S. Cho

Nagoya Math. J.
Vol. 152 (1998), 97-129

EXTENSION OF CR STRUCTURES ON THREE DIMENSIONAL PSEUDOCONVEX CR MANIFOLDS

SANGHYUN CHO ${ }^{1}$

Abstract

Let \bar{M} be a smoothly bounded orientable pseudoconvex $C R$ manifold of finite type and $\operatorname{dim}_{\mathbb{R}} M=3$. Then we extend the given $C R$ structure on M to an integrable almost complex structure on S_{g}^{+}which is the concave side of M and $M \subset b S_{g}^{+}$.

§1. Introduction

Let \widetilde{M} be a smooth orientable manifold of dimension $2 n-1$ and let $\bar{M} \subset \widetilde{M}$ be a smoothly bounded $C R$ manifold with a given $C R$ structure \mathcal{S} of dimension $n-1$. Since \widetilde{M} is orientable, there are smooth real nonvanishing 1-form η and smooth real vector field X_{0} on \widetilde{M} so that $\eta(X)=0$ for all $X \in \mathcal{S}$ and $\eta\left(X_{0}\right)=1$. We define the Levi form of \mathcal{S} on \bar{M} by $i \eta\left(\left[X^{\prime}, \bar{X}^{\prime \prime}\right]\right)$.

In [4], Catlin has considered an extension problem of a given $C R$ structure on M to an integrable almost complex structure on a $2 n$-dimensional manifold Ω with boundary so that the extension is smooth up to the boundary and so M lies in $b \Omega$. Under certain conditions on the Levi form (cf., [4, Theorem 1.1, Theorem 1.3]), this leads to a solution of the Kuranishi problem [1, 9, 13], which is to show that an abstract $C R$ manifold can be locally embedded in \mathbb{C}^{n}.

In this paper, we consider an extension problem of a given $C R$ structure on M when M is a pseudoconvex $C R$ manifold of finite type and $\operatorname{dim}_{\mathbb{R}} M=$ 3. For a given positive continuous function g on M, where $g=0$ on $b M$, we define

$$
S_{g}^{+}=\{(x, t) \in M \times[0, \infty) ; 0 \leq t \leq g(x)\}
$$

Then our main result is the following theorem:
Theorem 1.1. Let $\bar{M} \subset \widetilde{M}$ be a smoothly bounded orientable pseudoconvex $C R$ manifold of finite type with given $C R$ structure \mathcal{S} on M and

[^0]$\operatorname{dim}_{\mathbb{R}} M=3$. Then there exists a positive continuous function g on M and a smooth integrable almost complex structure \mathcal{L} on S_{g}^{+}such that for all $x \in M, \mathcal{L}_{(x, 0)} \cap \mathbb{C} T M=\mathcal{S}_{x}$. Furthermore, if $\mathcal{J}_{\mathcal{L}}: T S_{g}^{+} \rightarrow T S_{g}^{+}$is the map associated with the complex structure \mathcal{L}, then $\operatorname{dt}\left(\mathcal{J}_{\mathcal{L}}\left(X_{0}\right)\right)<0$ at all points of $M_{0}=\{(x, 0) ; x \in M\}$.

Note that we extend the given $C R$ structure on M to the concave side (instead of convex side) of M. We also note that if M is strongly pseudoconvex, this case was handled in [4, Theorem 1.1]. Theorem 1.1, in general, would not imply the local embedding of M into \mathbb{C}^{2} (cf., $[2,6]$). But we have the following theorem as an application of Theorem 1.1.

Theorem 1.2. Let D be a complex manifold with C^{∞} boundary and $\operatorname{dim}_{\mathbb{C}} D=2$. Suppose that the almost complex structure on D extends smoothly to a manifold $\bar{M} \subset b D$ where \bar{M} is compact pseudoconvex $C R$ manifold of finite type with smooth boundary and $\operatorname{dim}_{\mathbb{R}} M=3$. Then D can be embedded in a larger complex manifold Ω so that M lies in the interior of Ω as a real hypersurface.

Remark 1.3. In [5], the author showed that any smooth compact pseudoconvex complex manifold \bar{D} of finite type with $\operatorname{dim}_{\mathbb{C}} D=n, n \geq 2$, can be embeded into a larger complex manifold Ω. Theorem 1.2 is a generalization of this result to non-compact complex manifolds of complex dimension 2.

In [4], Catlin has introduced certain nonlinear equations which come from deformation theory of an almost complex structure. The linearized forms of these equations are simply the $\bar{\partial}$-operator from $\Lambda^{0,1} \otimes T^{1,0}$ to $\Lambda^{0,2} \otimes T^{1,0}$. The solutions of these equations represent sucessive corrections that must be made in the iterative process of solving the nonlinear equation. To overcome difficulties in subelliptic estimates for $\bar{\partial}$ near $b M$, we choose a Hermitian metric on S_{g}^{+}so that S_{g}^{+}takes on the form $S_{\varepsilon}=M \times[0, \varepsilon]$, where M is a complete noncompact manifold. To this end, we choose, for each $x_{0} \in M$, a noneuclidean ball that is of size $\delta=g\left(x_{0}\right)$ in the transverse holomorphic direction and of size $\tau\left(x_{0}, \delta\right)$ in the tangential holomorphic direction. Some technical difficulties in constructing the quantity $\tau\left(x_{0}, \delta\right)$ is handled in Section 3. Here we introduce special coordinate changes (Proposition 3.1) so that the tangential vector field L_{1} can be written in a suitable form. These change of coordinates will have an
independent interest in studying the $C R$ manifolds of finite type. To study the behavior of $\tau\left(x_{0}, \delta\right)$, we introduce a smoothly varying function $\mu(x, \delta)$ which is defined invariantly. Then it follows that $\tau(x, \delta) \approx \mu(x, \delta)$ (Proposition 3.2), and hence $\tau(x, \delta)$ is defined invariantly. Also $\tau(x, \delta)$ satisfies "doubling property" (Corollary 3.3), which is one of a crucial property of $\tau(x, \delta)$. Equipped with all of these necessary properties of $\tau(x, \delta)$, we perform some careful subelliptic estimates of the $\bar{\partial}$ type equation on each of these noneuclidean balls (Section 4). Then this will give us the estimates so called "tame estimates", which are required in the Nash-Moser method for the approximate solution to the linearized equation. Then the rest of the procedure is similar to those of Catlin's, which uses the simplified version of Nash-Moser theorem [12].

I would like to thank David Catlin for his helpful discussion during the preparation of this paper.

§2. Deformation of almost complex structures

Let M be a $C R$ manifold as in section 1 and set $\Omega=M \times(-1,1)$. In this section we extend a given $C R$ structure on M to an almost complex manifold Ω, and we consider a deformation problem of an almost complex structure on Ω so that the new (deformed) amost complex structure is integrable (or close to be integrable).

Since Ω is an almost complex manifold of $\operatorname{dim}_{\mathbb{R}} \Omega=4$, there is a subbundle \mathcal{L} of $\mathbb{C} T \Omega$ of dimension 2 (over \mathbb{C}) such that $\mathcal{L} \cap \overline{\mathcal{L}}=\{0\}$. Let A be a smooth section of $\Gamma^{1}(\mathcal{L})=\Lambda^{0,1}(\mathcal{L}) \otimes \mathcal{L}$, where $\Lambda^{0,1}(\mathcal{L})$ denotes the set of $(0,1)$ forms with respect to \mathcal{L}. Observe that if A is sufficiently small, then the bundle $\mathcal{L}^{A}=\{L+\bar{A}(L) ; L \in \mathcal{L}\}$ defines a new almost complex structure and if \bar{L}^{\prime} and $\bar{L}^{\prime \prime}$ are sections of $\overline{\mathcal{L}}$, then $\bar{L}^{\prime}+A\left(\bar{L}^{\prime}\right)$ and $\bar{L}^{\prime \prime}+A\left(\bar{L}^{\prime \prime}\right)$ are sections of $\overline{\mathcal{L}^{A}}$. Similarly, if ω is a section of $\Lambda^{1,0}(\mathcal{L})$, then $\omega-A^{*} \omega$ is a section of $\Lambda^{1,0}\left(\mathcal{L}^{A}\right)$ where the adjoint A^{*} maps from $\Lambda^{1,0}(\mathcal{L})$ to $\Lambda^{0,1}(\mathcal{L})$ and is defined by

$$
\begin{equation*}
\left(A^{*} \omega\right)(\bar{L})=\omega(A(\bar{L})) \tag{2.1}
\end{equation*}
$$

for all $\bar{L} \in \overline{\mathcal{L}}$ and $\omega \in \Lambda^{1,0}$. We want to choose A so that

$$
\left(\omega-A^{*} \omega\right)\left(\left[L^{\prime}+A\left(L^{\prime}\right), L^{\prime \prime}+A\left(L^{\prime \prime}\right)\right]\right)=0
$$

By linearizing, i.e., by ignoring terms where A or A^{*} appear more than once, we obtain

$$
\begin{equation*}
\omega\left(\left[L^{\prime}, A\left(L^{\prime \prime}\right)\right]\right)+\omega\left(\left[A\left(L^{\prime}\right), L^{\prime \prime}\right]\right)-A^{*} \omega\left(\left[L^{\prime}, L^{\prime \prime}\right]\right)=-\omega\left(\left[L^{\prime}, L^{\prime \prime}\right]\right) \tag{2.2}
\end{equation*}
$$

Let $L=L^{\prime}+L^{\prime \prime}$ denote the decomposition of a vector $L \in \mathbb{C} T_{z}$ where $L^{\prime} \in \mathcal{L}_{z}$ and $L^{\prime \prime} \in \overline{\mathcal{L}}_{z}$. For sections \bar{L}_{1}, \bar{L}_{2} of $\overline{\mathcal{L}}$, we define

$$
\begin{equation*}
\left(D_{2} A\right)\left(\bar{L}_{1}, \bar{L}_{2}\right)=\left[\bar{L}_{1}, A\left(\bar{L}_{2}\right)\right]^{\prime}-\left[\bar{L}_{2}, A\left(\bar{L}_{1}\right)\right]^{\prime}-A\left(\left[\bar{L}_{1}, \bar{L}_{2}\right]^{\prime \prime}\right) \tag{2.3}
\end{equation*}
$$

Note that this definition is linear in \bar{L}_{1} and \bar{L}_{2} so $D_{2} A$ is a section of $\Gamma^{2}=\Lambda^{0,2}(\mathcal{L}) \otimes \mathcal{L}$. It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

$$
\begin{equation*}
D_{2} A=-F \tag{2.4}
\end{equation*}
$$

where F is a section of Γ^{2} defined by

$$
\begin{equation*}
F\left(\bar{L}_{1}, \bar{L}_{2}\right)=\left[\bar{L}_{1}, \bar{L}_{2}\right]^{\prime} \tag{2.5}
\end{equation*}
$$

Note that F measures the extend to which \mathcal{L} fails to be integrable. If \mathcal{L} defines a $C R$ structure on $M \subset b \Omega$ and if we want \mathcal{L}_{A} to define the same $C R$ structure on M, then this means that A must satisfy $A\left(\bar{L}^{\prime}\right)=0$ on M whenever \bar{L}^{\prime} is a section of $\overline{\mathcal{L}}$ that is tangent to M. This is a Dirichlet condition on some of the components of the solution of (2.4).

Since $\operatorname{dim}_{\mathbb{C}} \Omega=2$, it follows that $D_{3} B=0$ for all $B \in \Gamma^{2}$, where $D_{3}: \Gamma^{2} \longrightarrow \Gamma^{3}$ is defined by

$$
\begin{aligned}
D_{3} B(& \left.\bar{L}_{1}, \bar{L}_{2}, \bar{L}_{3}\right) \\
= & {\left[\bar{L}_{1}, B\left(\bar{L}_{2}, \bar{L}_{3}\right)\right]^{\prime}-\left[\bar{L}_{2}, B\left(\bar{L}_{1}, \bar{L}_{3}\right)\right]^{\prime}+\left[\bar{L}_{3}, B\left(\bar{L}_{1}, \bar{L}_{2}\right)\right]^{\prime} } \\
& -B\left(\left[\bar{L}_{1}, \bar{L}_{2}\right]^{\prime \prime}, \bar{L}_{3}\right)+B\left(\left[\bar{L}_{1}, \bar{L}_{3}\right]^{\prime \prime}, \bar{L}_{2}\right)-B\left(\left[\bar{L}_{2}, \bar{L}_{3}\right]^{\prime \prime}, \bar{L}_{1}\right) .
\end{aligned}
$$

Now set $\Omega=M \times(-1,1)$. Then we have the following formal solution of the extension problem [4, Theorem 4.1].

Theorem 2.1. Suppose that M is an orientable $C R$ manifold of dimension $2 n-1$ such that the $C R$ dimension equals $n-1$. Then there exists an almost complex structure \mathcal{L}^{*} on $\Omega=M \times(-1,1)$ such that \mathcal{L}^{*} is an extension of the $C R$ structure on M, and such that it is integrable to infinite order at M in the sense that if ω is a section of $\Lambda^{1,0}\left(\mathcal{L}^{*}\right)$ and \bar{L}_{1}, \bar{L}_{2} are sections of $\overline{\mathcal{L}}^{*}$, then $\omega\left(\left[\bar{L}_{1}, \bar{L}_{2}\right]\right)$ vanishes to infinite order along M.

The next theorem shows that the above formal extension is essentially unique.

Theorem 2.2. ([4, Theorem 4.2]) Let M and Ω be as in Theorem 2.1. Suppose that \mathcal{L} and \mathcal{X} are almost complex structures on Ω that extend the $C R$ structure on $M_{0}=\{(x, 0) ; x \in M\}$, and that are integrable to infinite order on M_{0} as in Theorem 2.1. Then, there exists a diffeomorphism G of Ω onto itself that is the identity when $t=0$ and such that $G_{*} \mathcal{X}$ approximates \mathcal{L} to infinite order near M_{0} in the sense that if X is a section of \mathcal{L}, then $G_{*} X$ differs from a section of \mathcal{L} by a vector field which vanishes to infinite order on M_{0}.

Now assume that $\operatorname{dim}_{\mathbb{R}} M=3$ and let $\Omega=M \times(-1,1)$. By Theorem 2.1, we have an almost complex structure \mathcal{L}^{*} that is integrable to infinite order along $M_{0}=\{(x, 0) ; x \in M\}$. Let η be a smooth non-vanishing one form on M that satisfies $\eta(L)=0$ for all $L \in \mathcal{S}_{x} x \in M$, and that defines the Levi form of M as in Section 1. We can clearly extend η to all of Ω so that it still annihilates $\mathcal{S}_{(x, t)}$ for all $(x, t) \in \Omega$, where $\mathcal{S}_{(x, t)}$ now denotes the space of vectors in $\mathcal{L}_{(x, t)}^{*}$ that are tangent to the level set of the auxiliary coordinate t.

Choose a smooth real vector field X_{0} on Ω that satisfies $X_{0} t \equiv 0$ and $\eta\left(X_{0}\right) \equiv 1$ in Ω. Set $Y_{0}=-\mathcal{J}^{*}\left(X_{0}\right)$ so that $X_{0}+i Y_{0}$ is a section of \mathcal{L}^{*} that is transverse to the level set of t. Let $G: \Omega \longrightarrow \Omega$ be a diffeomorphism such that G fixes M_{0} and

$$
G_{*} Y_{\left.0\right|_{(x, 0)}}=\frac{\partial}{\left.\partial t\right|_{(x, 0)}}, x \in M .
$$

Since M is orientable, we may assume that $d t\left(\mathcal{J}_{\mathcal{L}^{*}}\left(X_{0}\right)\right)$ is always negative. Thus $d t\left(Y_{0}\right)>0$ along M_{0}, which shows that G preserves the sides of M_{0}; i.e., G maps $\Omega^{+}=\{(x, t) ; 0 \leq t<1\}$ into itself. If we set $\mathcal{L}^{0}=G_{*} \mathcal{L}^{*}$, then clearly $\widetilde{Z}=-i G_{*}\left(X_{0}+i Y_{0}\right)$ is a section of \mathcal{L}^{0} such that along M_{0},

$$
\widetilde{Z}=-i X_{0}+\frac{\partial}{\partial t}
$$

If we write $\widetilde{Z}=\widetilde{X}+g(x, t) \frac{\partial}{\partial t}$, where $\widetilde{X} t \equiv 0$, then we set $L_{2}=g^{-1} \widetilde{Z}$. Then $L_{2}=\frac{\partial}{\partial t}+X$ where $X t \equiv 0$. We fix a smooth metric \langle,\rangle_{0} that is Hermitian with respect to the structure \mathcal{L}^{0} on Ω, and let $\left\{L_{1}, L_{2}\right\}$ be an orthonormal frame defined in a neighborhood of $p \in M$. Note that along M, we have $L_{2}=\frac{\partial}{\partial t}-i X_{0}$ and $d t=\frac{1}{2}(d t+i \eta)+\frac{1}{2}(d t-i \eta)$, which implies that $\partial t=\frac{1}{2}(d t+i \eta)$. Hence $\partial t(L)=\frac{1}{2} d t(L)+\frac{i}{2} \eta(L)$ and

$$
\begin{equation*}
\partial t\left(\left[X_{1}, \bar{X}_{2}\right]\right)=\frac{i}{2} \eta\left(\left[X_{1}, \bar{X}_{2}\right]\right) \tag{2.6}
\end{equation*}
$$

for all $X_{1}, X_{2} \in \mathcal{S}_{(x, t)}$, along M.
Definition 2.3. We say $p \in \bar{M}$ is of finite type if there exist a list of vector fields L^{1}, \ldots, L^{m}, with $L^{i}=L_{1}$ or $\bar{L}_{1}, i=1,2, \ldots m$, so that $\partial t\left(\left[L^{m},\left[L^{m-1}, \ldots\left[L^{2}, L^{1}\right] \ldots\right]\right) \neq 0\right.$ at p. The smallest integer m satisfying $\partial t\left(\left[L^{m},\left[L^{m-1}, \ldots\left[L^{2}, L^{1}\right] \ldots\right]\right) \neq 0\right.$ is called the type at $p \in \bar{M}$.

It is obvious that this definition is an open condition. Observe also that, if $p \in M$ is of type m, then $L_{1}, \bar{L}_{1},\left[L^{m}, \ldots,\left[L^{2}, L^{1}\right] \ldots\right]$ span all local vector fields tangent to M because $\partial t\left(L_{1}\right) \equiv 0$.

§3. Special Frames for Almost-Complex Structures

Let $M, \Omega, X_{0}, L_{1}, L_{2}$ and \mathcal{L}^{0} be as in Section 2. In this section, we will construct special coordinate functions defined in a neighborhood of $z_{0} \in M$.

First, we note that $X_{0} t \equiv 0$ on Ω and hence there is a neighborhood $V_{z_{0}}$ of z_{0} such that there exist coordinates $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ with the property that $u_{4}=t$ and $u_{k}\left(u^{\prime}, t\right)=u_{k}\left(u^{\prime}, 0\right), k<4$ for $\left(u^{\prime}, t\right) \in V_{z_{0}}$, and that $\partial / \partial u_{3}=-X_{0}$ at all points of $M \cap V_{z_{0}}$. For any point $x_{0} \in V_{z_{0}} \cap M$, we define an affine transformation $C_{x_{0}}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ so that if $\left(x_{0}^{\prime}, 0\right) \in \mathbb{R}^{4}$ are the coordinates of x_{0}, then

$$
C_{x_{0}}\left(u^{\prime}, t\right)=\left(P_{x_{0}}\left(u^{\prime}-x_{0}^{\prime}\right), t\right),
$$

where the 3×3 constant matrix $P_{x_{0}}$ is chosen so that if new coordinates $x=\left(x_{1}, \ldots, x_{4}\right)$ are defined by $x=C_{x_{0}}(u)$, then

$$
\begin{equation*}
L_{\left.1\right|_{x_{0}}}=\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}, \text { and } X_{\left.0\right|_{x_{0}}}=-\frac{\partial}{\partial x_{3}} . \tag{3.1}
\end{equation*}
$$

Note that the second equality actually implies that $X_{0}=-\frac{\partial}{\partial x_{3}}$ at all points of $V_{z_{0}} \cap M$ and that $L_{2}=\frac{\partial}{\partial t}-i \frac{\partial}{\partial x_{3}}$ along $M \cap V_{z_{0}}$. We also note that the matrix $P_{x_{0}}$ is uniquely determined by (3.1) and depends smoothly on $x_{0} \in V_{z_{0}} \cap M$.

Proposition 3.1. For each $x_{0} \in V_{z_{0}} \cap M$ and positive integer m, there are smooth coordinates $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), x\left(x_{0}\right)=0$, defined near x_{0} such that in x coordinates the vector field L_{1} can be written as

$$
\begin{equation*}
L_{1}=\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right)+\sum_{l=1}^{2} b_{l}(x) \frac{\partial}{\partial x_{l}}+(e(x)+i a(x)) \frac{\partial}{\partial x_{3}} \tag{3.2}
\end{equation*}
$$

where $b_{1}(0)=b_{2}(0)=0$, and $e(x), a(x)$ are real functions satisfying

$$
\begin{equation*}
\frac{\partial^{j+k} e\left(x_{0}\right)}{\partial x_{1}^{j} \partial x_{2}^{k}}=0, j+k \leq m, \text { and } \frac{\partial^{k} a\left(x_{0}\right)}{\partial x_{2}^{k}}=0, k \leq m \tag{3.3}
\end{equation*}
$$

Proof. Let us write the vector field L_{1} in terms of the coordinate functions (x_{1}, x_{2}, x_{3}, t) satisfying (3.1):

$$
\begin{align*}
L_{1}= & \left(\frac{\partial}{\partial x_{1}}+\sum_{l=1}^{2} b_{l}^{1}(x) \frac{\partial}{\partial x_{l}}+e(x) \frac{\partial}{\partial x_{3}}\right) \tag{3.4}\\
& -i\left(\frac{\partial}{\partial x_{2}}+\sum_{l=1}^{2} b_{l}^{2}(x) \frac{\partial}{\partial x_{l}}+a(x) \frac{\partial}{\partial x_{3}}\right)
\end{align*}
$$

where $e(x), a(x)$ and $b_{l}^{i}, 1 \leq i, l \leq 2$ are smooth real valued functions satisfying $e(0)=a(0)=b_{l}^{i}(0)=0$. Therefore (3.3) holds for $j+k \leq 0$. By induction, assume that we have coordinate functions x_{1}, x_{2}, x_{3} and t such that L_{1} can be written as (3.4), where the coefficient functions $e(x)$ and $a(x)$ satisfy:

$$
\begin{equation*}
\frac{\partial^{j+k} e}{\partial x_{1}^{j} \partial x_{2}^{k}}(0)=0, j+k \leq l-1, \text { and, } \frac{\partial^{k} a}{\partial x_{2}^{k}}(0)=0, k \leq l-1 \tag{3.5}
\end{equation*}
$$

Set

$$
\begin{aligned}
& \widetilde{x}_{1}=x_{1}, \widetilde{x}_{2}=x_{2}, \text { and } \\
& \widetilde{x}_{3}=x_{3}-\sum_{j+k=l} \frac{1}{(j+1)!k!} \frac{\partial^{l} e(0)}{\partial x_{1}^{j} \partial x_{2}^{k}} x_{1}^{j+1} x_{2}^{k}
\end{aligned}
$$

Then, in terms of \widetilde{x}-coordinates, L_{1} can be written as:

$$
\begin{aligned}
L_{1}= & \left(\frac{\partial}{\partial \widetilde{x}_{1}}+\sum_{l=1}^{2} \widetilde{b}_{l}^{1}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_{l}}+\widetilde{e}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_{3}}\right) \\
& +i\left(\frac{\partial}{\partial \widetilde{x}_{2}}+\sum_{l=1}^{2} \widetilde{b}_{l}^{2}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_{l}}+\widetilde{a}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_{3}}\right)
\end{aligned}
$$

where

$$
\frac{\partial^{j+k} \widetilde{e}}{\partial \widetilde{x}_{1}^{j} \partial \widetilde{x}_{2}^{k}}(0)=0,1 \leq j+k \leq l, \text { and } \frac{\partial^{k} \widetilde{a}}{\partial \widetilde{x}_{2}^{k}}(0)=0, k \leq l-1 .
$$

We also perform another change of coordinates:

$$
x_{1}=\widetilde{x}_{1}, x_{2}=\widetilde{x}_{2}, x_{3}=\widetilde{x}_{3}-\frac{1}{(l+1)!} \frac{\partial^{l} \widetilde{a}(0)}{\partial \widetilde{x}_{2}^{l}} \widetilde{x}_{2}^{l+1}
$$

Then, in terms of x-coordinates, L_{1} can be written as in (3.4) satisfying (3.5) with $l-1$ replaced by l. If we proceed up to m steps, we will have coordinate functions (x_{1}, x_{2}, x_{3}, t) defined near $x_{0} \in M \cap V_{z_{0}}$ satisfying (3.2) and (3.3).

We first construct continuously varying non-isotrophic balls that are defined invariantly. Let $\left\{\chi_{\nu}\right\}_{\nu \in I}$ be a partition of unity subordinated to the coordinate neighborhoods $\left\{U_{\nu}\right\}_{\nu \in I}$ of Ω. Let m be a given positive integer. Let us fix $\delta>0$ for a moment. For any j, k with $j>0$, define

$$
\begin{aligned}
\mathcal{L}_{j, k}^{\nu} \partial \bar{\partial} \eta(x) & =\frac{i}{2} L_{1}^{j-1} \bar{L}_{1}^{k} \eta\left(\left[L_{1}, \bar{L}_{1}\right]\right)(x), x \in U_{\nu} \\
C_{l}^{\nu}(x) & =\sum_{j+k=l}\left|\mathcal{L}_{j, k}^{\nu} \partial \bar{\partial} \eta(x)\right|^{2}, l=1, \ldots, m, \text { and } \\
C_{l}(x) & =\sum_{\nu \in I} \chi_{\nu} C_{l}^{\mu}(x)
\end{aligned}
$$

Set $M=(m+1)!$ and define

$$
\begin{equation*}
\mu(x, \delta)=\left(\sum_{l=1}^{m} C_{l}^{M / l+1}(x) \delta^{-2 M / l+1}\right)^{-1 / 2 M} \tag{3.6}
\end{equation*}
$$

By (2.6) and Proposition 2.4 it follows that $\sum_{l=1}^{m} C_{l}(x)>0$ if the type at x is less than or equal to m. Therefore $\mu(x, \delta)$ is defined intrinsically and it is a smooth function of $\delta>0$ and x for x satisfying $\sum_{l=1}^{m} C_{l}(x)>0$.

We want to define another quantity, $\tau\left(x_{0}, \delta\right)$, related to the coordinate functions defined in Proposition 3.1. Let $x_{0} \in M$ be a point whose type is less than or equal to m. Let us take the coordinate functions $x=\left(x_{1}, x_{2}, x_{3}, t\right)$ defined near x_{0} where the vector field L_{1} has the representation as in (3.2), where the coefficient functions $e(x)$ and $a(x)$ of $\partial / \partial x_{3}$ satisfy the estimates in (3.3).

Set

$$
\widetilde{a}(x):=\frac{\partial}{\partial x_{1}} a(x)=\operatorname{Re}\left[\frac{\partial}{\partial z_{1}} a(x)\right],
$$

and set $z_{1}=\frac{1}{2}\left(x_{1}-i x_{2}\right)$ and $z_{2}=\frac{1}{2}\left(t-i x_{3}\right)$. Since $a\left(x_{0}\right)=0$, the Taylor expansion of $\widetilde{a}(x)$ at x_{0} has the expression (in terms of (z_{1}, z_{2})-coordinates) as:

$$
\widetilde{a}(x)=\sum_{0 \leq j+k \leq m-1} \widetilde{a}_{j k}\left(x_{0}\right) z_{1}^{j} \bar{z}_{1}^{k}+\mathcal{O}\left(\left|z_{1}\right|^{m}+\left|z_{2}\right||z|\right), z=\left(z_{1}, z_{2}\right)
$$

Now set

$$
A_{l}\left(x_{0}\right)=\max \left\{\left|\widetilde{a}_{j k}\left(x_{0}\right)\right| ; j+k=l\right\}, l=0,1, \ldots, m-1,
$$

and set

$$
\begin{equation*}
\tau\left(x_{0}, \delta\right)=\min _{0 \leq l \leq m-1}\left\{\left(\delta / A_{l}\left(x_{0}\right)\right)^{1 / l+2}\right\} \tag{3.7}
\end{equation*}
$$

Assuming that the type at x_{0} is less than or equal to m, it follows that $a_{j k}\left(x_{0}\right) \neq 0$ for some $j+k=l \leq m-1$ and hence $\tau\left(x_{0}, \delta\right)$ is well defined. It also satisfies the estimate:

$$
\delta^{1 / 2} \lesssim \tau\left(x_{0}, \delta\right) \lesssim \delta^{1 / m+1}
$$

Let us consider the following balls defined in terms of $\tau\left(x_{0}, \delta\right)$:

$$
Q_{\delta}\left(x_{0}\right)=\left\{\left(x_{1}, x_{2}, x_{3}, t\right):\left|x_{1}\right|,\left|x_{2}\right|<\tau\left(x_{0}, \delta\right),\left|x_{3}\right|,|t|<\delta\right\}
$$

We want to study the relations between $\tau\left(x_{0}, \delta\right)$ and $\mu(x, \delta)$ for $x \in Q_{\delta}\left(x_{0}\right)$, where $\mu(x, \delta)$ is defined as in (3.6). Set $D_{1}=\partial / \partial z_{1}$ for a convenience. If we combine the definition of $\tau\left(x_{0}, \delta\right)$ and the fact that $\eta\left(L_{1}\right) \equiv 0$, we obtain by induction that

$$
\begin{equation*}
\left|D_{1}^{j} \bar{D}_{1}^{k} \eta\left(\frac{\partial}{\partial x_{i}}\right)\left(x_{0}\right)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(j+k+1)}, \text { for } j+k \leq m, i=1,2 \tag{3.8}
\end{equation*}
$$

Note that $\eta\left(\left[L_{1}, \bar{L}_{1}\right]\right)$ can be written as

$$
\begin{equation*}
\eta\left(\left[L_{1}, \bar{L}_{1}\right]\right)=\left(-2 i \operatorname{Re}\left[\frac{\partial}{\partial z_{1}} a\right]\right) \eta\left(\frac{\partial}{\partial x_{3}}\right)+R_{0} \tag{3.9}
\end{equation*}
$$

where R_{0} satisfies, from the estimates in (3.3) and (3.8) that,

$$
\begin{equation*}
\left|D_{1}^{j} \bar{D}_{1}^{k} R_{0}\left(x_{0}\right)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(j+k+1)}, j+k+1 \leq m \tag{3.10}
\end{equation*}
$$

Combining (3.7)-(3.10), we get:

$$
\left|D_{1}^{j} \bar{D}_{1}^{k} \eta\left(\left[L_{1}, \bar{L}_{1}\right]\right)\left(x_{0}\right)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(j+k+2)}, j+k+2 \leq m
$$

Similarly, by applying L_{1} or \bar{L}_{1} to $\eta\left(\left[L_{1}, \bar{L}_{1}\right]\right)$ sucessively, we obtain by induction that

$$
\begin{equation*}
\mathcal{L}_{j, k} \eta(x)=D_{1}^{j-1} \bar{D}_{1}^{k}\left[\operatorname{Re}\left(D_{1} a\right) \eta\left(\frac{\partial}{\partial x_{3}}\right)\right]+E_{j+k-1} \tag{3.11}
\end{equation*}
$$

where E_{j+k-1} satisfies

$$
\begin{equation*}
\left|D_{1}^{s} \bar{D}_{1}^{t} E_{j+k-1}\left(x_{0}\right)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(j+k+s+t)}, j+k+s+t \leq m \tag{3.12}
\end{equation*}
$$

Therefore for any j, k, s, t with $j+k+s+t \leq m$, it follows from (3.11) that

$$
\begin{equation*}
\left|D_{1}^{s} \bar{D}_{1}^{t} \mathcal{L}_{j, k} \eta\left(x_{0}\right)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(s+t+j+k+1)} \tag{3.13}
\end{equation*}
$$

If we use the Taylor series method and the estimates in (3.13), we obtain that

$$
\left|\mathcal{L}_{j, k} \eta(x)\right| \lesssim \delta \tau\left(x_{0}, \delta\right)^{-(j+k+1)}, x \in Q_{\delta}\left(x_{0}\right)
$$

Since this implies that

$$
C_{l}(x) \lesssim \delta^{2} \tau\left(x_{0}, \delta\right)^{-2(l+1)}, x \in Q_{\delta}\left(x_{0}\right), l \leq m
$$

we conclude from the definition of $\mu(x, \delta)$ in (3.6) that

$$
\begin{equation*}
\tau\left(x_{0}, \delta\right) \lesssim \mu(x, \delta) \text { when } x \in Q_{\delta}\left(x_{0}\right) \tag{3.14}
\end{equation*}
$$

Conversely, let us prove that $\mu(x, \delta) \lesssim \tau\left(x_{0}, \delta\right)$. Define

$$
\begin{equation*}
T\left(x_{0}, \delta\right)=\min \left\{l:\left(\delta / A_{l}\left(x_{0}\right)\right)^{1 / l+2}=\tau\left(x_{0}, \delta\right)\right\} \tag{3.15}
\end{equation*}
$$

By the definition of $\tau\left(x_{0}, \delta\right)$ and $T\left(x_{0}, \delta\right)$, there must exist integers j, k with $(j-1)+k=T\left(x_{0}, \delta\right), j \geq 1$, so that

$$
\left|\widetilde{a}_{j-1, k}\left(x_{0}\right)\right|=\left|\frac{1}{(j-1)!k!} D_{1}^{j-1} \bar{D}_{1}^{k}\left[\operatorname{Re} D_{1} a\right]\left(x_{0}\right)\right|=\delta \tau\left(x_{0}, \delta\right)^{-j-k-1}
$$

If we apply the estimates in (3.12) and (3.13) with $s+t=0$ and the fact that $\tau\left(x_{0}, \delta\right) \ll 1$ if δ is small, it follows that

$$
\left|\mathcal{L}_{j, k} \eta\left(x_{0}\right)\right| \geq \frac{1}{2} j!k!\delta \tau\left(x_{0}, \delta\right)^{-j-k-1}
$$

Then, again by using the estimates in (3.13) and the Taylor series method, we obtain that

$$
\left|\mathcal{L}_{j, k} \eta(x)\right| \approx \delta \tau\left(x_{0}, \delta\right)^{-j-k-1}
$$

which implies that

$$
\begin{equation*}
\mu(x, \delta) \lesssim \tau\left(x_{0}, \delta\right), x \in Q_{\delta}\left(x_{0}\right) \tag{3.16}
\end{equation*}
$$

If we combine (3.14) and (3.16), we have proved the following proposition.
Proposition 3.2. If $x \in Q_{\delta}\left(x_{0}\right)$, then

$$
\begin{equation*}
\tau\left(x_{0}, \delta\right) \approx \mu(x, \delta) \tag{3.17}
\end{equation*}
$$

Corollary 3.3. Suppose $x \in Q_{\delta}\left(x_{0}\right)$. Then

$$
\tau\left(x_{0}, \delta\right) \approx \tau(x, \delta)
$$

Proof. If we set $x=x_{0}$ in (3.17), then we see that $\mu\left(x_{0}, \delta\right) \approx \tau\left(x_{0}, \delta\right)$. Since this holds for $x_{0}=x$, it follows that $\mu(x, \delta) \approx \tau(x, \delta)$. Hence we have $\tau\left(x_{0}, \delta\right) \approx \tau(x, \delta)$.

Remark 3.4. $\mu(x, \delta)$ is defined intrinsically, that is, independent of coordinate functions. Therefore, Proposition 3.2 shows that the quantity $\tau\left(x_{0}, \delta\right)$ is defined invariantly, up to a universal constant, with respect to coordinate functions.

Assume $\bar{M} \subset \widetilde{M}$ and let $\varphi \in C^{\infty}(\bar{M})$ be a smooth real-valued function such that $\varphi(x)>0$ for $x \in M$, and $\varphi(x)=0, d \varphi(x) \neq 0$ for $x \in b M$. We can extend φ to Ω by requiring that it be independent of t. Let us denote by T_{p} the type at a point $p \in \bar{M}$ and define

$$
T(\bar{M})=\max \left\{T_{p} ; p \in \bar{M}\right\}
$$

Since type condition is an open condition, we see that $T(\bar{M})$ is well defined and is finite. In the sequal, we assume that $T(\bar{M})=m<\infty$. We define $r \in C^{\infty}(\Omega)$ by $r(x, t)=t(\phi(x))^{-2 m}$ and for any $\varepsilon, \sigma, 0<\varepsilon \leq \sigma \leq 1$, we define

$$
S_{\varepsilon, \sigma}=\left\{(x, t) \in \emptyset ; \varphi(x)>0 \text { and } 0 \leq r(x, t) \leq \varepsilon \sigma^{3 \cdot 2^{m-1}}\right\}
$$

The quantities ϵ and σ will be fixed later. If we set $g(x)=\epsilon \cdot \sigma^{3 \cdot 2^{m-1}}$. $\varphi(x)^{2 m}$, then $S_{\varepsilon, \sigma}$ will be the required manifold S_{g}^{+}of Section 1. We define a subbundle of \mathcal{L}^{0} on $S_{\varepsilon, \sigma}$ by letting $\mathcal{R}_{(x, t)}=\left\{L \in \mathcal{L}_{(x, t)}^{0} ; L r=0\right\}$. Clearly the map H defined by $H(L)=L-(L r)\left(L_{2} r\right)^{-1} L_{2}$ defines an isomorphism
of \mathcal{S} onto \mathcal{R} (at all points of $S_{\varepsilon, \sigma}$). We define a weighted metric \langle,$\rangle on \mathcal{L}^{0}$ by the relations

$$
\begin{aligned}
& \left\langle H\left(L_{1}\right), H\left(L_{1}\right)\right\rangle=\mu\left(z, \varepsilon \phi(z)^{2 m}\right)^{-2}\left\langle L_{1}, L_{1}\right\rangle_{0}, \\
& \left\langle L_{2}, L_{2}\right\rangle=\varepsilon^{-2} \phi(z)^{-4 m}, \text { and } \\
& \left\langle L_{2}, H\left(L_{1}\right)\right\rangle=0,
\end{aligned}
$$

where $L_{1} \in \mathcal{S}$. Since $\mu(x, \delta)$ is a smooth function of x and δ, it follows that \langle,$\rangle is a smooth Hermitian metric on \mathcal{L}^{0}$.

We now show how $S_{\varepsilon, \sigma}$ can be covered by special coordinate neighborhoods such that on each such neighborhood there is a frame \mathcal{L} that satisfies good estimates:

Proposition 3.5. There exist constants ε_{0} and σ_{0} such that if $0<$ $\varepsilon<\varepsilon_{0}$ and $0<\sigma<\sigma_{0}$, then on $S_{\varepsilon, \sigma}$ there exist for all $x_{0} \in M$ with $\varphi\left(x_{0}\right)>0$ a neighborhood $W\left(x_{0}\right) \subset S_{\varepsilon, \sigma}$ with the following properties:
(i) On $W\left(x_{0}\right)$ there are smooth coordinates y_{1}, \ldots, y_{4} so that $W\left(x_{0}\right)=$ $\left\{y ;\left|y^{\prime}\right|<\sigma, 0 \leq y_{4} \leq \sigma^{3 \cdot 2^{m-1}}\right\}$, where $y^{\prime}=\left(y_{1}, y_{2}, y_{3}\right)$ is independent of t and where the function y_{4} is defined by $y_{4}=\varepsilon^{-1} \varphi(x)^{-2 m} t$. Thus, $M_{0} \cap W\left(x_{0}\right)$ and $M_{\sigma} \cap W\left(x_{0}\right)$ correspond to the points in $W\left(x_{0}\right)$ where $y_{4}=0$ and $\sigma^{3 \cdot 2^{m-1}}$, respectively. Moreover, the point $\left(x_{0}, 0\right) \in \Omega$ (which we identify with x_{0}) corresponds to the origin.
(ii) The above coordinate charts are uniformly smoothly related in the sense that if $W\left(\widetilde{p}_{0}\right)$ and $W\left(x_{0}\right)$ intersect, and if \widetilde{y} and y_{0} are the associated coordinates, then

$$
\begin{equation*}
\left|D^{\alpha}\left(\widetilde{y} \circ\left(y_{0}\right)^{-1}\right)\right| \leq C_{|\alpha|} \tag{3.18}
\end{equation*}
$$

holds on that portion of \mathbb{R}^{4} where $\tilde{y} \circ\left(y_{0}\right)^{-1}$ is defined. The constant $C_{|\alpha|}$ is independent of \widetilde{p}_{0} and x_{0}.
(iii) On $W\left(x_{0}\right)$, there exists a smooth frame L_{1}, L_{2} for \mathcal{L} such that if ω^{1}, ω^{2} is the dual frame, and if L_{k} and ω^{k} are written as $\sum_{j=1}^{4} b_{k_{j}} \frac{\partial}{\partial y_{j}}$ and $\sum_{j=1}^{4} d_{k j} d y_{j}$, then

$$
\sup _{y \in W\left(x_{0}\right)}\left\{\left|D_{y}^{\alpha} b_{k j}(y)\right|+\left|D_{y}^{\alpha} d_{k j}(y)\right|\right\} \lesssim C_{|\alpha|}
$$

where $C_{|\alpha|}$ is independent of x_{0}, j, k.
(iv) There are independent constants $c>0$ and $C>0$ such that if $B_{b}(x)$ denotes the ball of radius b about $x \in S_{\varepsilon, \sigma}$ with respect to the metric \langle,$\rangle , then$

$$
\begin{equation*}
B_{c \sigma}\left(x_{0}\right) \subset W\left(x_{0}\right) \subset B_{C \sigma}\left(x_{0}\right) \tag{3.19}
\end{equation*}
$$

and if $\operatorname{Vol} B_{b}\left(x_{0}\right)$ denotes the volume of $B_{b}\left(x_{0}\right)$ with respect to \langle,$\rangle ,$ then

$$
\begin{equation*}
c b^{3} \sigma^{3 \cdot 2^{m-1}} \leq \operatorname{Vol} B_{b}\left(x_{0}\right) \leq C b^{3} \sigma^{3 \cdot 2^{m-1}} \tag{3.20}
\end{equation*}
$$

Proof. We first cover \bar{M} by a finite number of neighborhoods $V_{\nu}, \nu=$ $1, \ldots, N$, in Ω such that in each V_{ν} there exist coordinates $\left(u_{1}, \ldots, u_{4}\right)$ with the property that $u_{4}=t$ and that $u_{k}\left(u^{\prime}, t\right)=u_{k}\left(u^{\prime}, 0\right), k<4$, for $\left(u^{\prime}, t\right) \in V_{\nu}$, and that $\frac{\partial}{\partial u_{3}}=-X_{0}$ at all points of $M \cap V_{\nu}$.

For any point $x_{0} \in M \cap V_{\nu}$, we take coordinate functions $x=\left(x_{1}, \ldots, x_{4}\right)$ constructed as in Proposition 3.1. In terms of x-coordinates, L_{1}^{ν} and L_{2}^{ν} can be written as:

$$
\begin{align*}
& L_{1}^{\nu}=\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}+\sum_{l=1}^{3} a_{l}(x) \frac{\partial}{\partial x_{l}}, \text { and } \tag{3.21}\\
& L_{2}^{\nu}=\frac{\partial}{\partial t}-i \frac{\partial}{\partial x_{3}}+\sum_{l=1}^{3} b_{l}(x) \frac{\partial}{\partial x_{l}},
\end{align*}
$$

where $a_{3}(x)=e(x)+i a(x)$, and where $e(x), a(x)$ satisfy estimates in (3.3). Set $z_{1}=1 / 2\left(x_{1}-i x_{2}\right)$ and $z_{2}=1 / 2\left(t-i x_{3}\right)$. Since $a_{3}\left(x_{0}\right)=0$, the Taylor expansion of $a_{3}(x)$ at x_{0} has the expression:

$$
\begin{equation*}
a_{3}(x)=\sum_{1 \leq j+k \leq m} a_{j k}\left(x_{0}\right) z_{1}^{j} \bar{z}_{1}^{k}+\mathcal{O}\left(\left|z_{1}\right|^{m+1}+\left|z_{2}\right||z|\right) \tag{3.22}
\end{equation*}
$$

Set $\delta=\varepsilon \phi\left(x_{0}\right)^{2 m}$, and set

$$
T_{m}(x)=\sum_{1 \leq j+k \leq m} a_{j k}\left(x_{0}\right) z_{1}^{j} \bar{z}_{1}^{k}=\widetilde{T}_{m}\left(x_{1}, x_{2}, 0,0\right)
$$

for a convenience. We take the quantity $\mu\left(x_{0}, \delta\right)$ and the corresponding quantity $\tau\left(x_{0}, \delta\right)$, for the function $a_{3}(x)$ (or $\widetilde{a}(x)=\partial / \partial x_{1} a(x)$), as defined in (3.6) and (3.7). By virtue of Proposition 3.1, and by the definition of $\tau\left(x_{0}, \delta\right)$, it follows that $\left|a_{j k}\left(x_{0}\right)\right| \leq \delta \tau\left(x_{0}, \delta\right)^{-j-k-1}, j+k \leq m$, and hence Proposition 3.2 implies that

$$
\begin{equation*}
\left|a_{j k}\left(x_{0}\right)\right| \lesssim \delta \mu\left(x_{0}, \delta\right)^{-j-k-1} \tag{3.23}
\end{equation*}
$$

We define new coordinates $y=\left(y_{1}, \ldots, y_{4}\right)$ by means of dilation map $D_{\varepsilon, x_{0}}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}:$

$$
\begin{aligned}
y & =D_{\varepsilon, x_{0}}(x) \\
& =\left(\mu\left(x_{0}, \delta\right)^{-1} x_{1}, \mu\left(x_{0}, \delta\right)^{-1} x_{2}, \varepsilon^{-1} \varphi\left(x_{0}\right)^{-2 m} x_{3}, \varepsilon^{-1} \varphi(x)^{-2 m} x_{4}\right)
\end{aligned}
$$

where $\varphi(x)$ is the function φ expressed in the x-coordinates of x_{0}. In terms of the y-coordinates, we define an open set $W_{b}\left(x_{0}\right)$ by

$$
W_{b}\left(x_{0}\right)=\left\{x \in V_{\nu} \cap S_{\varepsilon, \sigma} ;\left|y_{k}(x)\right|<b, k=1,2,3,0 \leq y_{4}(x) \leq \sigma^{3 \cdot 2^{m-1}}\right\}
$$

Note that in $W_{b}\left(x_{0}\right), y_{4}=0$ and $y_{4}=\sigma^{3 \cdot 2^{m-1}}$ coincide with $r=0$ and $r=\varepsilon \sigma^{3 \cdot 2^{m-1}}$, respectively, the boundaries of $S_{\varepsilon, \sigma}$. We define a frame L_{1}, L_{2} in $W_{b}\left(x_{0}\right)$ by setting

$$
\begin{align*}
& L_{1}=\mu(x, \delta)\left(L_{1}^{\nu}-d L_{2}^{\nu}\right)=\mu(x, \delta) H\left(L_{1}^{\nu}\right), \quad \text { and } \tag{3.24}\\
& L_{2}=\varepsilon \varphi(x)^{2 m} L_{2}^{\nu}
\end{align*}
$$

where $d=\left(L_{1}^{\nu} r\right)\left(L_{2}^{\nu} r\right)^{-1}$. Assuming that L_{1}^{ν} and L_{2}^{ν} have the expressions as in (3.21) in V_{ν}, we set $A_{l}(y)=a_{l} \circ D_{\varepsilon, x_{0}}^{-1}(y), D(y)=d \circ D_{\varepsilon, x_{0}}^{-1}, \Phi=\phi \circ D_{\varepsilon, x_{0}}^{-1}$, $B_{l}(y)=b_{l} \circ D_{\varepsilon, x_{0}}^{-1}(y)$, and $\Phi_{l}=\frac{\partial \varphi}{\partial_{l}} \circ D_{\varepsilon, x_{0}}^{-1}$. Then we conclude that in the y-coordinate of $W_{b}\left(x_{0}\right)$,

$$
\begin{align*}
L_{1}= & \frac{\mu(x, \delta)}{\mu\left(x_{0}, \delta\right)}\left[\frac{\partial}{\partial y_{1}}-i \frac{\partial}{\partial y_{2}}+\sum_{l=1}^{2}\left(A_{l}-D B_{l}\right) \frac{\partial}{\partial y_{l}}\right] \tag{3.25}\\
& +\mu(x, \delta) \delta^{-1}\left(A_{3}-D\left(B_{3}-i\right)\right) \frac{\partial}{\partial y_{3}}
\end{align*}
$$

Observe that since the diameter in the x-coordinates of $W_{b}\left(x_{0}\right)$ is $\mathcal{O}\left(b \mu\left(x_{0}, \delta\right)\right) \ll \varphi\left(x_{0}\right)$, it is clear that $\mu(x, \delta) \mu\left(x_{0}, \delta\right)^{-1}$ and $\Phi \varphi\left(x_{0}\right)^{-1}$ are very close to 1 in $W_{b}\left(x_{0}\right)$ if b is small. We set

$$
|f|_{m, W_{b}\left(x_{0}\right)}=\sup \left\{\left|D_{y}^{\alpha} f(y)\right| ; y \in W_{b}\left(x_{0}\right),|\alpha| \leq m\right\}
$$

and we extend this norm to vector fields and 1 -forms by using the coefficients of $\frac{\partial}{\partial y_{j}}$ or $d y_{j}$. From the expression of $a_{3}(x)$ in (3.22) and by virtue of the estimates in (3.3) and (3.23), it follows that

$$
\lim _{\sigma \rightarrow 0}\left|\delta^{-1} \mu(x, \delta) A_{3}(y)-T_{m}(y)\right|_{k, W_{b}\left(x_{0}\right)}=0
$$

when $b \leq \sqrt{\sigma}$. Similarly, by direct calculation, one obtains that

$$
\begin{equation*}
D=\frac{-2 \varepsilon m y_{4} \Phi^{2 m-1}\left(\Phi_{1}+i \Phi_{2}+\sum_{l=1}^{3} A_{l} \Phi_{l}\right)}{1+2 i \varepsilon m \Phi^{2 m-1} \Phi_{3} y_{4}-\sum_{l=1}^{3} 2 \varepsilon m \Phi^{2 m-1} \Phi_{l} y_{4}} \tag{3.26}
\end{equation*}
$$

Note that $\mu(x, \delta) \approx \tau\left(x_{0}, \delta\right) \lesssim \varepsilon^{1 / m+1} \varphi\left(x_{0}\right)^{2 m / m+1} \ll \varphi\left(x_{0}\right)$, and hence it follows that

$$
\lim _{\sigma \rightarrow 0}\left|\delta^{-1} \mu(x, \delta) D\right|_{k, W_{b}\left(x_{0}\right)}=0
$$

Combining all these facts, we conclude that if $b \leq \sqrt{\sigma}$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0}\left|L_{1}-\left(\frac{\partial}{\partial y_{1}}-i \frac{\partial}{\partial y_{2}}+T_{m}(y) \frac{\partial}{\partial y_{3}}\right)\right|_{k, W_{b}\left(x_{0}\right)}=0 \tag{3.27}
\end{equation*}
$$

where $T_{m}(y)=\widetilde{T}_{m}\left(y_{1}, y_{2}, 0,0\right)$, and that

$$
\lim _{\sigma \rightarrow 0}\left|L_{2}-\left(-i \frac{\partial}{\partial y_{3}}+\frac{\partial}{\partial y_{4}}\right)\right|_{k, W_{b}\left(x_{0}\right)}=0
$$

Setting $W\left(x_{0}\right)=W_{\sigma}\left(x_{0}\right)$, for sufficiently small σ, we obtain (i) and (iii). By Proposition 3.2, it follows that $\tau\left(x_{0}, \delta\right) \approx \mu(x, \delta)$ for $x \in W\left(x_{0}\right)$. Since L_{1}, L_{2} is orthonormal with respect to \langle,$\rangle , we conclude that if \sigma$ is small, then (3.19) and (3.20) hold.

To prove (3.18), we note that $\tau\left(x_{0}, \delta\right) \approx \tau(x, \delta)$ if $x \in W\left(x_{0}\right)$ and that $\tau\left(x_{0}, \delta\right)$ is defined independent (up to a universal constant) with respect to coordinate functions (Remark 3.4). These two facts give us (3.18).

We need the following proposition to prove the subelliptic estimates for $\bar{\partial}$ equation in dilated coordinates y. We take the orthonormal frame $\left\{L_{1}, L_{2}\right\}$ and its dual frame $\left\{\omega^{1}, \omega^{2}\right\}$.

Proposition 3.6. There exist a constant $c_{0}>0$, independent of x_{0}, and a list of vector fields $\left\{L^{s}, L^{s-1}, \ldots, L^{1}\right\}$, where $L^{j}=L_{1}$ or $\bar{L}_{1}, 1 \leq j \leq$ $s, s \leq m$, such that

$$
\begin{equation*}
\mid \omega^{2}\left(\left[L^{s},\left[L^{s-1}, \ldots,\left[L^{2}, L^{1}\right] \ldots\right]\right)(x) \mid \geq 2 c_{0}\right. \tag{3.28}
\end{equation*}
$$

for all $x \in W\left(x_{0}\right)$.

Proof. Set $L^{0}=L_{1}$ and $L^{1}=\bar{L}_{1}$. For $\left(i_{1} \cdots i_{s}\right)$ of an s-tuple of 0 's and 1's, we define inductively by $L^{\left(i_{1} \cdots i_{s}\right)}=\left[L^{i_{s}}, L^{\left(i_{1} \cdots i_{s-1}\right)}\right]$ and set

$$
\begin{align*}
& \lambda^{i_{1} \cdots i_{s}}(y)=\omega^{2}\left(L^{\left(i_{1} \cdots i_{s}\right)}\right), \text { and } \tag{3.29}\\
& \mathcal{L}_{j, k} \omega^{2}(y)=L_{1}^{j-1} \bar{L}_{1}^{k} \omega^{2}\left(\left[L_{1}, \bar{L}_{1}\right]\right)(y) .
\end{align*}
$$

Let I_{2} be the ideal generated by $\lambda^{10}=\omega^{2}\left(\left[L_{1}, \bar{L}_{1}\right]\right)$, and I_{s} be the ideal generated by I_{s-1} and both $\lambda^{10 \cdots i_{s}}$. By induction, it is not hard to show (see $[8,10]$) that

$$
\begin{equation*}
\lambda^{10 \cdots i_{s}}(y)=\mathcal{L}_{j, k} \omega^{2}(y), \bmod I_{s-1} \tag{3.30}
\end{equation*}
$$

where j is the number of 0 's in $\left(10 \cdots i_{s}\right)$.
Set $\eta_{\delta}=\delta^{-1} \eta$ and set $w_{1}=1 / 2\left(y_{1}-i y_{2}\right), w_{2}=1 / 2\left(y_{4}-i y_{3}\right), D_{k}=$ $\partial / \partial w_{k}, k=1,2$. Then it follows that $\eta_{\delta}\left(\partial / \partial y_{3}\right) \equiv 1$ along $M \cap V_{\nu}$, and $\mathcal{L}_{j, k} \omega^{2}(y)=i / 2 \mathcal{L}_{j, k} \eta_{\delta}(y)$. From the estimates in (3.8), we have:

$$
\begin{equation*}
\left|D_{1}^{j} \bar{D}_{1}^{k} \eta_{\delta}\left(\partial / \partial y_{i}\right)\left(x_{0}\right)\right| \leq C_{j, k}, \quad i=1,2 \tag{3.31}
\end{equation*}
$$

for some constants $C_{j, k}$, independent of x_{0}. Note that L_{1} has the representation as in (3.25). Therefore, as in the proof of Proposition 3.2, it follows that

$$
\mathcal{L}_{j, k} \omega^{2}(y)=-\delta^{-1} \mu\left(x_{0}, \delta\right)\left[D_{1}^{j-1} \bar{D}_{1}^{k}\left(\operatorname{Im} D_{1} \bar{A}_{3}\right) \eta_{\delta}\left(\partial / \partial y_{3}\right)\right]+E_{j+k-1}
$$

where E_{j+k-1} satisfy, by virtue of (3.26) and (3.31), that

$$
\begin{equation*}
\left|D_{1}^{s} \bar{D}_{1}^{t} E_{j+k-1}\left(x_{0}\right)\right| \lesssim \mu\left(x_{0}, \delta\right), j+k+s+t \leq m \tag{3.32}
\end{equation*}
$$

Note that we may write $A_{3}(y)=E(y)+i A(y)$, where $E(y)$ satisfies the estimates as in (3.32). If we combine the definition of $\tau\left(x_{0}, \delta\right)$ and the fact that $\tau\left(x_{0}, \delta\right) \approx \mu\left(x_{0}, \delta\right)$, it follows that there exist a constant $c_{1}>0$ and integers $j_{1}, k_{1},\left(j_{1}-1\right)+k_{1}=T\left(x_{0}, \delta\right)$, such that

$$
\begin{equation*}
\left|\delta^{-1} \mu\left(x_{0}, \delta\right) D_{1}^{j_{1}-1} \bar{D}_{1}^{k_{1}}\left(\operatorname{Im} D_{1} \bar{A}_{3}\right)\left(x_{0}\right)\right| \geq 3 c_{1} \tag{3.33}
\end{equation*}
$$

Here $T\left(x_{0}, \delta\right)$ is defined as in (3.15). Combining (3.32) and (3.33), we get:

$$
\begin{equation*}
\left|\mathcal{L}_{j_{1}, k_{1}} \omega^{2}(0)\right| \geq 2 c_{1} \tag{3.34}
\end{equation*}
$$

provided that δ is sufficiently small. Set $j_{1}+k_{1}=T_{1}$ and assume that $g_{1} \in I_{T_{1}-1}$. Then by virtue of (3.29) and (3.30), we can write

$$
\begin{equation*}
g_{1}=\sum_{p=1}^{T_{1}-1} \sum_{j+k=p} f_{j, k}^{p} \mathcal{L}_{j, k} \omega^{2}(y), \tag{3.35}
\end{equation*}
$$

where $f_{j, k}^{p}$'s are bounded (by $M>0$) independent of x_{0}. If for all $j+k<T_{1}$,

$$
\left|\mathcal{L}_{j, k} \omega^{2}(0)\right|<\frac{c_{1}}{\sup _{W\left(x_{0}\right)}\left|f_{j, k}^{p}\right| \cdot 2^{T_{1}}}
$$

then by (3.30), it follows that

$$
\left|\lambda^{10 \cdots i_{s}}(0)\right| \geq c_{1}
$$

for some list $\left\{L^{s}, L^{s-1}, \ldots, L^{1}\right\}$ of L_{1} or \bar{L}_{1}. If not, then there exist j_{2}, k_{2} with $j_{2}+k_{2}=T_{2}<T_{1}$ such that

$$
\left|\mathcal{L}_{j_{2}, k_{2}} \omega^{2}(0)\right| \geq \frac{c_{1}}{\sup _{W\left(x_{0}\right)}\left|f_{j_{2}, k_{2}}^{p}\right| \cdot 2^{T_{1}}}=3 c_{2}
$$

For $g_{2} \in I_{T_{2}}$, we represent g_{2} as in (3.35) and proceed as above with c_{1}, T_{1} replaced by c_{2} and T_{2} respectively. Note that if we iterate down to 1 , then the required inequality vacuously holds. Therefore there exist a constant $c_{0}>0$, independent of x_{0}, and a list $\left\{L^{s}, \ldots, L^{1}\right\}$ of L_{1} and \bar{L}_{1} such that

$$
\mid \omega^{2}\left(\left[L^{s},\left[L^{s-1}, \ldots,\left[L^{2}, L^{1}\right] \ldots\right]\right)\left(x_{0}\right) \mid \geq 3 c_{0}\right.
$$

Now, by a simple Taylor's theorem argument, it follows that (3.28) holds for all $x \in W_{\sigma}\left(x_{0}\right)$ provided that σ is sufficiently small.

Using the special frames constructed above, we now want to define L^{2} operators with mixed boundary conditions. We first define nearby almost complex structures in terms of these special frames. We define a norm $|A|_{k, W\left(x_{0}\right)}$ for the restriction of A to $W\left(x_{0}\right)$ by writing $A=\sum_{j, l=1}^{2} A_{j l} \bar{\omega}^{l} \otimes L_{j}$ and then by defining

$$
|A(y)|_{k}=\sum_{|\alpha| \leq k} \sum_{j, l=1}^{2}\left|D_{y}^{\alpha} A_{j l}(y)\right|
$$

and $|A|_{k, W\left(x_{0}\right)}=\sup \left\{|A(y)|_{k} ; y \in W\left(x_{0}\right)\right\}$. It is obvious that there exists $\varepsilon_{0}>0$ so that if $|A|_{0, W\left(x_{0}\right)}<\varepsilon_{0}$, then we can define an almost-complex structure in $W\left(x_{0}\right)$ by

$$
\overline{\mathcal{L}}^{A}=\left\{\bar{L}+A(\bar{L}) ; \bar{L} \in \mathcal{L}_{z}^{0}, z \in S_{\varepsilon, \sigma}\right\}
$$

In terms of the frame $L_{1}, L_{2}, \omega^{1}, \omega^{2}$ in $W\left(x_{0}\right)$, we define

$$
X_{j}^{A}=L_{j}+\bar{A}\left(L_{j}\right), j=1,2
$$

and let η_{A}^{l} be the dual frame. Set

$$
\begin{align*}
& L_{1}^{A}=X_{1}^{A}-\left(X_{1}^{A} r\right)\left(X_{2}^{A} r\right)^{-1} X_{2}^{A}, L_{2}^{A}=X_{2}^{A}, \text { and } \tag{3.36}\\
& \omega_{A}^{1}=\eta_{A}^{1}, \omega_{A}^{2}=\left(\eta_{A}^{2}+\left(X_{1}^{A} r\right)\left(X_{2}^{A} r\right)^{-1} \eta_{A}^{1}\right)
\end{align*}
$$

Obviously, the frame $\omega_{A}^{l}, l=1,2$, is dual to $L_{j}^{A}, j=1,2$, and $L_{1}^{A} r \equiv 0$. If we set

$$
h^{A}=\left(X_{1}^{A} r\right)\left(X_{2}^{A} r\right)^{-1}=\left(X_{1}^{A} y_{4}\right)\left(X_{2}^{A} y_{4}\right)^{-1}=\frac{\bar{A}_{21}\left(\bar{L}_{2} y_{4}\right)}{L_{2} y_{4}+\bar{A}_{22}\left(\bar{L}_{2} y_{4}\right)},
$$

then it follows that

$$
\begin{align*}
& L_{1}^{A}=L_{1}-h^{A} L_{2}+\sum_{j=1}^{2}\left(\bar{A}_{j 1}-h^{A} \bar{A}_{j 2}\right) \bar{L}_{j}, \text { and } \tag{3.37}\\
& L_{2}^{A}=L_{2}+\sum_{j=1}^{2} \bar{A}_{j 2} \bar{L}_{j}
\end{align*}
$$

In order to measure how $L_{j}^{A}, j=1,2$ depend on A, we define

$$
\begin{equation*}
P_{k}(y ; A)=\sum_{\substack{k_{1}, \ldots, k_{N} \\\left|k_{1}\right|+\ldots+k_{N} \mid \leq k}} \prod_{\nu=1}^{N}|A(y)|_{k_{\nu}} . \tag{3.38}
\end{equation*}
$$

Lemma 3.7. If A satisfies $|A|_{0, W\left(x_{0}\right)}<\varepsilon_{0}$ for sufficiently small ε_{0}, then the following pointwise estimates hold for $y \in W\left(x_{0}\right)$:

$$
\begin{align*}
& \left|L_{j}^{A}-L_{j}\right|_{k} \leq C_{k} P_{k}(A ; y), \text { and } \tag{3.39}\\
& \left|\omega_{A}^{l}-\omega^{l}\right|_{k} \leq C_{k} P_{k}(A ; y), \quad j, l=1,2 \tag{3.40}
\end{align*}
$$

Proof. If we differentiate the expressions in (3.37), then we obtain sums of terms, each of which contains a finite product of derivatives of A, as in (3.38). Hence we get (3.39). Similarly, we can get (3.40).

Suppose that A satisfies

$$
\begin{equation*}
|A|_{m+5, W\left(x_{0}\right)} \leq \varepsilon_{0} \tag{3.41}
\end{equation*}
$$

Then it is clear that there is an independent constant $C>0$ such that

$$
\left|L_{j}^{A}\right|_{m+5, W\left(x_{0}\right)} \leq C,\left|\omega_{A}^{l}\right|_{m+5, W\left(x_{0}\right)} \leq C, j, l=1,2
$$

In terms of L_{1}^{A}, L_{2}^{A}, and ω^{1}, ω^{2} frame, we define inductively by

$$
L_{A}^{\left(i_{1} \cdots i_{s}\right)}=\left[L_{A}^{i_{s}}, L_{A}^{\left(i_{1} \cdots i_{s-1}\right)}\right], \text { and, } \lambda_{A}^{i_{1} \cdots i_{s}}(y)=\omega_{A}^{2}\left(L_{A}^{\left(i_{1} \cdots i_{s}\right)}\right),
$$

where $L_{A}^{0}=L_{A}, L_{A}^{1}=\bar{L}_{A}$. Using Proposition 3.6 and Lemma 3.7, we prove the following proposition which is crucial in proving subelliptic estimates in Section 4.

Proposition 3.8. Assume that (3.41) holds for sufficiently small $\varepsilon_{0}>$ 0 . Then there exist a constant $c_{0}>0$, independent of x_{0}, and $T=T\left(x_{0}\right)$, $2 \leq T \leq m$, such that for some $j+k=T$ we have:

$$
\begin{equation*}
\left|\lambda_{A}^{10 \cdots i_{T}}(y)\right| \geq c_{0}, y \in W\left(x_{0}\right) \tag{3.42}
\end{equation*}
$$

Proof. By Lemma 3.7, it follows that we can write, for each $s \geq 1$, as:

$$
\left|\lambda_{A}^{i_{1} \cdots i_{s}}(y)-\lambda^{i_{1} \cdots i_{s}}(y)\right| \leq C_{s} P_{s}(y ; A)
$$

where $\lambda^{i_{1} \cdots i_{s}}(y)$ is defined as in (3.29). From Proposition 3.6, there is $T=$ $T\left(x_{0}\right), 2 \leq T \leq m$, such that $\left|\lambda^{10 \cdots i_{T}}(y)\right| \geq 2 c_{0}$ for all $y \in W\left(x_{0}\right)$. Hence (3.42) follows provided that $\varepsilon_{0}>0$ is sufficiently small.

Next, we show that there exists a smooth Hermitian metric on $S_{\varepsilon, \sigma}$ such that for all $x_{0} \in M$ the frame L_{1}^{A}, L_{2}^{A} given by (3.24) is orthonormal. For $L \in \mathcal{L}^{0}$ and $A \in \Gamma^{0,1}\left(S_{\varepsilon, \sigma}\right)$ satisfying (3.31), define a bundle isomorphism $P_{A}: \mathcal{L}^{0} \rightarrow \mathcal{L}^{A}$ by $P_{A}(L)=L+A(L)$. Define a homomorphism $H_{A}: \mathcal{L}^{A} \rightarrow$ \mathcal{R}^{A}, where $\mathcal{R}^{A}=\left\{L \in \mathcal{L}^{A} ; L r=0\right\}$, by

$$
H_{A}(L)=L-\frac{L r}{X_{2}^{A} r} X_{2}^{A}=L-\frac{L y_{4}}{L_{2}^{A} y_{4}} L_{2}^{A}
$$

Then $H_{A} \circ P_{A}$ is an isomorphism of \mathcal{R} onto \mathcal{R}^{A}. We define a metric \langle,\rangle_{A} on \mathcal{L}^{A} by

$$
\begin{aligned}
& \left\langle\left(H_{A} \circ P_{A}\right) \bar{L}_{1},\left(H_{A} \circ P_{A}\right) \bar{L}_{1}\right\rangle_{A}=\left\langle\bar{L}_{1}, \bar{L}_{1}\right\rangle, \bar{L}_{1}, \in \mathcal{R}, \\
& \left\langle L_{2}^{A}, L_{2}^{A}\right\rangle_{A}=1, \text { and } \\
& \left\langle\left(H_{A} \circ P_{A}\right) \bar{L}_{1}, L_{2}^{A}\right\rangle_{A}=0, \bar{L}_{1} \in \mathcal{R}
\end{aligned}
$$

Note that L_{2}^{A} is actually globally defined, so that the above conditions determine a metric on \mathcal{L}^{A}. Since $L_{j}, j=1,2$, defined in (3.24) are an orthonormal basis of \mathcal{L}, it follows that $L_{j}^{A}, j=1,2$ are an orthonormal basis of \mathcal{L}^{A} with respect to \langle,\rangle_{A}.

Let $d V$ denote the volume form associated with the Riemannian metric \langle,$\rangle . In the coordinates \left(y_{1}, \ldots, y_{4}\right)$ in $W\left(x_{0}\right)$, we can write $d V=V(y) d y$, where $d y=d y_{1} \cdots d y_{4}$, and where V satisfies

$$
|V|_{k, W\left(x_{0}\right)} \leq C_{k}, \text { and } \inf _{y \in W\left(x_{0}\right)} V(y)>c>0
$$

where c is independent of σ, ε, and x_{0}. We will define the inner product for two functions $g, h \in C^{\infty}\left(S_{\varepsilon, \sigma}\right)$ by

$$
(g, h)=\int g \bar{h} d V
$$

Then the following lemma follows from the Divergence Theorem.
Lemma 3.9. Let L_{1}^{A}, L_{2}^{A} be the frame constructed in $W\left(x_{0}\right)$. Then there exist functions $e_{j} \in C^{\infty}\left(W\left(x_{0}\right)\right), j=1,2$, and a function $P=$ $\left\langle L_{2}^{A}, \nu\right\rangle \in C^{\infty}\left(W\left(x_{0}\right)\right), \nu$ a unit normal vector, such that for all $g, h \in$ $C^{\infty}\left(W\left(x_{0}\right)\right)$,

$$
\begin{align*}
& \left(L_{1}^{A} g, h\right)=-\left(g, \bar{L}_{1}^{A} h\right)-\left(e_{1} g, h\right), \text { and } \tag{3.43}\\
& \left(L_{2}^{A} g, h\right)=-\left(g, \bar{L}_{2}^{A} h\right)-\left(e_{2} g, h\right)-\int_{M_{0}} P g \bar{h} d S+\int_{M_{\sigma}} P g \bar{h} d S \tag{3.44}
\end{align*}
$$

where $d S=V d s, M_{0}=\{z ; r(z)=0\}$ and $M_{\sigma}=\left\{z ; r(z)=\varepsilon \sigma^{3 \cdot 2^{m-1}}\right\}$. The function P satisfies $c<P(y)<C, y \in W\left(x_{0}\right)$, where c and C are independent of ε, σ, and x_{0}.

Let $\Lambda^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ denote the space of $(0, q)$-forms with respect to \mathcal{L}^{A} on $S_{\varepsilon, \sigma}$, and set

$$
\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)=\Lambda^{0, q}\left(S_{\varepsilon, \sigma} ; A\right) \otimes \mathcal{L}^{A}
$$

Now let us define, for a given structure \mathcal{L}^{A} satisfying (3.41) for small ε_{0}, the L^{2}-operators corresponding to D_{2} and its adjoint. We define $\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ to be the set of smooth sections U of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that support of U is a compact subset of $S_{\varepsilon, \sigma}$. Let $\mathcal{E}_{0}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ denote the set of sections of $\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ with compact support in the interior of $S_{\varepsilon, \sigma}$. Suppose that $U=\sum_{l=1}^{2} \sum_{|J|=q} U_{l}^{J} \bar{\omega}_{A}^{J} \cdot L_{l}^{A}$ is an element of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ with compact support in $W\left(x_{0}\right)$. We define

$$
\begin{equation*}
\|U\|^{2}=\int_{S_{\varepsilon, \sigma}} \sum_{l=1}^{2} \sum_{|J|=q}\left|U_{l}^{J}\right|^{2} d V \tag{3.45}
\end{equation*}
$$

where $d V$ is the volume form given by the metric of \mathcal{L}^{0}. Since L_{1}^{A}, L_{2}^{A} is an orthonormal frame, the quantity in (3.45) is independent of the frame neighborhood $W\left(x_{0}\right)$. Thus, by using a partition of unity, it follows that the norm in (3.45) extends to all of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$. Let $L_{q}^{2}\left(S_{\varepsilon, \sigma}, T_{A}^{1,0}\right)$ denote the set of sections of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that (3.45) is finite.

Define $\mathcal{B}_{-}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$ to be the set of forms in $\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that U_{l}^{J} vanishes on M_{0} whenever $2 \notin J$. (This is also independent of the frame neighborhood $W\left(x_{0}\right)$.) Similarly, define $\mathcal{B}_{+}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$ to be the set of forms in $\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that U_{l}^{J} vanishes on M_{σ} whenever $2 \in J$. We now define the formal adjoint D_{q}^{\prime} of D_{q} on $\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ by $D_{q}^{\prime} U=G \in \mathcal{E}_{c}^{0, q-1}\left(S_{\varepsilon, \sigma} ; A\right)$ if for all $V \in \mathcal{E}_{0}^{0, q-1}\left(S_{\varepsilon, \sigma} ; A\right)$,

$$
\left(U, D_{q} V\right)=(G, V)
$$

where (,) corresponds to the norm in (3.45). Also, by D_{2} we obviously mean the operator defined in (2.3) for the structure \mathcal{L}^{A}. By combining (2.3) and (3.43)-(3.44), it follows that if $U=\sum_{\nu} U_{\nu} \bar{\omega}_{12} \cdot L_{\nu}^{A} \in \Gamma^{0,2}\left(S_{\varepsilon} ; A\right)$ is supported in $W\left(x_{0}\right)$, then

$$
\begin{equation*}
D_{2}^{\prime} U=\sum_{\nu=1}^{2}\left(\bar{\partial}^{*} U_{\nu}-\sum_{\mu=1}^{2}\left[\partial \bar{\omega}_{A}^{\mu}\left(L_{1}^{A}, \bar{L}_{\nu}^{A}\right) \bar{\omega}_{A}^{2}+\partial \bar{\omega}_{A}^{\mu}\left(L_{2}^{A}, \bar{L}_{\nu}^{A}\right) \bar{\omega}_{A}^{1}\right]\right) L_{\nu}^{A} \tag{3.46}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{\partial}^{*} U_{\nu}= & -\left(L_{1}^{A} U_{\nu}+e_{1} U_{\nu}\right) \bar{\omega}_{A}^{2}-\left(L_{2}^{A} U_{\nu}+e_{2} U_{\nu}\right) \bar{\omega}_{A}^{1} \tag{3.47}\\
& -\sum_{l=1}^{2} \omega_{A}^{l}\left(\left[L_{1}^{A}, L_{2}^{A}\right]\right) U_{\nu} \bar{\omega}_{A}^{l}
\end{align*}
$$

We now extend the definition of the operator D_{q} and D_{q}^{\prime} to the L^{2}-spaces. We define an operator

$$
T: L_{q-1}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right) \rightarrow L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)
$$

by the condition that $U \in \operatorname{Dom}(T)$ and $T U=F \in L_{q}^{2}\left(S_{\varepsilon, \sigma}, T_{A}^{1,0}\right)$ if for all $V \in \mathcal{B}_{-}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$, we have

$$
\left(U, D_{q}^{\prime} V\right)=(F, V)
$$

Similarly, if $U \in L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$, then $U \in \operatorname{Dom}(S)$ and $S U=G \in$ $L_{q+1}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$ if for all $V \in \mathcal{B}_{-}^{q+1}\left(S_{\varepsilon, \sigma} ; A\right)$,

$$
\left(U, D_{q+1}^{\prime} V\right)=(G, V)
$$

Note that these definitions imply that if $U \in \operatorname{Dom}(T)$ (or $\operatorname{Dom}(S)$), then $T U=D_{q} U$ (or $S U=D_{q+1} U$) as in the sense of distribution theory. Let $T^{*}: L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right) \longrightarrow L_{q-1}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$ and $S^{*}: L_{q+1}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right) \longrightarrow$ $L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$ be the Hilbert space adjoints of T and S respectively. It follows that if $U \in \operatorname{Dom}\left(T^{*}\right)$, then $T^{*} U=D_{q}^{\prime} U$ and that if $U \in \operatorname{Dom}\left(S^{*}\right)$, then $S^{*} U=D_{q+1}^{\prime} U$, as in the sense of distributions. Therefore it follows that

$$
\begin{aligned}
\mathcal{E}_{c}^{0, q-1}\left(S_{\varepsilon, \sigma} ; A\right) \cap \operatorname{Dom}(T) & =\mathcal{B}_{+}^{q-1}\left(S_{\varepsilon, \sigma} ; A\right), \text { and } \\
\mathcal{E}_{c}^{0, q}\left(S_{\varepsilon, \sigma} ; A\right) \cap \operatorname{Dom}\left(T^{*}\right) & =\mathcal{B}_{-}^{q}\left(S_{\varepsilon, \sigma} ; A\right)
\end{aligned}
$$

Similar relations hold for S. Set

$$
\mathcal{B}^{q}\left(S_{\varepsilon, \sigma} ; A\right)=\mathcal{B}_{+}^{q}\left(S_{\varepsilon, \sigma} ; A\right) \cap \mathcal{B}_{-}^{q}\left(S_{\varepsilon, \sigma} ; A\right)
$$

Then we can approximate $U \in \operatorname{Dom}(S) \cap \operatorname{Dom}\left(T^{*}\right)$ by $U_{\mu} \in \mathcal{B}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$ in the graph norm of S and T^{*} [4, Lemma 6.4]:

Lemma 3.10. Let $U \in \operatorname{Dom}(S) \cap \operatorname{Dom}\left(T^{*}\right)$. Then there exists $U_{\mu} \in$ $\mathcal{B}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that

$$
\lim _{\mu \rightarrow \infty}\left(\left\|U_{\mu}-U\right\|+\left\|S U_{\mu}-S U\right\|+\left\|T^{*} U_{\mu}-T^{*} U\right\|\right)=0
$$

Finally suppose that we have proved the estimate

$$
\begin{equation*}
\|U\|^{2} \leq C\left(\left\|T^{*} U\right\|^{2}+\|S U\|^{2}\right) \tag{3.48}
\end{equation*}
$$

for all $U \in \mathcal{B}^{q}\left(S_{\varepsilon, \sigma} ; A\right)$. Then Lemma 3.10 shows that (3.48) holds for all $U \in \operatorname{Dom} T^{*} \cap \operatorname{Dom} S$. Then from the usual $\bar{\partial}$-Neumann theory it follows that for all $G \in L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$, there exists an element $N G \in \operatorname{Dom}\left(T^{*}\right) \cap$ $\operatorname{Dom}(S)$ such that

$$
\|N G\| \leq C^{2}\|G\|
$$

and

$$
(G, V)=\left(T^{*}(N G), T^{*} V\right)+(S N G, S V), \quad V \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)
$$

We will call N the Neumann operator associated with D_{q}.

§4. The Subelliptic Estimate for D_{2}

In this section we prove a subelliptic estimate for the D_{2}-Neumann problem with almost-complex structure \mathcal{L}^{A}.

We first define tangential norms that will be used in the estimates. For any $s \in \mathbb{R}$, set

$$
\left\|\|f\|_{s}^{2}=\int_{0}^{\sigma^{3 \cdot 2^{m-1}}} \int_{\mathbb{R}^{3}}\left|\hat{f}\left(\xi, y_{4}\right)\right|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi d y_{4}\right.
$$

where $\hat{f}\left(\xi, y_{4}\right)=\int_{\mathbb{R}^{3}} e^{-i y^{\prime} \cdot \xi} f\left(y^{\prime}, y_{4}\right) d y^{\prime}$. For any integer $k \geq 0$ and any $s \in \mathbb{R}$, set

$$
\|f\|_{s, k}^{2}=\sum_{j=0}^{k}\| \| \frac{\partial^{j} f}{\partial y_{4}^{j}}\| \|_{s-j}^{2}
$$

Finally for any integer $m \geq 0$ and $f \in C^{\infty}\left(W\left(x^{\prime}\right)\right)$, set

$$
\|f\|_{m}^{2}=\sum_{|\alpha| \leq m}\left\|D_{y}^{\alpha} f\right\|^{2}
$$

By using the coefficients of U, we can easily define all of the above norms for any section U of $\Gamma^{0, q}$. We define $\mathcal{A}\left(S_{\varepsilon, \sigma}\right)$ to be the space of sections $A \in \Gamma^{0,1}\left(S_{\varepsilon, \sigma} ; 0\right)$ such that along $M_{0}, A(\bar{L})=0$ whenever $\bar{L} \in T^{0,1} \cap \mathbb{C} T M_{0}$. Then the goal of this section is to prove the following subelliptic estimate:

Theorem 4.1. Suppose $T(\bar{M})=m<\infty$ and that A is a section of $\mathcal{A}\left(S_{\varepsilon, \sigma}\right)$ that satisfies (3.41) for some small $\varepsilon_{0}>0$. Then there exist small positive constants σ_{1} and ε_{1} so that if $\varepsilon<\varepsilon_{1}$, if $\sigma<\sigma_{1}$, and if $|A|_{m+5, W\left(x_{0}\right)} \leq \varepsilon$, then the D_{2}-Neumann problem on $S_{\varepsilon, \sigma}$ for the almostcomplex structure \mathcal{L}^{A} satisfies the following estimate for all forms $U \in$ $\mathcal{B}^{2}\left(S_{\varepsilon, \sigma} ; A\right)$ that are compactly supported in $W\left(x_{0}\right)$:

$$
\begin{equation*}
\sigma^{-3}\|U\|^{2}+L^{A}(U)+\|U\|_{2^{-m}, 1}^{2} \leq C\left(\|S U\|^{2}+\left\|T^{*} U\right\|^{2}\right) \tag{4.1}
\end{equation*}
$$

where $L^{A}(U)$ is defined by

$$
\begin{equation*}
L^{A}(U)=\left\|L_{1}^{A} U\right\|^{2}+\left\|\bar{L}_{1}^{A} U\right\|^{2}+\left\|L_{2}^{A} U\right\| \tag{4.2}
\end{equation*}
$$

Now set $X_{1}=\operatorname{Re} L_{1}^{A}=\sum_{k=1}^{3} a_{1 k} \frac{\partial}{\partial y_{k}}, X_{2}=\operatorname{Im} L_{1}^{A}=\sum_{k=1}^{3} a_{2 k} \frac{\partial}{\partial y_{k}}$, and $\left\|a^{i}\right\|_{r}=\sum_{k=1}^{3}\left\|a_{i k}\right\|_{r}, i=1,2$. Assume that A satisfies (3.41). Then the restriction of L_{1}^{A} to the level set $y_{4}=\lambda$ is a C^{m+5}-vector field uniformly in λ.

Proposition 4.2. Let X_{1}, X_{2} be smooth compactly supported vector fields in \mathbb{R}^{4} and suppose that there exists a set $K \Subset \mathbb{R}^{4}$ and a constant $c>0$ and vector fields $X^{1}, \ldots, X^{m}, X^{i}=X_{1}$ or $X_{2}, i=1,2, \ldots, m$, so that for all $x \in K$,

$$
\begin{align*}
\inf \left\{\sum_{j=1}^{2}\left|\eta\left(X_{j}\right)\right|+\left|\eta\left(\left[X^{m}, X^{m-1}, \ldots,\left[X^{2}, X^{1}\right] \ldots\right]\right)\right|\right. \tag{4.3}\\
\left.\eta \in T_{x}^{*}, \eta\left(\frac{\partial}{\partial y_{4}}\right)=0,|\eta|=1\right\}>c .
\end{align*}
$$

Then there exists a constant C independent of X_{1}, X_{2} so that for all $U \in$ $C_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ with $\operatorname{supp} U \subset K$,

$$
\begin{equation*}
\|U\|_{2-m}^{2} \leq C\left(1+\sum_{j=1}^{2}\left\|a^{j}\right\|_{m+5}^{2}\right)^{2 m}\left(\left\|X_{1} U\right\|^{2}+\left\|X_{2} U\right\|^{2}+\|U\|^{2}\right) \tag{4.4}
\end{equation*}
$$

Proof. The proof is similar to that of [7]. We just observe carefully how the coefficient functions depend. Then we can show, by induction, that the coefficient functions a^{j} of X_{1}, X_{2} appear as in the right hand side of (4.4).

If we combine Proposition 3.8 and Proposition 4.2, we have the following corollary.

Corollary 4.3. Assume that $T(\bar{M}) \leq m$ and that (3.41) holds for a sufficiently small $\varepsilon_{0}>0$. Then for all $f \in C_{0}^{\infty}\left(W\left(x^{\prime}\right)\right)$,

$$
\begin{equation*}
\|\mid f\|_{2^{-m}}^{2} \leq C\left(\left\|L_{1}^{A} f\right\|^{2}+\left\|\bar{L}_{1}^{A} f\right\|^{2}\right)+C\|f\|^{2} \tag{4.5}
\end{equation*}
$$

where C is independent of x^{\prime} and ε_{0}.
Proof. Since we are assuming (3.41), the coefficients $a_{i k}$ of $X_{i}, i=1,2$ satisfy $\left\|a_{i k}\right\|_{m+5} \leq C^{\prime}$. Therefore by virtue of the estimates in (3.42), the corollary follows from Proposition 4.2.

For convenience, in all that follows in this section, we omit the notation A from the frames L_{1}^{A}, L_{2}^{A}, and $\omega_{A}^{1}, \omega_{A}^{2}$. Note that in $W\left(x_{0}\right)$, we have technically chosen so that $y_{4}=0$ and $y_{4}=\sigma^{3 \cdot 2^{m-1}}$ coincide with $r=0$ and $r=\varepsilon \sigma^{3 \cdot 2^{m-1}}$, respectively, the boundaries of $S_{\varepsilon, \sigma}$. Then the following lemma can be proved by modifying the proof of Lemma 7.7 in [4].

Lemma 4.4. Suppose that $f \in C_{0}^{\infty}\left(W\left(x_{0}\right)\right)$ and that f vanishes on M_{0} or on M_{σ}. If σ is sufficiently small, say $\sigma<\sigma_{1}$, then there exists a constant C independent of ε, σ, and x_{0} so that for all $f \in C_{0}^{\infty}\left(W\left(x_{0}\right)\right)$,

$$
\begin{align*}
& \sigma^{-3}\|f\|^{2} \leq C\left(\left\|\bar{L}_{2} f\right\|^{2}+\left\|L_{1} f\right\|^{2}+\left\|\bar{L}_{1} f\right\|^{2}\right), \text { and } \tag{4.7}\\
& \sigma^{-3}\|f\|^{2} \leq C\left(\left\|L_{2} f\right\|^{2}+\left\|L_{1} f\right\|^{2}+\left\|\bar{L}_{1} f\right\|^{2}\right) \tag{4.8}
\end{align*}
$$

We now return to the proof of Theorem 4.1. If $U \in \mathcal{B}^{2}\left(S_{\varepsilon}, A\right)$, then U can be written as $U=\sum_{l=1}^{2} U_{l} \bar{\omega}^{1} \wedge \bar{\omega}^{2} \cdot L_{l}$, where $U_{l}=0$ on $M_{\sigma}, l=1,2$. This fact makes us easy to handle the boundary terms occuring when we integrate by parts. Assume that $\operatorname{supp} U \Subset W\left(x_{0}\right)$. Then it is obvious that $S U=0$, and it follows from (3.46) and (3.47) that

$$
T^{*} U=D_{2}^{\prime} U=B U+\mathcal{O}(|U|)
$$

where

$$
\begin{equation*}
B U=-\sum_{l=1}^{2}\left(L_{1} U_{l} \bar{\omega}^{2}+L_{2} U_{l} \bar{\omega}^{1}\right) \cdot L_{l} \tag{4.9}
\end{equation*}
$$

Hence it follows that

$$
\begin{equation*}
\|B U\|^{2} \leq 2\left\|T^{*} U\right\|^{2}+C\|U\|^{2} \tag{4.10}
\end{equation*}
$$

and we conclude from (4.9) that

$$
\|B U\|^{2}=\sum_{l=1}^{2} \sum_{j=1}^{2}\left\|L_{j} U_{l}\right\|^{2}
$$

If we use Lemma 3.9 and the boundary conditions, we get, for $U=U_{l}$, that

$$
\begin{aligned}
\left\|L_{1} U\right\|^{2} & =\left(L_{1} U, L_{1} U\right)=-\left(\bar{L}_{1} L_{1} U, U\right)-\left(L_{1} U, e_{1} U\right) \\
& =-\left(L_{1} \bar{L}_{1} U, U\right)+\left(\left[L_{1}, \bar{L}_{1}\right] U, U\right)-\left(L_{1} U, e_{1} U\right) \\
& =\left(\bar{L}_{1} U, \bar{L}_{1} U\right)+\left(\bar{L}_{1} U, \bar{e}_{1} U\right)-\left(L_{1} U, e_{1} U\right)+\left(\left[L_{1}, \bar{L}_{1}\right] U, U\right) .
\end{aligned}
$$

Note that we can write

$$
\left[L_{1}, \bar{L}_{1}\right]=\sum_{i=1}^{2} \omega^{i}\left(\left[L_{1}, \bar{L}_{1}\right]\right) L_{i}+\sum_{i=1}^{2} \bar{\omega}^{i}\left(\left[L_{1}, \bar{L}_{1}\right]\right) \bar{L}_{i}
$$

Set $c_{11}^{i}=\omega^{i}\left(\left[L_{1}, \bar{L}_{1}\right]\right)$, and $d_{11}^{i}=\bar{\omega}^{i}\left(\left[L_{1}, \bar{L}_{1}\right]\right)$. Then

$$
\left(\left[L_{1}, \bar{L}_{1}\right] U, U\right)=\sum_{i=1}^{2}\left(c_{11}^{i} L_{i} U, U\right)+\sum_{i=1}^{2}\left(d_{11}^{i} \bar{L}_{i} U, U\right)
$$

and hence

$$
\left\|L_{1} U\right\|^{2}=\left\|\bar{L}_{1} U\right\|^{2}+\left(c_{11}^{2} L_{2} U, U\right)+\left(d_{11}^{2} \bar{L}_{2} U, U\right)+\mathcal{O}\left(\left(\left\|L_{1} U\right\|+\left\|\bar{L}_{1} U\right\|\right)\|U\|\right)
$$

Note that

$$
\left(d_{11}^{2} \bar{L}_{2} U, U\right)=-\left(U, L_{2}\left(\bar{d}_{11}^{2} U\right)\right)-\left(\bar{e}_{2} U, \bar{d}_{11}^{2} U\right)-\int_{M_{0}} d_{11}^{2}|U|^{2} d S
$$

because $U=0$ on M_{σ}. Therefore it follows that

$$
\frac{1}{2}\left\|L_{1} U\right\|^{2}=\frac{1}{2}\left\|\bar{L}_{1} U\right\|^{2}-\frac{1}{2} \int_{M_{0}} d_{11}^{2}|U|^{2} d S+\mathcal{O}\left(\sigma L^{A}(U)\right)+\mathcal{O}\left(\sigma^{-1}\|U\|^{2}\right)
$$

and hence from (4.2) we have

$$
\begin{aligned}
\|B U\|^{2}= & \frac{1}{2}\left\|L_{1} U\right\|^{2}+\frac{1}{2}\left\|\bar{L}_{1} U\right\|^{2}+\left\|L_{2} U\right\|^{2} \\
& -\frac{1}{2} \int_{M_{0}} d_{11}^{2}|U|^{2} d s+\mathcal{O}\left(\sigma L^{A}(U)\right)+\mathcal{O}\left(\sigma^{-1}\|U\|^{2}\right) \\
\geq & \frac{1}{3} L^{A}(U)-\frac{1}{2} \int_{M_{0}} d_{11}^{2}|U|^{2} d s-C \sigma^{-1}\|U\|^{2}
\end{aligned}
$$

provided that σ is sufficiently small. Note that $d_{11}^{2}=-c_{11}^{2}=-\omega^{2}\left(\left[L_{1}, \bar{L}_{1}\right]\right)$ ≤ 0 on M_{0} because M_{0} is pseudoconvex. Therefore we get

$$
\begin{equation*}
\|B U\|^{2} \geq \frac{1}{3} L^{A}(U)-C \sigma^{-1}\|U\|^{2} \tag{4.11}
\end{equation*}
$$

By combining (4.10) and (4.11) we get

$$
\begin{equation*}
\frac{1}{3} L^{A}(U)-C \sigma^{-1}\|U\|^{2} \leq 2\left\|T^{*} U\right\|^{2} \tag{4.12}
\end{equation*}
$$

From (4.5) and Lemma 4.4, it follows that

$$
\begin{equation*}
\left\|\|U\|_{2^{-m}}^{2}+\sigma^{-3}\right\| U \|^{2} \leq C L^{A}(U) \tag{4.13}
\end{equation*}
$$

If we combine (4.10), (4.12) and (4.13) we obtain for sufficiently small σ that

$$
\begin{equation*}
\sigma^{-3}\|U\|^{2}+L^{A}(U)+\|U\|_{2^{-m}}^{2} \leq C\left(\left\|T^{*} U\right\|^{2}+\|S U\|^{2}\right) \tag{4.14}
\end{equation*}
$$

For the estimates of the non-tangential derivatives of U, we note that $L_{2}^{A}=$ $\frac{\partial}{\partial y_{4}}+X$, where $X=\sum_{j=1}^{3} b_{j}(y) \frac{\partial}{\partial y_{j}}$. Therefore a standard argument yields the inequality

$$
\begin{equation*}
\left|\left\|\left.\frac{\partial f}{\partial y_{4}} \right\rvert\,\right\|_{-1+2^{-m}}^{2} \leq C\left(1+\sum_{j=1}^{3}\left|b_{j}\right|_{\tilde{W}\left(x_{0}\right), 5}^{2}\right)\left(\left|\|f \mid\|_{2^{-m}}^{2}+\left\|\bar{L}_{2} f\right\|^{2}+\|f\|^{2}\right)\right.\right. \tag{4.15}
\end{equation*}
$$

for all $f \in C_{0}^{\infty}\left(\widetilde{W}\left(x_{0}\right)\right)$, where $\widetilde{W}\left(x_{0}\right)$ is a neighborhood containing $W\left(x_{0}\right)$. This inequality can be applied with $f=U_{l}$ and one obtains (4.1) combining (4.13)-(4.15). This completes the proof of Theorem 4.1.

We now define Sobolev spaces for sections of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$. Recall that the open sets $B_{b}\left(x_{0}\right)$ satisfy (3.19) and (3.20) for each $x_{0} \in M$. Choose a set $T_{\sigma}=\left\{x_{i}^{\sigma} \in M, i \in I\right\}$ such that the sets $B_{c \sigma / 2}\left(x_{i}^{\sigma}\right), i \in I$, cover $S_{\varepsilon, \sigma}$, and such that no two points x_{i}^{σ} and x_{j}^{σ} satisfy $\left|x_{i}^{\sigma}-x_{j}^{\sigma}\right| \leq c \sigma / 4$ where $|\mid$ is the distance function on $S_{\varepsilon, \sigma}$. It follows that the sets $W\left(x_{i}^{\sigma}\right), i \in I$, cover $S_{\varepsilon, \sigma}$ and that there exists an integer \widetilde{N} such that no point of $S_{\varepsilon, \sigma}$ lies in more than \tilde{N} of the open sets $W\left(x_{i}^{\sigma}\right)$. Furthermore, there exist functions $\zeta_{i}, \zeta_{i}^{\prime}\left(\right.$ that are independent of $\left.y_{2 n}\right) \in C_{0}^{\infty}\left(W\left(x_{i}^{\sigma}\right)\right)$ such that $\sum_{i \in I} \zeta_{i}^{2} \equiv 1$, such that if $x \in \operatorname{supp} \zeta_{i}$, then

$$
\begin{equation*}
\zeta_{i}^{\prime} \equiv 1 \text { in } B_{c^{\prime} \sigma}(x) \tag{4.16}
\end{equation*}
$$

and such that both ζ_{i} and ζ_{i}^{\prime} satisfy

$$
\begin{equation*}
\left|\zeta_{i}\right|_{k, W\left(x_{i}^{\sigma}\right)}+\left|\zeta_{i}^{\prime}\right|_{k, W\left(x_{i}^{\sigma}\right)} \leq C_{k} \sigma^{-k} \tag{4.17}
\end{equation*}
$$

Now let F be any section of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$. We define

$$
\|F\|_{k, A}^{2}=\sum_{i \in I}\left\|\zeta_{i} F\right\|_{k, A, W\left(x_{i}^{\sigma}\right)}^{2}
$$

where

$$
\left\|\zeta_{i} F\right\|_{k, A, W\left(x_{i}^{\sigma}\right)}^{2}=\sum_{j=1}^{2} \sum_{|J|=q}\left\|\zeta_{i} F_{j}^{J}\right\|_{k, W\left(x_{i}^{\sigma}\right)}^{2}
$$

and where $F=\sum_{j=1}^{2} \sum_{|J|=q} F_{j}^{J} \bar{\omega}_{A}^{J} \cdot L_{j}^{A}$ is the decomposition of F in terms of the $L_{1}^{A}, L_{2}^{A}, \omega_{A}^{1}, \omega_{A}^{2}$ frame of $W\left(x_{i}^{\sigma}\right)$. Moreover, the Sobolev norm $\left\|\|_{k, W\left(x_{i}^{\sigma}\right)}\right.$ is taken with respect to the y-coordinates of $W\left(x_{i}^{\sigma}\right)$. We define $H_{k}^{0, q}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$ to be the set of all sections F of $\Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ for which $\|F\|_{k, A}<\infty$. If we define $L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$ to be the set of all $F \in \Gamma^{0, q}\left(S_{\varepsilon, \sigma} ; A\right)$ such that $\|F\|^{2}<\infty$, then it is obvious that the norms $\|\|$ and $\| \|_{0, A}$ are equivalent on $L_{q}^{2}\left(S_{\varepsilon, \sigma} ; T_{A}^{1,0}\right)$. We also define $\mathcal{A}\left(S_{\varepsilon, \sigma}\right)$ to be the space of sections $A \in \Gamma^{0,1}\left(S_{\varepsilon, \sigma} ; 0\right)$ such that along $M_{0}, A(\bar{L})=0$ whenever $\bar{L} \in$ $T^{0,1} \cap \mathbb{C} T M_{0}$. Since $\mathcal{A}\left(S_{\varepsilon, \sigma}\right) \subset \Gamma^{0,1}\left(S_{\varepsilon, \sigma} ; 0\right)$, we define $\|A\|_{k}=\|A\|_{k, 0}$, and we define $H_{k}\left(S_{\varepsilon, \sigma} ; \mathcal{A}\right)$ to be the set of $A \in \mathcal{A}\left(S_{\varepsilon, \sigma}\right)$ such that $\|A\|_{k}<\infty$.

We want to get an estimate in global form. Define $Q(U, U)=\left\|T^{*} U\right\|^{2}+$ $\|S U\|^{2}$. By using the partition of unity as defined above satisfying (4.16), (4.17), and the estimates in Theorem 4.1, we obtain:

Corollary 4.5. Suppose that A satisfies (3.41) for all $x_{0} \in \bar{M}$. Then there exists a fixed small σ and a constant $\varepsilon_{1}>0$ such that for all $\varepsilon, 0<$ $\varepsilon<\varepsilon_{1}$, and all $U \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$,

$$
\begin{equation*}
\|U\|^{2} \leq C Q(U, U) \tag{4.18}
\end{equation*}
$$

Now let us fix $\sigma>0$, satisfying Corollary 4.5 and set $W\left(x_{0}\right)=W_{\sigma}\left(x_{0}\right)$. Using Theorem 4.1 and the standard "bootstrap" method, we can get regularity estimates for the linearized equation. The proof follows the method similar to the proof in Section 9 of [4].

THEOREM 4.6. Suppose that (3.41) holds and that U is the solution of $\square U=G$, where $G \in H_{k}^{0,2}\left(S_{\varepsilon} ; T_{A}^{1,0}\right)$ for all $k>0$. Then for all integers
$k \geq 1$ and each pair of functions ζ, ζ^{\prime} in $C_{0}^{\infty}\left(W\left(x_{0}\right)\right)$ as in (4.16) and (4.17), $U, D_{2}^{*} U$ satisfy

$$
\begin{align*}
\|\zeta U\|_{k} & \lesssim\left\|\zeta^{\prime} G\right\|_{k-2 \delta}+\left(1+\|A\|_{k+1}\right)\left(\left\|\zeta^{\prime} G\right\|_{5}+\left\|\zeta^{\prime} U\right\|\right) \text { and } \tag{4.19}\\
\left\|\zeta D_{2}^{*} U\right\|_{k} & \lesssim\left\|\zeta^{\prime} G\right\|_{k}+\left(1+\|A\|_{k+2}\right)\left(\left\|\zeta^{\prime} G\right\|_{5}+\left\|\zeta^{\prime} U\right\|\right)
\end{align*}
$$

Note that $N(j)=\left\{i \in I ; W\left(x_{i}^{\sigma}\right) \cap W\left(x_{j}^{\sigma}\right) \neq \emptyset\right\}$ is bounded by a fixed number $\tilde{N} \geq 1$. Also it follows from (3.18) and Lemma 3.7 that the frames $L_{k}^{A, j}$ in $W\left(x_{j}^{\sigma}\right)$ and $L_{k}^{A, i}$ in $W\left(x_{i}^{\sigma}\right), k=1,2$, are related by

$$
L_{k}^{A, j}=\sum_{l=1}^{2} B_{k l}^{A, j i} L_{l}^{A, i}, k=1,2
$$

where $B_{k l}^{A, j i}$ satisfies

$$
\begin{equation*}
\left|D_{y^{i}}^{m} B_{k l}^{A, j i}\right| \lesssim 1+P_{m, x_{\imath}^{\sigma}}(A) . \tag{4.20}
\end{equation*}
$$

Similarly if $w_{A, j}^{k}, j=1,2$, is the dual frame of $L_{k}^{A, j}$, then there exists a matrix $b_{k}^{A, j i}$ such that $\bar{w}_{A, j}^{k}=\sum_{l=1}^{2} b_{k, l}^{A, j i} \bar{w}_{A, i}^{l}, k=1,2$, where $b_{k, l}^{A, j i}$ satisfies

$$
\begin{equation*}
\left|D_{y^{i}}^{m} A_{k, l}^{A, j i}\right| \lesssim 1+P_{m, x_{i}^{\sigma}}(A) \tag{4.21}
\end{equation*}
$$

Therefore it follows from (4.20) and (4.21) that for a section V in $\Gamma_{A}^{0, q}\left(S_{\epsilon} ; A\right)$, $q=1,2$, and for functions $\zeta_{j}, \zeta_{j}^{\prime} \in C_{0}^{\infty}\left(W_{j}^{\sigma}\right)$ satisfying (4.16), (4.17), we have:

$$
\begin{equation*}
\left\|\zeta_{j}^{\prime} V\right\|_{k, W\left(x_{j}^{\sigma}\right)}^{2} \lesssim \sum_{i \in N(j)}\left(\left\|\zeta_{i} V\right\|_{k, W\left(x_{i}^{\sigma}\right)}^{2}+\|A\|_{k}^{2}\left\|\zeta_{i} V\right\|_{3, W\left(x_{i}^{\sigma}\right)}^{2}\right) \tag{4.22}
\end{equation*}
$$

We now state the estimate (4.19) in global form.
Theorem 4.7. Assume that $\square U=G$, where $G \in H_{k}^{0,2}\left(S_{\varepsilon} ; T_{A}^{1,0}\right)$ for all k and that A satisfies (3.41). Then

$$
\begin{equation*}
\left\|D_{2}^{*} U\right\|_{k} \lesssim\|G\|_{k}+\left(1+\|A\|_{k+2}\right)\|G\|_{5} \tag{4.23}
\end{equation*}
$$

Proof. Set $\zeta=\zeta_{j} \in C_{0}^{\infty}\left(W\left(x_{j}^{\sigma}\right)\right)$ in (4.19) and sum up over j and then apply (4.22). Then we get

$$
\left\|D_{2}^{*} U\right\|_{k} \lesssim\|G\|_{k}+\left(1+\|A\|_{k+2}\right)\left(\|G\|_{5}+\|U\|\right) .
$$

Since (4.18) holds, it follows that

$$
\left(1+\|A\|_{k+2}\right)\|U\| \lesssim\left(1+\|A\|_{k+2}\right)\|G\|_{4}
$$

and this proves (4.23).

§5. Extension of $C R$ structures

In this section we will prove Theorem 1.1 and Theorem 1.2 using the estimates in Section 4. If $A \in \mathcal{A}\left(S_{\varepsilon, \sigma}\right)$ is sufficiently small and if we set $P_{A}(\bar{L})=\bar{L}+A(\bar{L})$, then $\overline{\mathcal{L}}_{A}=\left\{P_{A}(\bar{L}) ; \bar{L} \in \overline{\mathcal{L}}\right\}$. If we set $Q_{A}(\omega)=$ $\omega-A^{*} \omega$, then $\Lambda_{A}^{1,0}=\left\{Q_{A}(\omega) ; \omega \in \Lambda^{1,0}(\mathcal{L})\right\}$. We define a nonlinear operator $\Phi: \mathcal{A}\left(S_{\varepsilon, \sigma}\right) \rightarrow \Gamma^{0,2}\left(S_{\varepsilon, \sigma}\right)$ as follows:

$$
\begin{equation*}
\Phi(A)\left(\bar{L}^{\prime}, \bar{L}^{\prime \prime}, \omega\right)=Q_{A}(\omega)\left(\left[P_{A}\left(\bar{L}^{\prime}\right), P_{A}\left(\bar{L}^{\prime \prime}\right)\right]\right) \tag{5.1}
\end{equation*}
$$

Obviously, if $\Phi(A)=0$, then \mathcal{L}_{A} is an integrable almost complex structure on $S_{\varepsilon, \sigma}$.

Note that there is a natural map $\mathcal{P}_{A}: \Gamma_{A}^{0,2} \rightarrow \Gamma^{0,2}$, defined as follows: if $B \in \Gamma_{A}^{0,2}$, we define $\mathcal{P}_{A} B$ by

$$
\left(\mathcal{P}_{A} B\right)\left(\bar{L}_{1}, \bar{L}_{2}, \omega\right)=B\left(P_{A}\left(\bar{L}_{1}\right), P_{A}\left(\bar{L}_{2}\right), Q_{A}(\omega)\right)
$$

Therefore it follows from the definition of F^{A} in (2.5) that $\Phi(A)=\mathcal{P}_{A}\left(F^{A}\right)$. We note also that if d and A are small sections of \mathcal{A} on $S_{\varepsilon, \sigma}$, then there exist sections $\Delta_{A, d}^{+}$and $\Delta_{A, d}^{-}$of $\Lambda_{A}^{0,1} \otimes T_{A}^{1,0}$ and $\Lambda_{A}^{0,1} \otimes T_{A}^{0,1}$, respectively, so that

$$
P_{A+d}(\bar{L})=P_{A}(\bar{L})+\Delta_{A, d}^{+}\left(P_{A}(\bar{L})\right)+\Delta_{A, d}^{-}\left(P_{A}(\bar{L})\right)
$$

Similarly, there exist sections $\delta_{A, \delta}^{+}$and $\delta_{A, \delta}^{-}$of $\operatorname{Hom}\left(\Lambda_{A}^{1,0}, \Lambda_{A}^{1,0}\right)$ and $\operatorname{Hom}\left(\Lambda_{A}^{1,0}, \Lambda_{A}^{0,1}\right)$, respectively, so that

$$
Q_{A+d}(\omega)=Q_{A}(\omega)-\delta_{A, d}^{+}\left(Q_{A}(\omega)\right)-\delta_{A, d}^{-}\left(Q_{A}(\omega)\right)
$$

Then it follows that $\Delta_{A}^{ \pm}(d)=\Delta_{A, d}^{ \pm}$both depend linearly on d and that the coefficients depend smoothly on A, and that the mapping $d \longrightarrow \Delta_{A}(d)=$ $\Delta_{A}^{+}(d)+\Delta_{A}^{-}(d)$ is invertible. Then $\Phi^{\prime}(A)(d)$, as an element of $\Gamma^{0,2}$, satisfies

$$
\begin{equation*}
\Phi^{\prime}(A)(d)=\left(\mathcal{P}_{A} \circ D_{2}^{A} \circ \Delta_{A}^{+}\right)(d)-\mathcal{P}_{A}\left(h_{A}(d)\left(F^{A}\right)\right) \tag{5.2}
\end{equation*}
$$

where $h_{A}(d): T_{A}^{1,0} \longrightarrow T_{A}^{1,0}$ denotes the adjoint of $\delta_{A}^{+}(d): \Lambda_{A}^{1,0} \longrightarrow T_{A}^{1,0}$. Since $\Phi(A)=\mathcal{P}_{A}\left(F^{A}\right)$, we let U_{A} be the solution of $\square U_{A}=-F^{A}$ and then set $V_{A}=\left(D_{2}^{A}\right)^{*} U_{A}$ and then set $d_{A}=\Delta_{A}^{-1}\left(V_{A}\right)$. Since $D_{3}=0$, it follows that $D_{2}^{A} V_{A}=-F^{A}$. Hence we have from (5.2) that

$$
\begin{align*}
\Phi(A)+\Phi^{\prime}(A) d_{A} & =\mathcal{P}_{A}\left(F^{A}+D_{2}^{A} V_{A}\right)-\mathcal{P}_{A}\left(h_{A}\left(d_{A}\right)\left(F^{A}\right)\right) \tag{5.3}\\
& =-\mathcal{P}_{A}\left(h_{A}\left(d_{A}\right)\left(F^{A}\right)\right)
\end{align*}
$$

Using the representations in (5.2) and (5.3), we can now obtain that (as in Section 11 in [4]), $\Phi(A)+\Phi^{\prime}(A)\left(d_{A}\right)$ vanishes in second order in $\Phi(A)$. This is a key property in the Nash-Moser approximation process.

We recall that F^{A} vanishes in infinite order along M_{0} (in x-coordinates!) This can be stated in y-coordinates as follows. The proof is similar to that of Lemma 6.2 in [4].

LEmMA 5.1. Suppose that there exists a section $F \in \Gamma^{0,2}\left(\bar{\Omega}^{+}\right)$where $\bar{\Omega}^{+}=\{(x, t) \in \Omega ; 0 \leq t<1\}$ such that F and all its derivatives vanish to infinite order along M. Then for all $k, N=0,1,2, \ldots$, and all $x_{0} \in M$,

$$
\begin{equation*}
\left|F^{0}\right|_{k, W\left(x_{0}\right)} \leq C_{k, N} \varepsilon^{N} \varphi\left(x_{0}\right)^{N} \tag{5.4}
\end{equation*}
$$

where F^{0} means that F is written out in $W\left(x_{0}\right)$ according to the frame L_{1}^{0}, $L_{2}^{0}, \omega_{0}^{1}, \omega_{0}^{2}$ of $\mathcal{L}^{0}\left(\mathcal{L}^{A}\right.$ with $\left.A=0\right)$.

We can now prove the main theorems of this paper:
Proof of Theorem 1.1. We will show that $\|\Phi(0)\|_{D}<b$ for the small $b>0$ and the integer D which are appeared in the variant of Nash-Moser theorem [4, Theorem 13.1]. As in Section 11 of [4], the rest of the properties for the $\Phi(A)$ in the hypothesis of Nash-Moser theorem can be proved using the relations in (5.2) and (5.3), and the estimates for \square operator in Section 4.

Note that (4.17) and (5.4) imply that for each $i \in I$,

$$
\left\|\zeta_{i} F^{0}\right\|_{k, 0}^{2} \leq C_{k, N} \varepsilon^{N} \varphi\left(x_{i}^{\sigma}\right)^{N}
$$

so that after summing up over x_{i}^{σ},

$$
\begin{equation*}
\left\|F^{0}\right\|_{k, 0, \Phi}^{2} \leq C_{k, N} \sum_{i \in I} \varphi\left(x_{i}^{\sigma}\right)^{N} \varepsilon^{N} \tag{5.5}
\end{equation*}
$$

Since the choice of the points that was made before (4.17) shows that the balls $B_{\frac{c \sigma}{8}}\left(x_{i}^{\sigma}\right), i \in I$, are all disjoint, we can obtain an upper bound on $N(l)$, which is defined to be the number of $i \in I$ such that $2^{-l-1} \leq \varphi\left(x_{i}^{\sigma}\right)<$ 2^{-l}. In fact, in terms of the \langle,\rangle_{0}-metric introduced in Section 2, the volume of $B_{\frac{c \sigma}{8}}\left(x_{i}^{\sigma}\right)$ is roughly bounded below by $\varepsilon^{3} \sigma^{3\left(1+2^{m-1}\right)} \varphi\left(x_{i}^{\sigma}\right)^{6 m} \sim$ $\varepsilon^{3} \sigma^{3\left(1+2^{m-1}\right)} 2^{-6 l m}$, and the \langle,\rangle_{0}-volume of the region in $S_{\varepsilon, \sigma}$ with $2^{-l-1} \leq$
$\varphi(x) \leq 2^{-l}$ is roughly bounded above by $\varepsilon \sigma^{3 \cdot 2^{m-1}} \cdot 2^{-2 m l}$. Thus, we conclude that

$$
\begin{equation*}
N(l) \lesssim \varepsilon^{-2} \sigma^{-3} 2^{4 m l} \tag{5.6}
\end{equation*}
$$

Thus (5.5) and (5.6) imply that if $N=4 m l+1$, then

$$
\|\Phi(A)\|_{k}=\left\|F^{0}\right\|_{k, 0} \lesssim C_{k} \cdot \varepsilon
$$

for sufficiently small ε. In particular, if we set $k=D$, and choose ε to be sufficiently small, then it follow that $\|\Phi(A)\|_{D}<b$.

Proof of Theorem 1.2. Since $\bar{M} \subset b D$ is a compact pseudoconvex $C R$ manifold of finite type, we conclude from Theorem 1.1 that there exist a continuous nonnegative function g and an integrable almost complex structure \mathcal{L}^{+}on

$$
S_{g}^{+}=\{(x, t) \in M \times \mathbb{R} ; 0 \leq t \leq g(x)\}
$$

Moreover, since \mathcal{L}^{+}is a small perturbation of \mathcal{L}^{0}, which satisfies $d t\left(\mathcal{J}_{\mathcal{L}^{0}}\left(X_{0}\right)\right)$ <0, it follows that $\operatorname{dt}\left(\mathcal{J}_{\mathcal{L}^{+}}\left(X_{0}\right)\right)<0$.

Let \mathcal{L}^{-}be the integrable almost complex structure on D. We can smoothly extend \mathcal{L}^{+}and \mathcal{L}^{-}to $S_{g}=S_{g}^{+} \cup S_{g}^{-}$, where $S_{g}^{-}=\{(x, t) \in$ $M \times \mathbb{R} ;-g(x) \leq t \leq 0\}$. It follows that \mathcal{L}^{+}and \mathcal{L}^{-}are integrable to infinite order along $M \in b D$. Hence, Theorem 2.2 implies that there is a diffeomorphism $G: S_{g} \rightarrow S_{g}$ so that $G_{*}\left(\mathcal{L}^{+}\right)=\mathcal{L}^{-}$to infinite order along M. Since $\mathcal{L}^{ \pm}$both satisfy $d t\left(\mathcal{J}_{\mathcal{L}^{ \pm}}\left(X_{0}\right)\right)<0$, the proof of Theorem 4.2 in [4] shows that G maps S_{g}^{+}to S_{g}^{+}. Thus, if we define \mathcal{L} on S_{g} by $\mathcal{L}_{z}=\left(G_{*} \mathcal{L}^{+}\right)_{z}$ if $z \in S_{g}^{+}$and $\mathcal{L}_{z}=\mathcal{L}_{z}^{-}$if $z \in S_{g}^{-}$, then \mathcal{L} is integrable on S_{g}.

References

[1] A. T. Akahori, A new approach to the local embedding theorem of CR structures for $n \geq 4$, Mem. Amer. Math. Soc., (1987), no. 366, Amer. Math. Soc., Providence, R. I.
[2] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Michigan Math. J., 35 (1988).
[3] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z., 200 (1989).
[4] D. Catlin, Sufficient conditions for the extension of CR structures, J. of Geom. Anal., 4 (1994), 467-538.
[5] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z., 211 (1992), 105-120.
[6] H. Jacobowitz and F. Treves, Non-realizable CR structures, Inventiones Math, 66 (1982), 231-249.
[7] J. J. Kohn, Pseudo-differential operators and non-elliptic problems, C. I. M. E. (1969), 159-165.
[8] J. J. Kohn, Boundary behavior of $\bar{\partial}$ on weakly pseudoconvex manifolds of dimension two, J. Differ. Geom., 6 (1972), 523-542.
[9] M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math., 115 (1982), 451-500.
[10] J. McNeal, Boundary behavior of the Bergman kernel function in \mathbb{C}^{2}, Duke Math. J., 58 (1989), 499-512.
[11] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13 (1959).
[12] X. Saint Raymond, A simple Nash-Moser implicit function theorem, L'Enseignement Mathematique, 35 (1989), 217-226.
[13] S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. Henri Poincare, 6 (1989), 183-207.

Department of Mathematics
Sogang University
C. P. O. Box 1142, Seoul

121-742 KOREA
shcho@ccs.sogang.ac.kr

[^0]: Received August 1, 1997.
 ${ }^{1}$ Partially supported by Non directed research fund, Korea research foundation 95-97, and by GARC-KOSEF, 1997

