bq(Sε^σ;A) such that

lim (\\Uμ - U\\ + \\SUμ - SU\\ + \\T*Uμ - T*U\\) = 0.
μ—•oo

Finally suppose that we have proved the estimate

(3.48) | |C/| | 2<C(| |T*t/| | 2 2

for all U G Bq(Sεy,A). Then Lemma 3.10 shows that (3.48) holds for all
U G DomT* Π DomS. Then from the usual d-Neumann theory it follows
that for all G G L2(5ε,σ;T^°), there exists an element NG G Dom(Γ*) Π
Dom(5) such that

and

(G,V) = (T*(ΛΓG),Γ*F) + (SNG.SV), V G Dom(T*) Π Dom(S).

We will call N the Neumann operator associated with Dq.

§4. The Subelliptic Estimate for Z>2

In this section we prove a subelliptic estimate for the ί
problem with almost-complex structure CA.

We first define tangential norms that will be used in the estimates. For
any sGR, set

= Γ ί
Jo JR3

where /(^, 2/4) = /Rs e ιy''Z f(y',y±) dy'. For any integer k > 0 and any
s G R, set

3=0 dvl

Finally for any integer m > 0 and / G C°°(W(x')), set

\a\<m

By using the coefficients of 17, we can easily define all of the above norms
for any section U of Γ0'9. We define A(S£}Cr) to be the space of sections
A G Γ°'1(5ε,σ; 0) such that along Mo, A(L) = 0 whenever I G Γ0 '1 ΠCTM0.
Then the goal of this section is to prove the following subelliptic estimate:
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THEOREM 4.1. Suppose T(M) = m < oo and that A is a section

of Λ(Sε^σ) that satisfies (3.41) for some small εo > 0. Then there exist

small positive constants σ\ and ει so that if ε < ε\, if σ < σ\, and if

|^.|ra+5,W(x0) — ε> ^ e n ^ιe D2-Neumann problem on 5 ε ? σ for the almost-

complex structure CA satisfies the following estimate for all forms U E

# 2(S£ ) C r; A) that are compactly supported in W{XQ):

(4.1) σ- 3 | | t/ | | 2 + LA(U) + \\U\\^m>1 < C(\\SU\\2 + \\T*U\\2),

where LA{U) is defined by

(4.2) LA{U) = \\LAU\\* + Wlfuf + \\LΛU\\.

Now set Xx =ReLA = Σ L i alk^, X2 = ϊmLA = ^ L i " 2 * ^ , and
llαΊlr = Σfc=i llαifcllr> ί = 1,2. Assume that A satisfies (3.41). Then the

restriction of LA to the level set y^ = λ is a Cm + 5-vector field uniformly in

λ.

PROPOSITION 4.2. Let X\, X i be smooth compactly supported vector

fields in M.4 and suppose that there exists a set K <s K4 and a constant c > 0

and vector fields X 1 , . . . , Xm, X1 = X\ or X2, i = 1,2,..., m, so that for

all x G K,

(4.3) \nύ

d 1
η G T;, η(-) = 0, \η\ = 1 I > c.

Then there exists a constant C independent of X\, X2 so that for all U G

C£°(M4) with suppC/ C K,

( Y
(4.4) \\U\\l-m < C I 1 + Σ \\aifm+5 (HXxf/f + \\X2U\\2 + \\U\\2).

Proof. The proof is similar to that of [7]. We just observe carefully

how the coefficient functions depend. Then we can show, by induction, that

the coefficient functions a? of Xi, X2 appear as in the right hand side of

(4.4).
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If we combine Proposition 3.8 and Proposition 4.2, we have the follow-

ing corollary.

COROLLARY 4.3. Assume that T{M) < m and that (3.41) holds for a

sufficiently small ε0 > 0. Then for all f G C§°(W(x')),

(4.5) |||/||β_m < C(\\Ltf\\2 + ||lf/||2) + C\\f\\\

where C is independent of x' and εo

Proof. Since we are assuming (3.41), the coefficients α^ of X{, i — 1, 2

satisfy ||αifc||m+5 < C Therefore by virtue of the estimates in (3.42), the

corollary follows from Proposition 4.2.

For convenience, in all that follows in this section, we omit the notation

A from the frames L^ L^, and ω\, ω2

A, Note that in W(xo), we have

technically chosen so that 2/4 = 0 and t/4 = cr3'2™ coincide with r = 0

and r = εσ3'2™ , respectively, the boundaries of 5 ε ? σ . Then the following

lemma can be proved by modifying the proof of Lemma 7.7 in [4].

LEMMA 4.4. Suppose that f G CQ°(W(XO)) and that f vanishes on MQ

or on Mσ. If σ is sufficiently small, say σ < σ\, then there exists a constant

C independent of ε, σ, and XQ SO that for all f G C

(4.7) σ-3 | |/ | |2 < C ( | | I 2 / | | 2 + \\Lxf\\2 + ||Xi/||2), and

(4.8) σ-3 | |/ | |2 < C(\\L2f\\2 + \\Lλf\\2 + \\Lrf\\2).

We now return to the proof of Theorem 4.1. If U G B2(S£, A), then U

can be written as U = Σ}j= 1 Uiω1 Aω2 L/, where U\ = 0 on M σ , / = 1, 2.

This fact makes us easy to handle the boundary terms occuring when we

integrate by parts. Assume that suppf/ <e W(XQ). Then it is obvious that

SU = 0, and it follows from (3.46) and (3.47) that

T*U = Df

2U = BU + O(\U\),

where
2

(4.9) BU = - Σ(LιUiω2 + L2Uιωι) Lh

1=1

Hence it follows that

(4.10)
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and we conclude from (4.9) that

\\BUf =

S. CHO

2 2

1=1 j=l

If we use Lemma 3.9 and the boundary conditions, we get, for U = Uι, that

\\LXU\\2 = (Lit/,L&) = -(LλLλU,U) - {LλU,eiU)

= -{L{LXU,U) + {[Luτx}U,U) - (At/,eιU)

= (lit/,lit/) + (LiU&U) - (LMeiU) + {[UMψ^U).

Note that we can write

2 2

Set c2

n = CJ'([LI,LI]), and 4 i = ^ '([ i i j ΐ i ]) . Then

2 2

and hence

WL.UW2 = \\LtU\\2 + (c? !^^, U) + (d2

nL2U, U) + O&WL&W + ||

Note that

(dj^U.U) = -(U,L2(d2

nU)) - (e2U,d2

nU) - I d2

n\U\2dS,

JMo

because U = 0 on Mσ. Therefore it follows that

= \\\LXU\\2-\ ί dl
2 2 JMo2 2 2 JMo

and hence from (4.2) we have

1 ί 2 I I2

2 JMo

>WV)-\I d?il
3 2 iMo
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provided that σ is sufficiently small. Note that d\λ = — c\λ — —α;2([Li,Li])

< 0 on Mo because Mo is pseudoconvex. Therefore we get

(4.11) ||SC^|

By combining (4.10) and (4.11) we get

(4.12) \LA{U) - Cσ-'WUf < 2\\T*U\\2.

From (4.5) and Lemma 4.4, it follows that

(4.13) \\\U\\\lm+σ-3\\Uf<CLΛ(U).

If we combine (4.10), (4.12) and (4.13) we obtain for sufficiently small σ

that

(4.14) σ-3 | |t/||2 + LΛ(U) + \\\U\\\l-m < C(\\T*Uf + \\SU\\2).

For the estimates of the non-tangential derivatives of £/, we note that L2 =

-£- + X, where X = ]Cj=i bj(y)-£~. Therefore a standard argument yields

the inequality

(4.15) ||||^|||2_1+2_m < σ ( i + χ ; i^ l 2 ^ ( c c o ) , 5 ) ( l l l / l l lU + l l ^ / l l 2 + ll/ll2),

for all / G CQ°(W(XO)), where W(XQ) is a neighborhood containing W{XQ).

This inequality can be applied with / = U\ and one obtains (4.1) combining

(4.13)-(4.15). This completes the proof of Theorem 4.1.

We now define Sobolev spaces for sections of Γ°'ς ί(Sε ) σ; A). Recall that

the open sets B^XQ) satisfy (3.19) and (3.20) for each XQ G M. Choose a

set Tσ = {xf e M, i e 1} such that the sets -Bcσ/2(fff)j 2 ^ ^ cover 5 e ? σ ,

and such that no two points xf and xσ satisfy \x? — xσλ < cσ/4 where | | is

the distance function on 5 ε ? σ . It follows that the sets W(xf), i G/, cover

5£ j i 7 and that there exists an integer N such that no point of 56jCr lies in

more than N of the open sets W{x°). Furthermore, there exist functions

ζi, Ct (that are independent of y2n) G C§°(W(x?)) such that Σ i e / C ? = h

such that if ar G suppζi, then

(4.16) Cί = 1 in βc/σ(x),
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and such that both ζi and £ί satisfy

(4-17) iCtlfc^sf) + IC'U,w(a^) < Ckσ~ .

Now let F be any section of Γ 0 ' g (5 ε , σ ; A). We define

26/

where

and where F — ]C?=i Σ | j |=σ -^/ωA ' ̂ f is the decomposition of F in terms

of the L^, L£, ω\, ω\ frame of W(x°). Moreover, the Sobolev norm

II IU,vκ(xf) i s taken with respect to the ̂ /-coordinates of W(x?). We define

Hlq{Sεy,T1/) to be the set of all sections F of Γ°>q(S£y,A) for which

| | F | | M < oo. If we define L2

q(Sεy,T^°) to be the set of all F e Γ°'«(5e,σ; A)

such that HFII2 < oo, then it is obvious that the norms || || and || ||O,Λ &*e

equivalent on L2

q(Sεy,T^ ). We also define A(S£i<r) to be the space of

sections A G Γ0 > 1(S ε ) σ;0) such that along Mo, A{L) = 0 whenever L G

Γ 0 ' 1 ΠCΓMo. Since A{Sε,σ) C Γ ^ S ^ O), we define \\A\\h = | |A | | M , and

we define Hk{Sεy, A) to be the set of A G A(S£i<r) such that \\A\\k < oo.

We want to get an estimate in global form. Define Q(ί7, U) = ||T*t/||2-|-

||SC/||2. By using the partition of unity as defined above satisfying (4.16),

(4.17), and the estimates in Theorem 4.1, we obtain:

COROLLARY 4.5. Suppose that A satisfies (3.41) for all XQ G M. Then

there exists a fixed small σ and a constant ε\ > 0 such that for all ε, 0 <

ε < ει, and all U G Dom(T*) Π Dom(S'),

(4.18) \\U\\2<CQ(U,U).

Now let us fix σ > 0, satisfying Corollary 4.5 and set W(XQ) — Wσ(xo).

Using Theorem 4.1 and the standard "bootstrap" method, we can get reg-

ularity estimates for the linearized equation. The proof follows the method

similar to the proof in Section 9 of [4].

THEOREM 4.6. Suppose that (3.41) holds and that U is the solution of

ΏU = G, where G G #£' 2 (S ε ;T^ ' 0 ) for all k > 0. Then for all integers
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k > 1 and each pair of functions ζ, ζ' in CQ°(W(X(J)) as in (4.16) and

(4.17), U, D*2U satisfy

(4.19) \\ζU\\k < | |C'G|| f c_ 2 6 + (1 + | |A| | f c + 1)( | |C'G| | 5 + \\ζ'U\\) and

\\CD*2U\\k < \\ζ'G\\k + (1 + | |A| | f c + 2)( | |C /G|| 5 + \\ζ'U\\).

Note that N(j) = {i G /; W(xf) Π W(x?) φ 0} is bounded by a fixed

number N > 1. Also it follows from (3.18) and Lemma 3.7 that the frames

L^'j in W(x?) and L^ in W(xf), k = 1,2, are related by

where Bkf
ι satisfies

1=1

(4.20) ^ t

Similarly if w\ ^ j = 1,2, is the dual frame of Lk

ύ', then there exists a

matrix bk'
Jl such that w\ • — Σι=ι ^ f ^ Λ ΐ ' ^ — 1?2, where 6fc J

 72 satisfies

(4.21) \D$bif\<l + Pm^{A).

Therefore it follows from (4.20) and (4.21) that for a section V in Γ ^ ( S e ; A),

q = 1,2, and for functions £?, Cj € C o 0 ^ / ) satisfying (4.16), (4.17), we
have:

(4.22) IIC^H

We now state the estimate (4.19) in global form.

THEOREM 4.7. Assume that ΏU = G, where G G #£' 2 (5 ε ;T^'°) for

all k and that A satisfies (3.41). Then

(4.23) \\D*2U\\k < \\G\\k + (1 + | |A | | f c + 2 ) | |G| | 5 .

Proof. Set ζ = ζj € C$°(W(x?)) in (4.19) and sum up over j and then
apply (4.22). Then we get

\\D*2U\\k < \\G\\k + (1 + | |A| | f c + 2)( | |G| |5 + \\U\\).

Since (4.18) holds, it follows that

and this proves (4.23). Q
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§5. Extension of CR structures

In this section we will prove Theorem 1.1 and Theorem 1.2 using the

estimates in Section 4. If A £ A(S£}(r) is sufficiently small and if we set

PA(L) = ~L + A(L), then ZA = {PA(L)\L G £} . If we set QA(ω) =

ω—A*α>, then Λ^ = {QA{ω)\ ω E Λ1 '°(£)}. We define a nonlinear operator

) -* Γ°'2(5 ε ? σ) as follows:

(5.1) Φ(A)(L\L\ω) = QA(ω)([PA(L\PA(L")}).

Obviously, if Φ(A) = 0, then CA is an integrable almost complex structure

on S ε ? σ.

Note that there is a natural map VA\ Γ^ —» Γ0 '2, defined as follows: if

B e Γ0/, we define VAB by

(VAB)(Ll9L2,ω) = 5 ( P A ( I I ) , P A ( I 2 ) 5 Q A H ) .

Therefore it follows from the definition of FA in (2.5) that Φ(A) = ^ Λ ( ^ Λ )

We note also that if d and A are small sections of Λ on 5 ε > σ, then there

exist sections Δ+ d and Δ~ d of Λ^'1 ® T^'° and Λ^'1 (8) T^'1, respectively, so

that

= PA(L) + Aχd(PA(L)) + Δ-Ad{PA{L)).

Similarly, there exist sections δ^ δ and δ^ δ of Horn (ΛA' , Λ^ ) and

Hom(ΛΛ' ,ΛA' ), respectively, so that

QA+d(ω) = QA(ω) - δ\d{QA{ω)) - 6^d(QA(ω)).

Then it follows that AA(d) = AA d both depend linearly on d and that the

coefficients depend smoothly on A, and that the mapping d —• Δ^(c?) =

A\(d) + A^(d) is invertible. Then Φ/(A)(d), as an element of Γ0 '2, satisfies

(5.2) Φ'(A)(d) = (VA o D£ O Δ+)(d) - VA{hA{d){FA)\

where hA(d): T1/ —> T1/ denotes the adjoint of δ\(d)\ Λ^° —• T1/. Since

Φ(A) = VA(FA), we let UA be the solution of ΏUA = -FA and then set

VA = (D£)*UA and then set dA = Δ ^ V Λ ) . Since D 3 = 0, it follows that

D£VA = -FA. Hence we have from (5.2) that

(5.3) Φ(A) + Φ;(i4)cίA - ^ A ( F A + D^VA) - VA{hA{dA)(FA))
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Using the representations in (5.2) and (5.3), we can now obtain that (as in

Section 11 in [4]), Φ(A) + Φ/(A)(<IA) vanishes in second order in Φ(A). This

is a key property in the Nash-Moser approximation process.

We recall that FA vanishes in infinite order along Mo (in ^-coordinates!)

This can be stated in ^-coordinates as follows. The proof is similar to that

of Lemma 6.2 in [4].

LEMMA 5.1. Suppose that there exists a section F E ΓOj2(Ω ) where

Ω = {(x,t) E Ω; 0 < t < 1} such that F and all its derivatives vanish to

infinite order along M. Then for all k, N = 0,1, 2,..., and all XQ E M,

(5-4) \F\w<X0) < Ck>NεNφ(x0)
N,

where F° means that F is written out in W(XQ) according to the frame L\,

L°2, ωl, ωl of £° (CA with A = 0).

We can now prove the main theorems of this paper:

Proof of Theorem 1.1. We will show that ||Φ(0)||£) < b for the small

b > 0 and the integer D which are appeared in the variant of Nash-Moser

theorem [4, Theorem 13.1]. As in Section 11 of [4], the rest of the proper-

ties for the Φ(A) in the hypothesis of Nash-Moser theorem can be proved

using the relations in (5.2) and (5.3), and the estimates for D operator in

Section 4.

Note that (4.17) and (5.4) imply that for each i E /,

so that after summing up over xf,

(5.5) \\F°\\lAΦ<C

Since the choice of the points that was made before (4.17) shows that the

balls Bsσζx?), z E /, are all disjoint, we can obtain an upper bound on

N(l), which is defined to be the number of i E / such that 2~ί~1 < φ(xf) <

2~ι. In fact, in terms of the ( , }o-metric introduced in Section 2, the

volume of Bcσ(χ?) is roughly bounded below by ε3σ3(1+2τn~1ϊφ(x?)6m ~

ε3σ3(i+2—1)2-6im ? a n d t h e ( ? )0-V 0lume of the region in 5 ε ? σ with 2~ι~ι <
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φ(x) < 2~ι is roughly bounded above by εσ3'2™ .2~2ml, Thus, we conclude

that

(5.6) N(l) < ε-2σ-324ml.

Thus (5.5) and (5.6) imply that if N = 4ml + 1, then

\\Φ(A)\\k = \\F°\\kfi<Ck.ε

for sufficiently small ε. In particular, if we set k = D, and choose ε to be

sufficiently small, then it follow that | |Φ(A)||p < b. Π

Proof of Theorem 1.2. Since M C bD is a compact pseudoconvex CR

manifold of finite type, we conclude from Theorem 1.1 that there exist a

continuous nonnegative function g and an integrable almost complex struc-

ture £ + on

S+ = { (^t ) G M x R ; 0 < t < g(x)}.

Moreover, since £ + is a small perturbation of £°, which satisfies dt{Jco{Xo))

< 0, it follows that dt(Jc+(X0)) < 0.

Let C~ be the integrable almost complex structure on D. We can

smoothly extend C+ and C~ to Sg = S+ U 5~, where S~ = {(x, ί) G

M x R; —ff(a ) < t < 0}. It follows that C+ and £~ are integrable to

infinite order along M G bD. Hence, Theorem 2.2 implies that there is a

diffeomorphism G: Sg —>• 5^ so that G*(£ + ) = C~ to infinite order along

M. Since CΪ both satisfy dt(Jc±(X0)) < 0, the proof of Theorem 4.2 in [4]

shows that G maps 5^" to Ŝ ~. Thus, if we define C on Sg by £ z = ( G * £ + ) 2

if z E >5̂  and Cz = £~ if z G S", then £ is integrable on Sg. •
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