S. Cho Nagoya Math. J. Vol. 152 (1998), 97–129

EXTENSION OF CR STRUCTURES ON THREE DIMENSIONAL PSEUDOCONVEX CR MANIFOLDS

SANGHYUN CHO¹

Abstract. Let \overline{M} be a smoothly bounded orientable pseudoconvex CR manifold of finite type and $dim_{\mathbb{R}}M = 3$. Then we extend the given CR structure on M to an integrable almost complex structure on S_g^+ which is the concave side of M and $M \subset bS_g^+$.

§1. Introduction

Let \widetilde{M} be a smooth orientable manifold of dimension 2n-1 and let $\overline{M} \subset \widetilde{M}$ be a smoothly bounded CR manifold with a given CR structure S of dimension n-1. Since \widetilde{M} is orientable, there are smooth real nonvanishing 1-form η and smooth real vector field X_0 on \widetilde{M} so that $\eta(X) = 0$ for all $X \in S$ and $\eta(X_0) = 1$. We define the Levi form of S on \overline{M} by $i\eta([X', \overline{X''}])$.

In [4], Catlin has considered an extension problem of a given CR structure on M to an integrable almost complex structure on a 2n-dimensional manifold Ω with boundary so that the extension is smooth up to the boundary and so M lies in $b\Omega$. Under certain conditions on the Levi form (cf., [4, Theorem 1.1, Theorem 1.3]), this leads to a solution of the Kuranishi problem [1, 9, 13], which is to show that an abstract CR manifold can be locally embedded in \mathbb{C}^n .

In this paper, we consider an extension problem of a given CR structure on M when M is a pseudoconvex CR manifold of finite type and $\dim_{\mathbb{R}} M =$ 3. For a given positive continuous function g on M, where g = 0 on bM, we define

$$S_q^+ = \{ (x,t) \in M \times [0,\infty); \ 0 \le t \le g(x) \}.$$

Then our main result is the following theorem:

THEOREM 1.1. Let $\overline{M} \subset \widetilde{M}$ be a smoothly bounded orientable pseudoconvex CR manifold of finite type with given CR structure S on M and

Received August 1, 1997.

¹Partially supported by Non directed research fund, Korea research foundation 95–97, and by GARC-KOSEF, 1997

 $\dim_{\mathbb{R}} M = 3$. Then there exists a positive continuous function g on Mand a smooth integrable almost complex structure \mathcal{L} on S_g^+ such that for all $x \in M$, $\mathcal{L}_{(x,0)} \cap \mathbb{C}TM = S_x$. Furthermore, if $\mathcal{J}_{\mathcal{L}}: TS_g^+ \to TS_g^+$ is the map associated with the complex structure \mathcal{L} , then $dt(\mathcal{J}_{\mathcal{L}}(X_0)) < 0$ at all points of $M_0 = \{(x,0); x \in M\}$.

Note that we extend the given CR structure on M to the concave side (instead of convex side) of M. We also note that if M is strongly pseudoconvex, this case was handled in [4, Theorem 1.1]. Theorem 1.1, in general, would not imply the local embedding of M into \mathbb{C}^2 (cf., [2, 6]). But we have the following theorem as an application of Theorem 1.1.

THEOREM 1.2. Let D be a complex manifold with C^{∞} boundary and $\dim_{\mathbb{C}} D = 2$. Suppose that the almost complex structure on D extends smoothly to a manifold $\overline{M} \subset bD$ where \overline{M} is compact pseudoconvex CR manifold of finite type with smooth boundary and $\dim_{\mathbb{R}} M = 3$. Then D can be embedded in a larger complex manifold Ω so that M lies in the interior of Ω as a real hypersurface.

Remark 1.3. In [5], the author showed that any smooth compact pseudoconvex complex manifold \overline{D} of finite type with dim_C D = n, $n \ge 2$, can be embedded into a larger complex manifold Ω . Theorem 1.2 is a generalization of this result to non-compact complex manifolds of complex dimension 2.

In [4], Catlin has introduced certain nonlinear equations which come from deformation theory of an almost complex structure. The linearized forms of these equations are simply the $\overline{\partial}$ -operator from $\Lambda^{0,1} \otimes T^{1,0}$ to $\Lambda^{0,2} \otimes T^{1,0}$. The solutions of these equations represent successive corrections that must be made in the iterative process of solving the nonlinear equation. To overcome difficulties in subelliptic estimates for $\overline{\partial}$ near bM, we choose a Hermitian metric on S_g^+ so that S_g^+ takes on the form $S_{\varepsilon} = M \times [0, \varepsilon]$, where M is a complete noncompact manifold. To this end, we choose, for each $x_0 \in M$, a noneuclidean ball that is of size $\delta = g(x_0)$ in the transverse holomorphic direction and of size $\tau(x_0, \delta)$ in the tangential holomorphic direction. Some technical difficulties in constructing the quantity $\tau(x_0, \delta)$ is handled in Section 3. Here we introduce special coordinate changes (Proposition 3.1) so that the tangential vector field L_1 can be written in a suitable form. These change of coordinates will have an independent interest in studying the CR manifolds of finite type. To study the behavior of $\tau(x_0, \delta)$, we introduce a smoothly varying function $\mu(x, \delta)$ which is defined invariantly. Then it follows that $\tau(x, \delta) \approx \mu(x, \delta)$ (Proposition 3.2), and hence $\tau(x, \delta)$ is defined invariantly. Also $\tau(x, \delta)$ satisfies "doubling property" (Corollary 3.3), which is one of a crucial property of $\tau(x, \delta)$. Equipped with all of these necessary properties of $\tau(x, \delta)$, we perform some careful subelliptic estimates of the $\overline{\partial}$ type equation on each of these noneuclidean balls (Section 4). Then this will give us the estimates so called "tame estimates", which are required in the Nash-Moser method for the approximate solution to the linearized equation. Then the rest of the procedure is similar to those of Catlin's, which uses the simplified version of Nash-Moser theorem [12].

I would like to thank David Catlin for his helpful discussion during the preparation of this paper.

$\S 2.$ Deformation of almost complex structures

Let M be a CR manifold as in section 1 and set $\Omega = M \times (-1, 1)$. In this section we extend a given CR structure on M to an almost complex manifold Ω , and we consider a deformation problem of an almost complex structure on Ω so that the new (deformed) amost complex structure is integrable (or close to be integrable).

Since Ω is an almost complex manifold of $\dim_{\mathbb{R}} \Omega = 4$, there is a subbundle \mathcal{L} of $\mathbb{C}T\Omega$ of dimension 2 (over \mathbb{C}) such that $\mathcal{L} \cap \overline{\mathcal{L}} = \{0\}$. Let Abe a smooth section of $\Gamma^{1}(\mathcal{L}) = \Lambda^{0,1}(\mathcal{L}) \otimes \mathcal{L}$, where $\Lambda^{0,1}(\mathcal{L})$ denotes the set of (0,1) forms with respect to \mathcal{L} . Observe that if A is sufficiently small, then the bundle $\mathcal{L}^{A} = \{L + \overline{A}(L); L \in \mathcal{L}\}$ defines a new almost complex structure and if \overline{L}' and \overline{L}'' are sections of $\overline{\mathcal{L}}$, then $\overline{L}' + A(\overline{L}')$ and $\overline{L}'' + A(\overline{L}'')$ are sections of $\overline{\mathcal{L}^{A}}$. Similarly, if ω is a section of $\Lambda^{1,0}(\mathcal{L})$, then $\omega - A^{*}\omega$ is a section of $\Lambda^{1,0}(\mathcal{L}^{A})$ where the adjoint A^{*} maps from $\Lambda^{1,0}(\mathcal{L})$ to $\Lambda^{0,1}(\mathcal{L})$ and is defined by

(2.1)
$$(A^*\omega)(\overline{L}) = \omega(A(\overline{L})),$$

for all $\overline{L} \in \overline{\mathcal{L}}$ and $\omega \in \Lambda^{1,0}$. We want to choose A so that

$$(\omega - A^*\omega)([L' + A(L'), L'' + A(L'')]) = 0.$$

By linearizing, i.e., by ignoring terms where A or A^* appear more than once, we obtain

(2.2)
$$\omega([L', A(L'')]) + \omega([A(L'), L'']) - A^* \omega([L', L'']) = -\omega([L', L'']).$$

Let L = L' + L'' denote the decomposition of a vector $L \in \mathbb{C}T_z$ where $L' \in \mathcal{L}_z$ and $L'' \in \overline{\mathcal{L}}_z$. For sections $\overline{L}_1, \overline{L}_2$ of $\overline{\mathcal{L}}$, we define

$$(2.3) \quad (D_2A)(\overline{L}_1,\overline{L}_2) = [\overline{L}_1,A(\overline{L}_2)]' - [\overline{L}_2,A(\overline{L}_1)]' - A([\overline{L}_1,\overline{L}_2]'').$$

Note that this definition is linear in \overline{L}_1 and \overline{L}_2 so D_2A is a section of $\Gamma^2 = \Lambda^{0,2}(\mathcal{L}) \otimes \mathcal{L}$. It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

$$(2.4) D_2 A = -F,$$

where F is a section of Γ^2 defined by

(2.5)
$$F(\overline{L}_1, \overline{L}_2) = [\overline{L}_1, \overline{L}_2]'.$$

Note that F measures the extend to which \mathcal{L} fails to be integrable. If \mathcal{L} defines a CR structure on $M \subset b\Omega$ and if we want \mathcal{L}_A to define the same CR structure on M, then this means that A must satisfy $A(\overline{L}') = 0$ on M whenever \overline{L}' is a section of $\overline{\mathcal{L}}$ that is tangent to M. This is a Dirichlet condition on some of the components of the solution of (2.4).

Since dim_C $\Omega = 2$, it follows that $D_3 B = 0$ for all $B \in \Gamma^2$, where $D_3: \Gamma^2 \longrightarrow \Gamma^3$ is defined by

$$D_3 B(\overline{L}_1, \overline{L}_2, \overline{L}_3) = [\overline{L}_1, B(\overline{L}_2, \overline{L}_3)]' - [\overline{L}_2, B(\overline{L}_1, \overline{L}_3)]' + [\overline{L}_3, B(\overline{L}_1, \overline{L}_2)]' - B([\overline{L}_1, \overline{L}_2]'', \overline{L}_3) + B([\overline{L}_1, \overline{L}_3]'', \overline{L}_2) - B([\overline{L}_2, \overline{L}_3]'', \overline{L}_1).$$

Now set $\Omega = M \times (-1, 1)$. Then we have the following formal solution of the extension problem [4, Theorem 4.1].

THEOREM 2.1. Suppose that M is an orientable CR manifold of dimension 2n-1 such that the CR dimension equals n-1. Then there exists an almost complex structure \mathcal{L}^* on $\Omega = M \times (-1, 1)$ such that \mathcal{L}^* is an extension of the CR structure on M, and such that it is integrable to infinite order at M in the sense that if ω is a section of $\Lambda^{1,0}(\mathcal{L}^*)$ and \overline{L}_1 , \overline{L}_2 are sections of $\overline{\mathcal{L}}^*$, then $\omega([\overline{L}_1, \overline{L}_2])$ vanishes to infinite order along M.

The next theorem shows that the above formal extension is essentially unique.

THEOREM 2.2. ([4, Theorem 4.2]) Let M and Ω be as in Theorem 2.1. Suppose that \mathcal{L} and \mathcal{X} are almost complex structures on Ω that extend the CR structure on $M_0 = \{(x,0); x \in M\}$, and that are integrable to infinite order on M_0 as in Theorem 2.1. Then, there exists a diffeomorphism G of Ω onto itself that is the identity when t = 0 and such that $G_*\mathcal{X}$ approximates \mathcal{L} to infinite order near M_0 in the sense that if X is a section of \mathcal{L} , then G_*X differs from a section of \mathcal{L} by a vector field which vanishes to infinite order on M_0 .

Now assume that $\dim_{\mathbb{R}} M = 3$ and let $\Omega = M \times (-1, 1)$. By Theorem 2.1, we have an almost complex structure \mathcal{L}^* that is integrable to infinite order along $M_0 = \{(x, 0); x \in M\}$. Let η be a smooth non-vanishing one form on M that satisfies $\eta(L) = 0$ for all $L \in \mathcal{S}_x \ x \in M$, and that defines the Levi form of M as in Section 1. We can clearly extend η to all of Ω so that it still annihilates $\mathcal{S}_{(x,t)}$ for all $(x,t) \in \Omega$, where $\mathcal{S}_{(x,t)}$ now denotes the space of vectors in $\mathcal{L}^*_{(x,t)}$ that are tangent to the level set of the auxiliary coordinate t.

Choose a smooth real vector field X_0 on Ω that satisfies $X_0 t \equiv 0$ and $\eta(X_0) \equiv 1$ in Ω . Set $Y_0 = -\mathcal{J}_{\mathcal{L}^*}(X_0)$ so that $X_0 + iY_0$ is a section of \mathcal{L}^* that is transverse to the level set of t. Let $G: \Omega \longrightarrow \Omega$ be a diffeomorphism such that G fixes M_0 and

$$G_*Y_{0|_{(x,0)}}=rac{\partial}{\partial t|_{(x,0)}},\ x\in M.$$

Since M is orientable, we may assume that $dt(\mathcal{J}_{\mathcal{L}^*}(X_0))$ is always negative. Thus $dt(Y_0) > 0$ along M_0 , which shows that G preserves the sides of M_0 ; i.e., G maps $\Omega^+ = \{(x,t); 0 \le t < 1\}$ into itself. If we set $\mathcal{L}^0 = G_*\mathcal{L}^*$, then clearly $\widetilde{Z} = -iG_*(X_0 + iY_0)$ is a section of \mathcal{L}^0 such that along M_0 ,

$$\widetilde{Z} = -iX_0 + \frac{\partial}{\partial t}.$$

If we write $\widetilde{Z} = \widetilde{X} + g(x,t)\frac{\partial}{\partial t}$, where $\widetilde{X}t \equiv 0$, then we set $L_2 = g^{-1}\widetilde{Z}$. Then $L_2 = \frac{\partial}{\partial t} + X$ where $Xt \equiv 0$. We fix a smooth metric \langle , \rangle_0 that is Hermitian with respect to the structure \mathcal{L}^0 on Ω , and let $\{L_1, L_2\}$ be an orthonormal frame defined in a neighborhood of $p \in M$. Note that along M, we have $L_2 = \frac{\partial}{\partial t} - iX_0$ and $dt = \frac{1}{2}(dt + i\eta) + \frac{1}{2}(dt - i\eta)$, which implies that $\partial t = \frac{1}{2}(dt + i\eta)$. Hence $\partial t(L) = \frac{1}{2}dt(L) + \frac{i}{2}\eta(L)$ and

(2.6)
$$\partial t([X_1, \overline{X}_2]) = \frac{i}{2}\eta([X_1, \overline{X}_2])$$

for all $X_1, X_2 \in \mathcal{S}_{(x,t)}$, along M.

DEFINITION 2.3. We say $p \in \overline{M}$ is of finite type if there exist a list of vector fields L^1, \ldots, L^m , with $L^i = L_1$ or \overline{L}_1 , $i = 1, 2, \ldots, m$, so that $\partial t([L^m, [L^{m-1}, \ldots, [L^2, L^1] \ldots]) \neq 0$ at p. The smallest integer m satisfying $\partial t([L^m, [L^{m-1}, \ldots, [L^2, L^1] \ldots]) \neq 0$ is called the type at $p \in \overline{M}$.

It is obvious that this definition is an open condition. Observe also that, if $p \in M$ is of type m, then $L_1, \overline{L}_1, [L^m, \ldots, [L^2, L^1] \ldots]$ span all local vector fields tangent to M because $\partial t(L_1) \equiv 0$.

§3. Special Frames for Almost–Complex Structures

Let M, Ω , X_0, L_1, L_2 and \mathcal{L}^0 be as in Section 2. In this section, we will construct special coordinate functions defined in a neighborhood of $z_0 \in M$.

First, we note that $X_0 t \equiv 0$ on Ω and hence there is a neighborhood V_{z_0} of z_0 such that there exist coordinates (u_1, u_2, u_3, u_4) with the property that $u_4 = t$ and $u_k(u', t) = u_k(u', 0), k < 4$ for $(u', t) \in V_{z_0}$, and that $\partial/\partial u_3 = -X_0$ at all points of $M \cap V_{z_0}$. For any point $x_0 \in V_{z_0} \cap M$, we define an affine transformation $C_{x_0}: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ so that if $(x'_0, 0) \in \mathbb{R}^4$ are the coordinates of x_0 , then

$$C_{x_0}(u',t) = (P_{x_0}(u'-x'_0),t),$$

where the 3×3 constant matrix P_{x_0} is chosen so that if new coordinates $x = (x_1, \ldots, x_4)$ are defined by $x = C_{x_0}(u)$, then

(3.1)
$$L_{1|x_0} = \frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2}$$
, and $X_{0|x_0} = -\frac{\partial}{\partial x_3}$.

Note that the second equality actually implies that $X_0 = -\frac{\partial}{\partial x_3}$ at all points of $V_{z_0} \cap M$ and that $L_2 = \frac{\partial}{\partial t} - i\frac{\partial}{\partial x_3}$ along $M \cap V_{z_0}$. We also note that the matrix P_{x_0} is uniquely determined by (3.1) and depends smoothly on $x_0 \in V_{z_0} \cap M$.

PROPOSITION 3.1. For each $x_0 \in V_{z_0} \cap M$ and positive integer m, there are smooth coordinates $x = (x_1, x_2, x_3, x_4), x(x_0) = 0$, defined near x_0 such that in x coordinates the vector field L_1 can be written as

(3.2)
$$L_1 = \left(\frac{\partial}{\partial x_1} - i\frac{\partial}{\partial x_2}\right) + \sum_{l=1}^2 b_l(x)\frac{\partial}{\partial x_l} + (e(x) + ia(x))\frac{\partial}{\partial x_3},$$

where $b_1(0) = b_2(0) = 0$, and e(x), a(x) are real functions satisfying

(3.3)
$$\frac{\partial^{j+k}e(x_0)}{\partial x_1^j \partial x_2^k} = 0, \ j+k \le m, \ and \ \frac{\partial^k a(x_0)}{\partial x_2^k} = 0, \ k \le m.$$

Proof. Let us write the vector field L_1 in terms of the coordinate functions (x_1, x_2, x_3, t) satisfying (3.1):

(3.4)
$$L_{1} = \left(\frac{\partial}{\partial x_{1}} + \sum_{l=1}^{2} b_{l}^{1}(x) \frac{\partial}{\partial x_{l}} + e(x) \frac{\partial}{\partial x_{3}}\right)$$
$$- i \left(\frac{\partial}{\partial x_{2}} + \sum_{l=1}^{2} b_{l}^{2}(x) \frac{\partial}{\partial x_{l}} + a(x) \frac{\partial}{\partial x_{3}}\right)$$

where e(x), a(x) and b_l^i , $1 \le i$, $l \le 2$ are smooth real valued functions satisfying $e(0) = a(0) = b_l^i(0) = 0$. Therefore (3.3) holds for $j + k \le 0$. By induction, assume that we have coordinate functions x_1, x_2, x_3 and t such that L_1 can be written as (3.4), where the coefficient functions e(x) and a(x) satisfy:

(3.5)
$$\frac{\partial^{j+k}e}{\partial x_1^j \partial x_2^k}(0) = 0, \ j+k \le l-1, \ \text{and}, \ \frac{\partial^k a}{\partial x_2^k}(0) = 0, \ k \le l-1.$$

Set

$$\widetilde{x}_1 = x_1, \ \widetilde{x}_2 = x_2, \ ext{and} \ \widetilde{x}_3 = x_3 - \sum_{j+k=l} rac{1}{(j+1)!k!} rac{\partial^l e(0)}{\partial x_1^j \partial x_2^k} x_1^{j+1} x_2^k.$$

Then, in terms of \tilde{x} -coordinates, L_1 can be written as:

$$\begin{split} L_1 &= \left(\frac{\partial}{\partial \widetilde{x}_1} + \sum_{l=1}^2 \widetilde{b}_l^1(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_l} + \widetilde{e}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_3} \right) \\ &+ i \left(\frac{\partial}{\partial \widetilde{x}_2} + \sum_{l=1}^2 \widetilde{b}_l^2(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_l} + \widetilde{a}(\widetilde{x}) \frac{\partial}{\partial \widetilde{x}_3} \right), \end{split}$$

where

$$\frac{\partial^{j+k}\widetilde{e}}{\partial\widetilde{x}_1^j\partial\widetilde{x}_2^k}(0) = 0, \ 1 \le j+k \le l, \ \text{and} \ \frac{\partial^k\widetilde{a}}{\partial\widetilde{x}_2^k}(0) = 0, \ k \le l-1.$$

,

We also perform another change of coordinates:

$$x_1 = \widetilde{x}_1, \ x_2 = \widetilde{x}_2, \ x_3 = \widetilde{x}_3 - \frac{1}{(l+1)!} \frac{\partial^l \widetilde{a}(0)}{\partial \widetilde{x}_2^l} \widetilde{x}_2^{l+1}.$$

Then, in terms of x-coordinates, L_1 can be written as in (3.4) satisfying (3.5) with l-1 replaced by l. If we proceed up to m steps, we will have coordinate functions (x_1, x_2, x_3, t) defined near $x_0 \in M \cap V_{z_0}$ satisfying (3.2) and (3.3).

We first construct continuously varying non-isotrophic balls that are defined invariantly. Let $\{\chi_{\nu}\}_{\nu \in I}$ be a partition of unity subordinated to the coordinate neighborhoods $\{U_{\nu}\}_{\nu \in I}$ of Ω . Let m be a given positive integer. Let us fix $\delta > 0$ for a moment. For any j, k with j > 0, define

$$\begin{split} \mathcal{L}_{j,k}^{\nu}\partial\overline{\partial}\eta(x) &= \frac{i}{2}L_{1}^{j-1}\overline{L}_{1}^{k}\eta([L_{1},\overline{L}_{1}])(x), \ x \in U_{\nu}, \\ C_{l}^{\nu}(x) &= \sum_{j+k=l} |\mathcal{L}_{j,k}^{\nu}\partial\overline{\partial}\eta(x)|^{2}, \ l = 1, \dots, m, \text{ and}, \\ C_{l}(x) &= \sum_{\nu \in I} \chi_{\nu}C_{l}^{\mu}(x). \end{split}$$

Set M = (m + 1)! and define

(3.6)
$$\mu(x,\delta) = \left(\sum_{l=1}^{m} C_l^{M/l+1}(x)\delta^{-2M/l+1}\right)^{-1/2M}$$

By (2.6) and Proposition 2.4 it follows that $\sum_{l=1}^{m} C_l(x) > 0$ if the type at x is less than or equal to m. Therefore $\mu(x, \delta)$ is defined intrinsically and it is a smooth function of $\delta > 0$ and x for x satisfying $\sum_{l=1}^{m} C_l(x) > 0$.

We want to define another quantity, $\tau(x_0, \delta)$, related to the coordinate functions defined in Proposition 3.1. Let $x_0 \in M$ be a point whose type is less than or equal to m. Let us take the coordinate functions $x = (x_1, x_2, x_3, t)$ defined near x_0 where the vector field L_1 has the representation as in (3.2), where the coefficient functions e(x) and a(x) of $\partial/\partial x_3$ satisfy the estimates in (3.3).

Set

$$\widetilde{a}(x) := rac{\partial}{\partial x_1} a(x) = \operatorname{Re}\left[rac{\partial}{\partial z_1} a(x)
ight],$$

and set $z_1 = \frac{1}{2}(x_1 - ix_2)$ and $z_2 = \frac{1}{2}(t - ix_3)$. Since $a(x_0) = 0$, the Taylor expansion of $\tilde{a}(x)$ at x_0 has the expression (in terms of (z_1, z_2) -coordinates) as:

$$\widetilde{a}(x) = \sum_{0 \le j+k \le m-1} \widetilde{a}_{jk}(x_0) z_1^j \overline{z}_1^k + \mathcal{O}(|z_1|^m + |z_2| |z|), \ z = (z_1, z_2).$$

Now set

$$A_l(x_0) = \max\{|\tilde{a}_{jk}(x_0)|; \ j+k=l\}, \ l=0,1,\ldots,m-1,$$

and set

(3.7)
$$\tau(x_0, \delta) = \min_{0 \le l \le m-1} \{ (\delta/A_l(x_0))^{1/l+2} \}.$$

Assuming that the type at x_0 is less than or equal to m, it follows that $a_{jk}(x_0) \neq 0$ for some $j + k = l \leq m - 1$ and hence $\tau(x_0, \delta)$ is well defined. It also satisfies the estimate:

$$\delta^{1/2} \lesssim \tau(x_0, \delta) \lesssim \delta^{1/m+1}$$

Let us consider the following balls defined in terms of $\tau(x_0, \delta)$:

$$Q_{\delta}(x_0) = \{(x_1, x_2, x_3, t) : |x_1|, |x_2| < \tau(x_0, \delta), |x_3|, |t| < \delta\}.$$

We want to study the relations between $\tau(x_0, \delta)$ and $\mu(x, \delta)$ for $x \in Q_{\delta}(x_0)$, where $\mu(x, \delta)$ is defined as in (3.6). Set $D_1 = \partial/\partial z_1$ for a convenience. If we combine the definition of $\tau(x_0, \delta)$ and the fact that $\eta(L_1) \equiv 0$, we obtain by induction that

$$(3.8) |D_1^j \overline{D}_1^k \eta(\frac{\partial}{\partial x_i})(x_0)| \lesssim \delta \tau(x_0, \delta)^{-(j+k+1)}, \text{ for } j+k \le m, \ i=1,2.$$

Note that $\eta([L_1, \overline{L}_1])$ can be written as

(3.9)
$$\eta([L_1, \overline{L}_1]) = (-2i\operatorname{Re}[\frac{\partial}{\partial z_1}a])\eta(\frac{\partial}{\partial x_3}) + R_0,$$

where R_0 satisfies, from the estimates in (3.3) and (3.8) that,

(3.10)
$$|D_1^j \overline{D}_1^k R_0(x_0)| \lesssim \delta \tau(x_0, \delta)^{-(j+k+1)}, \ j+k+1 \le m.$$

Combining (3.7)–(3.10), we get:

$$|D_1^j \overline{D}_1^k \eta([L_1, \overline{L}_1])(x_0)| \lesssim \delta \tau(x_0, \delta)^{-(j+k+2)}, \ j+k+2 \le m.$$

Similarly, by applying L_1 or \overline{L}_1 to $\eta([L_1, \overline{L}_1])$ successively, we obtain by induction that

(3.11)
$$\mathcal{L}_{j,k}\eta(x) = D_1^{j-1}\overline{D}_1^k \left[\operatorname{Re}(D_1a)\eta(\frac{\partial}{\partial x_3}) \right] + E_{j+k-1},$$

where E_{j+k-1} satisfies

(3.12)
$$|D_1^s \overline{D}_1^t E_{j+k-1}(x_0)| \lesssim \delta \tau(x_0, \delta)^{-(j+k+s+t)}, \ j+k+s+t \le m.$$

Therefore for any j, k, s, t with $j + k + s + t \le m$, it follows from (3.11) that

(3.13)
$$|D_1^s \overline{D}_1^t \mathcal{L}_{j,k} \eta(x_0)| \lesssim \delta \tau(x_0, \delta)^{-(s+t+j+k+1)}.$$

If we use the Taylor series method and the estimates in (3.13), we obtain that

$$|\mathcal{L}_{j,k}\eta(x)| \lesssim \delta \tau(x_0,\delta)^{-(j+k+1)}, \ x \in Q_{\delta}(x_0).$$

Since this implies that

$$C_l(x) \lesssim \delta^2 \tau(x_0, \delta)^{-2(l+1)}, \ x \in Q_\delta(x_0), \ l \le m,$$

we conclude from the definition of $\mu(x, \delta)$ in (3.6) that

(3.14)
$$\tau(x_0,\delta) \lesssim \mu(x,\delta) \text{ when } x \in Q_{\delta}(x_0).$$

Conversely, let us prove that $\mu(x,\delta) \lesssim \tau(x_0,\delta)$. Define

(3.15)
$$T(x_0, \delta) = \min\{l: (\delta/A_l(x_0))^{1/l+2} = \tau(x_0, \delta)\}$$

By the definition of $\tau(x_0, \delta)$ and $T(x_0, \delta)$, there must exist integers j, k with $(j-1) + k = T(x_0, \delta), j \ge 1$, so that

$$|\tilde{a}_{j-1,k}(x_0)| = |\frac{1}{(j-1)!k!} D_1^{j-1} \overline{D}_1^k [\operatorname{Re} D_1 a](x_0)| = \delta \tau(x_0, \delta)^{-j-k-1}.$$

If we apply the estimates in (3.12) and (3.13) with s + t = 0 and the fact that $\tau(x_0, \delta) \ll 1$ if δ is small, it follows that

$$|\mathcal{L}_{j,k}\eta(x_0)| \ge rac{1}{2}j!k!\delta au(x_0,\delta)^{-j-k-1}.$$

Then, again by using the estimates in (3.13) and the Taylor series method, we obtain that

$$|\mathcal{L}_{j,k}\eta(x)| \approx \delta \tau(x_0,\delta)^{-j-k-1},$$

which implies that

(3.16)
$$\mu(x,\delta) \lesssim \tau(x_0,\delta), \ x \in Q_{\delta}(x_0)$$

If we combine (3.14) and (3.16), we have proved the following proposition.

PROPOSITION 3.2. If $x \in Q_{\delta}(x_0)$, then

COROLLARY 3.3. Suppose $x \in Q_{\delta}(x_0)$. Then

$$\tau(x_0,\delta) \approx \tau(x,\delta)$$

Proof. If we set $x = x_0$ in (3.17), then we see that $\mu(x_0, \delta) \approx \tau(x_0, \delta)$. Since this holds for $x_0 = x$, it follows that $\mu(x, \delta) \approx \tau(x, \delta)$. Hence we have $\tau(x_0, \delta) \approx \tau(x, \delta)$.

Remark 3.4. $\mu(x, \delta)$ is defined intrinsically, that is, independent of coordinate functions. Therefore, Proposition 3.2 shows that the quantity $\tau(x_0, \delta)$ is defined invariantly, up to a universal constant, with respect to coordinate functions.

Assume $\overline{M} \subset \overline{M}$ and let $\varphi \in C^{\infty}(\overline{M})$ be a smooth real-valued function such that $\varphi(x) > 0$ for $x \in M$, and $\varphi(x) = 0$, $d\varphi(x) \neq 0$ for $x \in bM$. We can extend φ to Ω by requiring that it be independent of t. Let us denote by T_p the type at a point $p \in \overline{M}$ and define

$$T(\overline{M}) = \max\{T_p; \ p \in \overline{M}\}.$$

Since type condition is an open condition, we see that $T(\overline{M})$ is well defined and is finite. In the sequal, we assume that $T(\overline{M}) = m < \infty$. We define $r \in C^{\infty}(\Omega)$ by $r(x,t) = t(\phi(x))^{-2m}$ and for any ε , σ , $0 < \varepsilon \leq \sigma \leq 1$, we define

$$S_{arepsilon,\sigma}=\{(x,t)\in arta; \; arphi(x)>0 ext{ and } 0\leq r(x,t)\leq arepsilon \sigma^{3\cdot 2^{m-1}}\}.$$

The quantities ϵ and σ will be fixed later. If we set $g(x) = \epsilon \cdot \sigma^{3 \cdot 2^{m-1}} \cdot \varphi(x)^{2m}$, then $S_{\varepsilon,\sigma}$ will be the required manifold S_g^+ of Section 1. We define a subbundle of \mathcal{L}^0 on $S_{\varepsilon,\sigma}$ by letting $\mathcal{R}_{(x,t)} = \{L \in \mathcal{L}_{(x,t)}^0; Lr = 0\}$. Clearly the map H defined by $H(L) = L - (Lr)(L_2r)^{-1}L_2$ defines an isomorphism

of S onto \mathcal{R} (at all points of $S_{\varepsilon,\sigma}$). We define a weighted metric \langle , \rangle on \mathcal{L}^0 by the relations

where $L_1 \in S$. Since $\mu(x, \delta)$ is a smooth function of x and δ , it follows that \langle , \rangle is a smooth Hermitian metric on \mathcal{L}^0 .

We now show how $S_{\varepsilon,\sigma}$ can be covered by special coordinate neighborhoods such that on each such neighborhood there is a frame \mathcal{L} that satisfies good estimates:

PROPOSITION 3.5. There exist constants ε_0 and σ_0 such that if $0 < \varepsilon < \varepsilon_0$ and $0 < \sigma < \sigma_0$, then on $S_{\varepsilon,\sigma}$ there exist for all $x_0 \in M$ with $\varphi(x_0) > 0$ a neighborhood $W(x_0) \subset S_{\varepsilon,\sigma}$ with the following properties:

- (i) On W(x₀) there are smooth coordinates y₁,..., y₄ so that W(x₀) = {y; |y'| < σ, 0 ≤ y₄ ≤ σ^{3·2^{m-1}}}, where y' = (y₁, y₂, y₃) is independent of t and where the function y₄ is defined by y₄ = ε⁻¹φ(x)^{-2m}t. Thus, M₀∩W(x₀) and M_σ∩W(x₀) correspond to the points in W(x₀) where y₄ = 0 and σ^{3·2^{m-1}}, respectively. Moreover, the point (x₀, 0) ∈ Ω (which we identify with x₀) corresponds to the origin.
- (ii) The above coordinate charts are uniformly smoothly related in the sense that if $W(\tilde{p}_0)$ and $W(x_0)$ intersect, and if \tilde{y} and y_0 are the associated coordinates, then

$$(3.18) |D^{\alpha}(\widetilde{y} \circ (y_0)^{-1})| \le C_{|\alpha|}$$

holds on that portion of \mathbb{R}^4 where $\tilde{y} \circ (y_0)^{-1}$ is defined. The constant $C_{|\alpha|}$ is independent of \tilde{p}_0 and x_0 .

(iii) On $W(x_0)$, there exists a smooth frame L_1, L_2 for \mathcal{L} such that if ω^1 , ω^2 is the dual frame, and if L_k and ω^k are written as $\sum_{j=1}^4 b_{k_j} \frac{\partial}{\partial y_j}$ and $\sum_{j=1}^4 d_{k_j} dy_j$, then

$$\sup_{y\in W(x_0)}\left\{|D_y^\alpha b_{kj}(y)|+|D_y^\alpha d_{kj}(y)|\right\}\lesssim C_{|\alpha|},$$

where $C_{|\alpha|}$ is independent of x_0, j, k .

(iv) There are independent constants c > 0 and C > 0 such that if $B_b(x)$ denotes the ball of radius b about $x \in S_{\varepsilon,\sigma}$ with respect to the metric \langle , \rangle , then

$$(3.19) B_{c\sigma}(x_0) \subset W(x_0) \subset B_{C\sigma}(x_0),$$

and if $\operatorname{Vol} B_b(x_0)$ denotes the volume of $B_b(x_0)$ with respect to \langle , \rangle , then

(3.20)
$$cb^3\sigma^{3\cdot 2^{m-1}} \leq \operatorname{Vol} B_b(x_0) \leq Cb^3\sigma^{3\cdot 2^{m-1}}$$

Proof. We first cover \overline{M} by a finite number of neighborhoods V_{ν} , $\nu = 1, \ldots, N$, in Ω such that in each V_{ν} there exist coordinates (u_1, \ldots, u_4) with the property that $u_4 = t$ and that $u_k(u', t) = u_k(u', 0)$, k < 4, for $(u', t) \in V_{\nu}$, and that $\frac{\partial}{\partial u_3} = -X_0$ at all points of $M \cap V_{\nu}$.

For any point $x_0 \in M \cap V_{\nu}$, we take coordinate functions $x = (x_1, \ldots, x_4)$ constructed as in Proposition 3.1. In terms of x-coordinates, L_1^{ν} and L_2^{ν} can be written as:

(3.21)
$$L_{1}^{\nu} = \frac{\partial}{\partial x_{1}} - i\frac{\partial}{\partial x_{2}} + \sum_{l=1}^{3} a_{l}(x)\frac{\partial}{\partial x_{l}}, \text{ and}$$
$$L_{2}^{\nu} = \frac{\partial}{\partial t} - i\frac{\partial}{\partial x_{3}} + \sum_{l=1}^{3} b_{l}(x)\frac{\partial}{\partial x_{l}},$$

where $a_3(x) = e(x) + ia(x)$, and where e(x), a(x) satisfy estimates in (3.3). Set $z_1 = 1/2(x_1 - ix_2)$ and $z_2 = 1/2(t - ix_3)$. Since $a_3(x_0) = 0$, the Taylor expansion of $a_3(x)$ at x_0 has the expression:

(3.22)
$$a_3(x) = \sum_{1 \le j+k \le m} a_{jk}(x_0) z_1^j \overline{z}_1^k + \mathcal{O}(|z_1|^{m+1} + |z_2| |z|).$$

Set $\delta = \varepsilon \phi(x_0)^{2m}$, and set

$$T_m(x) = \sum_{1 \le j+k \le m} a_{jk}(x_0) z_1^j \overline{z}_1^k = \widetilde{T}_m(x_1, x_2, 0, 0)$$

for a convenience. We take the quantity $\mu(x_0, \delta)$ and the corresponding quantity $\tau(x_0, \delta)$, for the function $a_3(x)$ (or $\tilde{a}(x) = \partial/\partial x_1 a(x)$), as defined in (3.6) and (3.7). By virtue of Proposition 3.1, and by the definition of $\tau(x_0, \delta)$, it follows that $|a_{jk}(x_0)| \leq \delta \tau(x_0, \delta)^{-j-k-1}$, $j + k \leq m$, and hence Proposition 3.2 implies that

$$(3.23) |a_{jk}(x_0)| \lesssim \delta \mu(x_0, \delta)^{-j-k-1}.$$

s. cho

We define new coordinates $y = (y_1, \ldots, y_4)$ by means of dilation map $D_{\varepsilon, x_0} \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^4$:

$$y = D_{\varepsilon, x_0}(x)$$

= $(\mu(x_0, \delta)^{-1} x_1, \mu(x_0, \delta)^{-1} x_2, \varepsilon^{-1} \varphi(x_0)^{-2m} x_3, \varepsilon^{-1} \varphi(x)^{-2m} x_4),$

where $\varphi(x)$ is the function φ expressed in the x-coordinates of x_0 . In terms of the y-coordinates, we define an open set $W_b(x_0)$ by

$$W_b(x_0) = \{ x \in V_{\nu} \cap S_{\varepsilon,\sigma}; \ |y_k(x)| < b, \ k = 1, 2, 3, \ 0 \le y_4(x) \le \sigma^{3 \cdot 2^{m-1}} \}.$$

Note that in $W_b(x_0)$, $y_4 = 0$ and $y_4 = \sigma^{3 \cdot 2^{m-1}}$ coincide with r = 0 and $r = \varepsilon \sigma^{3 \cdot 2^{m-1}}$, respectively, the boundaries of $S_{\varepsilon,\sigma}$. We define a frame L_1 , L_2 in $W_b(x_0)$ by setting

(3.24)
$$L_1 = \mu(x,\delta)(L_1^{\nu} - dL_2^{\nu}) = \mu(x,\delta)H(L_1^{\nu}), \text{ and} \\ L_2 = \varepsilon\varphi(x)^{2m}L_2^{\nu},$$

where $d = (L_1^{\nu}r)(L_2^{\nu}r)^{-1}$. Assuming that L_1^{ν} and L_2^{ν} have the expressions as in (3.21) in V_{ν} , we set $A_l(y) = a_l \circ D_{\varepsilon,x_0}^{-1}(y)$, $D(y) = d \circ D_{\varepsilon,x_0}^{-1}$, $\Phi = \phi \circ D_{\varepsilon,x_0}^{-1}$, $B_l(y) = b_l \circ D_{\varepsilon,x_0}^{-1}(y)$, and $\Phi_l = \frac{\partial \varphi}{\partial_l} \circ D_{\varepsilon,x_0}^{-1}$. Then we conclude that in the *y*-coordinate of $W_b(x_0)$,

(3.25)
$$L_{1} = \frac{\mu(x,\delta)}{\mu(x_{0},\delta)} \left[\frac{\partial}{\partial y_{1}} - i \frac{\partial}{\partial y_{2}} + \sum_{l=1}^{2} (A_{l} - DB_{l}) \frac{\partial}{\partial y_{l}} \right] \\ + \mu(x,\delta)\delta^{-1} (A_{3} - D(B_{3} - i)) \frac{\partial}{\partial y_{3}}.$$

Observe that since the diameter in the x-coordinates of $W_b(x_0)$ is $\mathcal{O}(b\mu(x_0,\delta)) \ll \varphi(x_0)$, it is clear that $\mu(x,\delta)\mu(x_0,\delta)^{-1}$ and $\Phi\varphi(x_0)^{-1}$ are very close to 1 in $W_b(x_0)$ if b is small. We set

$$|f|_{m,W_b(x_0)} = \sup\{|D_y^{lpha}f(y)|; \ y \in W_b(x_0), |lpha| \le m\},$$

and we extend this norm to vector fields and 1-forms by using the coefficients of $\frac{\partial}{\partial y_j}$ or dy_j . From the expression of $a_3(x)$ in (3.22) and by virtue of the estimates in (3.3) and (3.23), it follows that

$$\lim_{\sigma \to 0} |\delta^{-1} \mu(x, \delta) A_3(y) - T_m(y)|_{k, W_b(x_0)} = 0,$$

when $b \leq \sqrt{\sigma}$. Similarly, by direct calculation, one obtains that

(3.26)
$$D = \frac{-2\varepsilon m y_4 \Phi^{2m-1}(\Phi_1 + i\Phi_2 + \sum_{l=1}^3 A_l \Phi_l)}{1 + 2i\varepsilon m \Phi^{2m-1} \Phi_3 y_4 - \sum_{l=1}^3 2\varepsilon m \Phi^{2m-1} \Phi_l y_4}$$

Note that $\mu(x,\delta) \approx \tau(x_0,\delta) \lesssim \varepsilon^{1/m+1} \varphi(x_0)^{2m/m+1} \ll \varphi(x_0)$, and hence it follows that

$$\lim_{\sigma \to 0} |\delta^{-1}\mu(x,\delta)D|_{k,W_b(x_0)} = 0.$$

Combining all these facts, we conclude that if $b \leq \sqrt{\sigma}$,

(3.27)
$$\lim_{\sigma \to 0} \left| L_1 - \left(\frac{\partial}{\partial y_1} - i \frac{\partial}{\partial y_2} + T_m(y) \frac{\partial}{\partial y_3} \right) \right|_{k, W_b(x_0)} = 0,$$

where $T_m(y) = \widetilde{T}_m(y_1, y_2, 0, 0)$, and that

$$\lim_{\sigma \to 0} \left| L_2 - \left(-i \frac{\partial}{\partial y_3} + \frac{\partial}{\partial y_4} \right) \right|_{k, W_b(x_0)} = 0.$$

Setting $W(x_0) = W_{\sigma}(x_0)$, for sufficiently small σ , we obtain (i) and (iii). By Proposition 3.2, it follows that $\tau(x_0, \delta) \approx \mu(x, \delta)$ for $x \in W(x_0)$. Since L_1, L_2 is orthonormal with respect to \langle , \rangle , we conclude that if σ is small, then (3.19) and (3.20) hold.

To prove (3.18), we note that $\tau(x_0, \delta) \approx \tau(x, \delta)$ if $x \in W(x_0)$ and that $\tau(x_0, \delta)$ is defined independent (up to a universal constant) with respect to coordinate functions (Remark 3.4). These two facts give us (3.18).

We need the following proposition to prove the subelliptic estimates for $\overline{\partial}$ equation in dilated coordinates y. We take the orthonormal frame $\{L_1, L_2\}$ and its dual frame $\{\omega^1, \omega^2\}$.

PROPOSITION 3.6. There exist a constant $c_0 > 0$, independent of x_0 , and a list of vector fields $\{L^s, L^{s-1}, \ldots, L^1\}$, where $L^j = L_1$ or $\overline{L}_1, 1 \le j \le$ s, $s \le m$, such that

(3.28)
$$|\omega^2([L^s, [L^{s-1}, \dots, [L^2, L^1] \dots])(x)| \ge 2c_0,$$

for all $x \in W(x_0)$.

Proof. Set $L^0 = L_1$ and $L^1 = \overline{L}_1$. For $(i_1 \cdots i_s)$ of an s-tuple of 0's and 1's, we define inductively by $L^{(i_1 \cdots i_s)} = [L^{i_s}, L^{(i_1 \cdots i_{s-1})}]$ and set

(3.29)
$$\lambda^{i_1\cdots i_s}(y) = \omega^2(L^{(i_1\cdots i_s)}), \text{ and}$$
$$\mathcal{L}_{j,k}\omega^2(y) = L_1^{j-1}\overline{L}_1^k\omega^2([L_1,\overline{L}_1])(y).$$

Let I_2 be the ideal generated by $\lambda^{10} = \omega^2([L_1, \overline{L}_1])$, and I_s be the ideal generated by I_{s-1} and both $\lambda^{10\cdots i_s}$. By induction, it is not hard to show (see [8, 10]) that

(3.30)
$$\lambda^{10\cdots i_s}(y) = \mathcal{L}_{j,k}\omega^2(y), \text{ mod } I_{s-1},$$

where j is the number of 0's in $(10 \cdots i_s)$.

Set $\eta_{\delta} = \delta^{-1}\eta$ and set $w_1 = 1/2(y_1 - iy_2)$, $w_2 = 1/2(y_4 - iy_3)$, $D_k = \partial/\partial w_k$, k = 1, 2. Then it follows that $\eta_{\delta}(\partial/\partial y_3) \equiv 1$ along $M \cap V_{\nu}$, and $\mathcal{L}_{j,k}\omega^2(y) = i/2\mathcal{L}_{j,k}\eta_{\delta}(y)$. From the estimates in (3.8), we have:

$$(3.31) |D_1^j \overline{D}_1^k \eta_\delta(\partial/\partial y_i)(x_0)| \le C_{j,k}, \ i = 1, 2,$$

for some constants $C_{j,k}$, independent of x_0 . Note that L_1 has the representation as in (3.25). Therefore, as in the proof of Proposition 3.2, it follows that

$$\mathcal{L}_{j,k}\omega^2(y) = -\delta^{-1}\mu(x_0,\delta) \left[D_1^{j-1}\overline{D}_1^k(\operatorname{Im} D_1\overline{A}_3)\eta_\delta(\partial/\partial y_3) \right] + E_{j+k-1}$$

where E_{j+k-1} satisfy, by virtue of (3.26) and (3.31), that

(3.32)
$$|D_1^s \overline{D}_1^t E_{j+k-1}(x_0)| \lesssim \mu(x_0, \delta), \ j+k+s+t \le m.$$

Note that we may write $A_3(y) = E(y) + iA(y)$, where E(y) satisfies the estimates as in (3.32). If we combine the definition of $\tau(x_0, \delta)$ and the fact that $\tau(x_0, \delta) \approx \mu(x_0, \delta)$, it follows that there exist a constant $c_1 > 0$ and integers $j_1, k_1, (j_1 - 1) + k_1 = T(x_0, \delta)$, such that

(3.33)
$$|\delta^{-1}\mu(x_0,\delta)D_1^{j_1-1}\overline{D}_1^{k_1}(\operatorname{Im} D_1\overline{A}_3)(x_0)| \ge 3c_1.$$

Here $T(x_0, \delta)$ is defined as in (3.15). Combining (3.32) and (3.33), we get:

(3.34)
$$|\mathcal{L}_{j_1,k_1}\omega^2(0)| \ge 2c_1,$$

provided that δ is sufficiently small. Set $j_1 + k_1 = T_1$ and assume that $g_1 \in I_{T_1-1}$. Then by virtue of (3.29) and (3.30), we can write

(3.35)
$$g_1 = \sum_{p=1}^{T_1-1} \sum_{j+k=p} f_{j,k}^p \mathcal{L}_{j,k} \omega^2(y),$$

where $f_{j,k}^p$'s are bounded (by M > 0) independent of x_0 . If for all $j+k < T_1$,

$$|\mathcal{L}_{j,k}\omega^2(0)| < rac{c_1}{sup_{W(x_0)}|f_{j,k}^p| \cdot 2^{T_1}},$$

then by (3.30), it follows that

$$|\lambda^{10\cdots i_s}(0)| \ge c_1,$$

for some list $\{L^s, L^{s-1}, \ldots, L^1\}$ of L_1 or \overline{L}_1 . If not, then there exist j_2, k_2 with $j_2 + k_2 = T_2 < T_1$ such that

$$|\mathcal{L}_{j_2,k_2}\omega^2(0)| \ge \frac{c_1}{\sup_{W(x_0)} |f_{j_2,k_2}^p| \cdot 2^{T_1}} = 3c_2.$$

For $g_2 \in I_{T_2}$, we represent g_2 as in (3.35) and proceed as above with c_1 , T_1 replaced by c_2 and T_2 respectively. Note that if we iterate down to 1, then the required inequality vacuously holds. Therefore there exist a constant $c_0 > 0$, independent of x_0 , and a list $\{L^s, \ldots, L^1\}$ of L_1 and \overline{L}_1 such that

$$|\omega^2([L^s, [L^{s-1}, \dots, [L^2, L^1] \dots])(x_0)| \ge 3c_0.$$

Now, by a simple Taylor's theorem argument, it follows that (3.28) holds for all $x \in W_{\sigma}(x_0)$ provided that σ is sufficiently small.

Using the special frames constructed above, we now want to define L^2 operators with mixed boundary conditions. We first define nearby almost
complex structures in terms of these special frames. We define a norm $|A|_{k,W(x_0)}$ for the restriction of A to $W(x_0)$ by writing $A = \sum_{j,l=1}^{2} A_{jl} \overline{\omega}^l \otimes L_j$ and then by defining

$$|A(y)|_k = \sum_{|\alpha| \le k} \sum_{j,l=1}^2 |D_y^{\alpha} A_{jl}(y)|,$$

and $|A|_{k,W(x_0)} = \sup\{|A(y)|_k; y \in W(x_0)\}$. It is obvious that there exists $\varepsilon_0 > 0$ so that if $|A|_{0,W(x_0)} < \varepsilon_0$, then we can define an almost-complex structure in $W(x_0)$ by

$$\overline{\mathcal{L}}^A = \{ \overline{L} + A(\overline{L}); \ \overline{L} \in \mathcal{L}_z^0, \ z \in S_{\varepsilon,\sigma} \}.$$

In terms of the frame $L_1, L_2, \omega^1, \omega^2$ in $W(x_0)$, we define

$$X_j^A = L_j + \overline{A}(L_j), \ j = 1, 2,$$

and let η_A^l be the dual frame. Set

(3.36)
$$L_1^A = X_1^A - (X_1^A r)(X_2^A r)^{-1} X_2^A, \ L_2^A = X_2^A, \text{ and} \\ \omega_A^1 = \eta_A^1, \ \omega_A^2 = \left(\eta_A^2 + (X_1^A r)(X_2^A r)^{-1} \eta_A^1\right).$$

Obviously, the frame ω_A^l , l = 1, 2, is dual to L_j^A , j = 1, 2, and $L_1^A r \equiv 0$. If we set

$$h^{A} = (X_{1}^{A}r)(X_{2}^{A}r)^{-1} = (X_{1}^{A}y_{4})(X_{2}^{A}y_{4})^{-1} = \frac{\overline{A}_{21}(\overline{L}_{2}y_{4})}{L_{2}y_{4} + \overline{A}_{22}(\overline{L}_{2}y_{4})},$$

then it follows that

(3.37)
$$L_{1}^{A} = L_{1} - h^{A}L_{2} + \sum_{j=1}^{2} (\overline{A}_{j1} - h^{A}\overline{A}_{j2})\overline{L}_{j}, \text{ and},$$
$$L_{2}^{A} = L_{2} + \sum_{j=1}^{2} \overline{A}_{j2}\overline{L}_{j}.$$

In order to measure how L_j^A , j = 1, 2 depend on A, we define

(3.38)
$$P_k(y;A) = \sum_{\substack{k_1,\dots,k_N\\|k_1|+\dots+|k_N| \le k}} \prod_{\nu=1}^N |A(y)|_{k_\nu}.$$

LEMMA 3.7. If A satisfies $|A|_{0,W(x_0)} < \varepsilon_0$ for sufficiently small ε_0 , then the following pointwise estimates hold for $y \in W(x_0)$:

(3.39)
$$|L_j^A - L_j|_k \le C_k P_k(A; y), \text{ and }$$

(3.40)
$$|\omega_A^l - \omega^l|_k \le C_k P_k(A; y), \ j, l = 1, 2.$$

Proof. If we differentiate the expressions in (3.37), then we obtain sums of terms, each of which contains a finite product of derivatives of A, as in (3.38). Hence we get (3.39). Similarly, we can get (3.40).

Suppose that A satisfies

$$|A|_{m+5,W(x_0)} \le \varepsilon_0$$

Then it is clear that there is an independent constant C > 0 such that

$$|L_j^A|_{m+5,W(x_0)} \le C, \ |\omega_A^l|_{m+5,W(x_0)} \le C, \ j,l=1,2.$$

In terms of L_1^A , L_2^A , and ω^1 , ω^2 frame, we define inductively by

$$L_{A}^{(i_{1}\cdots i_{s})} = [L_{A}^{i_{s}}, L_{A}^{(i_{1}\cdots i_{s-1})}], \text{ and, } \lambda_{A}^{i_{1}\cdots i_{s}}(y) = \omega_{A}^{2}(L_{A}^{(i_{1}\cdots i_{s})}),$$

where $L_A^0 = L_A$, $L_A^1 = \overline{L}_A$. Using Proposition 3.6 and Lemma 3.7, we prove the following proposition which is crucial in proving subelliptic estimates in Section 4.

PROPOSITION 3.8. Assume that (3.41) holds for sufficiently small $\varepsilon_0 > 0$. Then there exist a constant $c_0 > 0$, independent of x_0 , and $T = T(x_0)$, $2 \le T \le m$, such that for some j + k = T we have:

(3.42)
$$|\lambda_A^{10\cdots i_T}(y)| \ge c_0, \ y \in W(x_0).$$

Proof. By Lemma 3.7, it follows that we can write, for each $s \ge 1$, as:

$$|\lambda_A^{i_1\cdots i_s}(y) - \lambda^{i_1\cdots i_s}(y)| \le C_s P_s(y; A),$$

where $\lambda^{i_1 \cdots i_s}(y)$ is defined as in (3.29). From Proposition 3.6, there is $T = T(x_0), 2 \leq T \leq m$, such that $|\lambda^{10 \cdots i_T}(y)| \geq 2c_0$ for all $y \in W(x_0)$. Hence (3.42) follows provided that $\varepsilon_0 > 0$ is sufficiently small.

Next, we show that there exists a smooth Hermitian metric on $S_{\varepsilon,\sigma}$ such that for all $x_0 \in M$ the frame L_1^A, L_2^A given by (3.24) is orthonormal. For $L \in \mathcal{L}^0$ and $A \in \Gamma^{0,1}(S_{\varepsilon,\sigma})$ satisfying (3.31), define a bundle isomorphism $P_A: \mathcal{L}^0 \to \mathcal{L}^A$ by $P_A(L) = L + A(L)$. Define a homomorphism $H_A: \mathcal{L}^A \to \mathcal{R}^A$, where $\mathcal{R}^A = \{L \in \mathcal{L}^A; Lr = 0\}$, by

$$H_A(L) = L - \frac{Lr}{X_2^A r} X_2^A = L - \frac{Ly_4}{L_2^A y_4} L_2^A.$$

Then $H_A \circ P_A$ is an isomorphism of \mathcal{R} onto \mathcal{R}^A . We define a metric \langle , \rangle_A on \mathcal{L}^A by

$$\begin{split} \langle (H_A \circ P_A) \overline{L}_1, (H_A \circ P_A) \overline{L}_1 \rangle_A &= \langle \overline{L}_1, \overline{L}_1 \rangle, \ \overline{L}_1, \in \mathcal{R}, \\ \langle L_2^A, L_2^A \rangle_A &= 1, \text{ and} \\ \langle (H_A \circ P_A) \overline{L}_1, L_2^A \rangle_A &= 0, \ \overline{L}_1 \in \mathcal{R}. \end{split}$$

Note that L_2^A is actually globally defined, so that the above conditions determine a metric on \mathcal{L}^A . Since L_j , j = 1, 2, defined in (3.24) are an orthonormal basis of \mathcal{L} , it follows that L_j^A , j = 1, 2 are an orthonormal basis of \mathcal{L}^A with respect to \langle , \rangle_A .

Let dV denote the volume form associated with the Riemannian metric \langle , \rangle . In the coordinates (y_1, \ldots, y_4) in $W(x_0)$, we can write dV = V(y)dy, where $dy = dy_1 \cdots dy_4$, and where V satisfies

$$|V|_{k,W(x_0)} \le C_k, ext{ and } \inf_{y \in W(x_0)} V(y) > c > 0,$$

where c is independent of σ , ε , and x_0 . We will define the inner product for two functions $g, h \in C^{\infty}(S_{\varepsilon,\sigma})$ by

$$(g,h) = \int g\overline{h} \, dV.$$

Then the following lemma follows from the Divergence Theorem.

LEMMA 3.9. Let L_1^A , L_2^A be the frame constructed in $W(x_0)$. Then there exist functions $e_j \in C^{\infty}(W(x_0))$, j = 1, 2, and a function $P = \langle L_2^A, \nu \rangle \in C^{\infty}(W(x_0))$, ν a unit normal vector, such that for all $g, h \in C^{\infty}(W(x_0))$,

$$(3.43) (L_1^A g, h) = -(g, \overline{L}_1^A h) - (e_1 g, h), and$$

(3.44)
$$(L_2^A g, h) = -(g, \overline{L}_2^A h) - (e_2 g, h) - \int_{M_0} Pg\overline{h} \, dS + \int_{M_\sigma} Pg\overline{h} \, dS,$$

where dS = V ds, $M_0 = \{z; r(z) = 0\}$ and $M_{\sigma} = \{z; r(z) = \varepsilon \sigma^{3 \cdot 2^{m-1}}\}$. The function P satisfies c < P(y) < C, $y \in W(x_0)$, where c and C are independent of ε , σ , and x_0 .

Let $\Lambda^{0,q}(S_{\varepsilon,\sigma}; A)$ denote the space of (0, q)-forms with respect to \mathcal{L}^A on $S_{\varepsilon,\sigma}$, and set

$$\Gamma^{0,q}(S_{\varepsilon,\sigma};A) = \Lambda^{0,q}(S_{\varepsilon,\sigma};A) \otimes \mathcal{L}^A.$$

Now let us define, for a given structure \mathcal{L}^A satisfying (3.41) for small ε_0 , the L^2 -operators corresponding to D_2 and its adjoint. We define $\mathcal{E}_c^{0,q}(S_{\varepsilon,\sigma}; A)$ to be the set of smooth sections U of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$ such that support of U is a compact subset of $S_{\varepsilon,\sigma}$. Let $\mathcal{E}_0^{0,q}(S_{\varepsilon,\sigma}; A)$ denote the set of sections of $\mathcal{E}_c^{0,q}(S_{\varepsilon,\sigma}; A)$ with compact support in the interior of $S_{\varepsilon,\sigma}$. Suppose that $U = \sum_{l=1}^2 \sum_{|J|=q} U_l^J \overline{\omega}_A^J \cdot L_l^A$ is an element of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$ with compact support in $W(x_0)$. We define

(3.45)
$$||U||^2 = \int_{S_{\varepsilon,\sigma}} \sum_{l=1}^2 \sum_{|J|=q} |U_l^J|^2 \, dV,$$

where dV is the volume form given by the metric of \mathcal{L}^0 . Since L_1^A , L_2^A is an orthonormal frame, the quantity in (3.45) is independent of the frame neighborhood $W(x_0)$. Thus, by using a partition of unity, it follows that the norm in (3.45) extends to all of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$. Let $L_q^2(S_{\varepsilon,\sigma}, T_A^{1,0})$ denote the set of sections of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$ such that (3.45) is finite.

Define $\mathcal{B}_{-}^{q}(S_{\varepsilon,\sigma}; A)$ to be the set of forms in $\mathcal{E}_{c}^{0,q}(S_{\varepsilon,\sigma}; A)$ such that U_{l}^{J} vanishes on M_{0} whenever $2 \notin J$. (This is also independent of the frame neighborhood $W(x_{0})$.) Similarly, define $\mathcal{B}_{+}^{q}(S_{\varepsilon,\sigma}; A)$ to be the set of forms in $\mathcal{E}_{c}^{0,q}(S_{\varepsilon,\sigma}; A)$ such that U_{l}^{J} vanishes on M_{σ} whenever $2 \in J$. We now define the formal adjoint D'_{q} of D_{q} on $\mathcal{E}_{c}^{0,q}(S_{\varepsilon,\sigma}; A)$ by $D'_{q}U = G \in \mathcal{E}_{c}^{0,q-1}(S_{\varepsilon,\sigma}; A)$ if for all $V \in \mathcal{E}_{0}^{0,q-1}(S_{\varepsilon,\sigma}; A)$,

$$(U, D_q V) = (G, V),$$

where (,) corresponds to the norm in (3.45). Also, by D_2 we obviously mean the operator defined in (2.3) for the structure \mathcal{L}^A . By combining (2.3) and (3.43)–(3.44), it follows that if $U = \sum_{\nu} U_{\nu} \overline{\omega}_{12} \cdot L_{\nu}^A \in \Gamma^{0,2}(S_{\varepsilon}; A)$ is supported in $W(x_0)$, then

$$(3.46) \quad D_2'U = \sum_{\nu=1}^2 \left(\overline{\partial}^* U_\nu - \sum_{\mu=1}^2 \left[\partial \overline{\omega}^{\mu}_A (L_1^A, \overline{L}^A_\nu) \overline{\omega}^2_A + \partial \overline{\omega}^{\mu}_A (L_2^A, \overline{L}^A_\nu) \overline{\omega}^1_A \right] \right) L_\nu^A,$$

where

(3.47)
$$\overline{\partial}^{*}U_{\nu} = -(L_{1}^{A}U_{\nu} + e_{1}U_{\nu})\overline{\omega}_{A}^{2} - (L_{2}^{A}U_{\nu} + e_{2}U_{\nu})\overline{\omega}_{A}^{1} - \sum_{l=1}^{2} \omega_{A}^{l}([L_{1}^{A}, L_{2}^{A}])U_{\nu}\overline{\omega}_{A}^{l}.$$

We now extend the definition of the operator D_q and D'_q to the L^2 -spaces. We define an operator

$$T: L^2_{q-1}(S_{\varepsilon,\sigma}; T^{1,0}_A) \to L^2_q(S_{\varepsilon,\sigma}; T^{1,0}_A)$$

by the condition that $U \in \text{Dom}(T)$ and $TU = F \in L^2_q(S_{\varepsilon,\sigma}, T^{1,0}_A)$ if for all $V \in \mathcal{B}^q_-(S_{\varepsilon,\sigma}; A)$, we have

$$(U, D'_q V) = (F, V).$$

Similarly, if $U \in L^2_q(S_{\varepsilon,\sigma}; T^{1,0}_A)$, then $U \in \text{Dom}(S)$ and $SU = G \in L^2_{q+1}(S_{\varepsilon,\sigma}; T^{1,0}_A)$ if for all $V \in \mathcal{B}^{q+1}_-(S_{\varepsilon,\sigma}; A)$,

$$(U, D'_{g+1}V) = (G, V).$$

Note that these definitions imply that if $U \in \text{Dom}(T)$ (or Dom(S)), then $TU = D_q U$ (or $SU = D_{q+1}U$) as in the sense of distribution theory. Let $T^*: L^2_q(S_{\varepsilon,\sigma}; T^{1,0}_A) \longrightarrow L^2_{q-1}(S_{\varepsilon,\sigma}; T^{1,0}_A)$ and $S^*: L^2_{q+1}(S_{\varepsilon,\sigma}; T^{1,0}_A) \longrightarrow L^2_q(S_{\varepsilon,\sigma}; T^{1,0}_A)$ be the Hilbert space adjoints of T and S respectively. It follows that if $U \in \text{Dom}(T^*)$, then $T^*U = D'_q U$ and that if $U \in \text{Dom}(S^*)$, then $S^*U = D'_{q+1}U$, as in the sense of distributions. Therefore it follows that

$$\mathcal{E}_{c}^{0,q-1}(S_{\varepsilon,\sigma};A) \cap \operatorname{Dom}(T) = \mathcal{B}_{+}^{q-1}(S_{\varepsilon,\sigma};A), \text{ and,}$$
$$\mathcal{E}_{c}^{0,q}(S_{\varepsilon,\sigma};A) \cap \operatorname{Dom}(T^{*}) = \mathcal{B}_{-}^{q}(S_{\varepsilon,\sigma};A).$$

Similar relations hold for S. Set

$$\mathcal{B}^{q}(S_{\varepsilon,\sigma};A) = \mathcal{B}^{q}_{+}(S_{\varepsilon,\sigma};A) \cap \mathcal{B}^{q}_{-}(S_{\varepsilon,\sigma};A).$$

Then we can approximate $U \in \text{Dom}(S) \cap \text{Dom}(T^*)$ by $U_{\mu} \in \mathcal{B}^q(S_{\varepsilon,\sigma}; A)$ in the graph norm of S and T^* [4, Lemma 6.4]:

LEMMA 3.10. Let $U \in \text{Dom}(S) \cap \text{Dom}(T^*)$. Then there exists $U_{\mu} \in \mathcal{B}^q(S_{\varepsilon,\sigma}; A)$ such that

$$\lim_{\mu \to \infty} (\|U_{\mu} - U\| + \|SU_{\mu} - SU\| + \|T^*U_{\mu} - T^*U\|) = 0.$$

Finally suppose that we have proved the estimate

(3.48)
$$||U||^2 \le C(||T^*U||^2 + ||SU||^2)$$

for all $U \in \mathcal{B}^q(S_{\varepsilon,\sigma}; A)$. Then Lemma 3.10 shows that (3.48) holds for all $U \in \text{Dom } T^* \cap \text{Dom } S$. Then from the usual $\overline{\partial}$ -Neumann theory it follows that for all $G \in L^2_q(S_{\varepsilon,\sigma}; T^{1,0}_A)$, there exists an element $NG \in \text{Dom}(T^*) \cap \text{Dom}(S)$ such that

$$\|NG\| \le C^2 \|G\|,$$

and

$$(G,V) = (T^*(NG),T^*V) + (SNG,SV), \quad V \in \mathrm{Dom}(T^*) \cap \mathrm{Dom}(S).$$

We will call N the Neumann operator associated with D_q .

§4. The Subelliptic Estimate for D_2

In this section we prove a subelliptic estimate for the D_2 -Neumann problem with almost-complex structure \mathcal{L}^A .

We first define tangential norms that will be used in the estimates. For any $s \in \mathbb{R}$, set

$$|||f|||_{s}^{2} = \int_{0}^{\sigma^{3 \cdot 2^{m-1}}} \int_{\mathbb{R}^{3}} |\hat{f}(\xi, y_{4})|^{2} (1+|\xi|^{2})^{s} d\xi dy_{4},$$

where $\hat{f}(\xi, y_4) = \int_{\mathbb{R}^3} e^{-iy' \cdot \xi} f(y', y_4) \, dy'$. For any integer $k \ge 0$ and any $s \in \mathbb{R}$, set

$$\|f\|_{s,k}^2 = \sum_{j=0}^k \left\| \left\| \frac{\partial^j f}{\partial y_4^j} \right\| \right\|_{s-j}^2$$

Finally for any integer $m \ge 0$ and $f \in C^{\infty}(W(x'))$, set

$$||f||_m^2 = \sum_{|\alpha| \le m} ||D_y^{\alpha}f||^2.$$

By using the coefficients of U, we can easily define all of the above norms for any section U of $\Gamma^{0,q}$. We define $\mathcal{A}(S_{\varepsilon,\sigma})$ to be the space of sections $A \in \Gamma^{0,1}(S_{\varepsilon,\sigma}; 0)$ such that along M_0 , $A(\overline{L}) = 0$ whenever $\overline{L} \in T^{0,1} \cap \mathbb{C}TM_0$. Then the goal of this section is to prove the following subelliptic estimate:

THEOREM 4.1. Suppose $T(\overline{M}) = m < \infty$ and that A is a section of $\mathcal{A}(S_{\varepsilon,\sigma})$ that satisfies (3.41) for some small $\varepsilon_0 > 0$. Then there exist small positive constants σ_1 and ε_1 so that if $\varepsilon < \varepsilon_1$, if $\sigma < \sigma_1$, and if $|A|_{m+5,W(x_0)} \leq \varepsilon$, then the D₂-Neumann problem on $S_{\varepsilon,\sigma}$ for the almostcomplex structure \mathcal{L}^A satisfies the following estimate for all forms $U \in$ $\mathcal{B}^2(S_{\varepsilon,\sigma}; A)$ that are compactly supported in $W(x_0)$:

(4.1)
$$\sigma^{-3} \|U\|^2 + L^A(U) + \|U\|_{2^{-m},1}^2 \le C(\|SU\|^2 + \|T^*U\|^2),$$

where $L^A(U)$ is defined by

(4.2)
$$L^{A}(U) = \|L_{1}^{A}U\|^{2} + \|\overline{L}_{1}^{A}U\|^{2} + \|L_{2}^{A}U\|.$$

Now set $X_1 = \operatorname{Re} L_1^A = \sum_{k=1}^3 a_{1k} \frac{\partial}{\partial y_k}$, $X_2 = \operatorname{Im} L_1^A = \sum_{k=1}^3 a_{2k} \frac{\partial}{\partial y_k}$, and $\|a^i\|_r = \sum_{k=1}^3 \|a_{ik}\|_r$, i = 1, 2. Assume that A satisfies (3.41). Then the restriction of L_1^A to the level set $y_4 = \lambda$ is a C^{m+5} -vector field uniformly in λ .

PROPOSITION 4.2. Let X_1 , X_2 be smooth compactly supported vector fields in \mathbb{R}^4 and suppose that there exists a set $K \in \mathbb{R}^4$ and a constant c > 0and vector fields X^1, \ldots, X^m , $X^i = X_1$ or X_2 , $i = 1, 2, \ldots, m$, so that for all $x \in K$,

(4.3)
$$\inf\left\{\sum_{j=1}^{2} |\eta(X_j)| + |\eta([X^m, X^{m-1}, \dots, [X^2, X^1] \dots])|; \\ \eta \in T_x^*, \ \eta(\frac{\partial}{\partial y_4}) = 0, \ |\eta| = 1\right\} > c.$$

Then there exists a constant C independent of X_1 , X_2 so that for all $U \in C_0^{\infty}(\mathbb{R}^4)$ with supp $U \subset K$,

(4.4)
$$||U||_{2^{-m}}^2 \leq C \left(1 + \sum_{j=1}^2 ||a^j||_{m+5}^2\right)^{2m} \left(||X_1U||^2 + ||X_2U||^2 + ||U||^2\right).$$

Proof. The proof is similar to that of [7]. We just observe carefully how the coefficient functions depend. Then we can show, by induction, that the coefficient functions a^j of X_1 , X_2 appear as in the right hand side of (4.4).

If we combine Proposition 3.8 and Proposition 4.2, we have the following corollary.

COROLLARY 4.3. Assume that $T(\overline{M}) \leq m$ and that (3.41) holds for a sufficiently small $\varepsilon_0 > 0$. Then for all $f \in C_0^{\infty}(W(x'))$,

(4.5)
$$|||f|||_{2^{-m}}^2 \leq C(||L_1^A f||^2 + ||\overline{L}_1^A f||^2) + C||f||^2,$$

where C is independent of x' and ε_0 .

Proof. Since we are assuming (3.41), the coefficients a_{ik} of X_i , i = 1, 2 satisfy $||a_{ik}||_{m+5} \leq C'$. Therefore by virtue of the estimates in (3.42), the corollary follows from Proposition 4.2.

For convenience, in all that follows in this section, we omit the notation A from the frames L_1^A , L_2^A , and ω_A^1 , ω_A^2 . Note that in $W(x_0)$, we have technically chosen so that $y_4 = 0$ and $y_4 = \sigma^{3 \cdot 2^{m-1}}$ coincide with r = 0 and $r = \varepsilon \sigma^{3 \cdot 2^{m-1}}$, respectively, the boundaries of $S_{\varepsilon,\sigma}$. Then the following lemma can be proved by modifying the proof of Lemma 7.7 in [4].

LEMMA 4.4. Suppose that $f \in C_0^{\infty}(W(x_0))$ and that f vanishes on M_0 or on M_{σ} . If σ is sufficiently small, say $\sigma < \sigma_1$, then there exists a constant C independent of ε , σ , and x_0 so that for all $f \in C_0^{\infty}(W(x_0))$,

- (4.7) $\sigma^{-3} \|f\|^2 \le C(\|\overline{L}_2 f\|^2 + \|L_1 f\|^2 + \|\overline{L}_1 f\|^2), \text{ and }$
- (4.8) $\sigma^{-3} \|f\|^2 \le C(\|L_2 f\|^2 + \|L_1 f\|^2 + \|\overline{L}_1 f\|^2).$

We now return to the proof of Theorem 4.1. If $U \in \mathcal{B}^2(S_{\varepsilon}, A)$, then U can be written as $U = \sum_{l=1}^{2} U_l \overline{\omega}^1 \wedge \overline{\omega}^2 \cdot L_l$, where $U_l = 0$ on M_{σ} , l = 1, 2. This fact makes us easy to handle the boundary terms occuring when we integrate by parts. Assume that $\sup U \subseteq W(x_0)$. Then it is obvious that SU = 0, and it follows from (3.46) and (3.47) that

$$T^*U = D'_2U = BU + \mathcal{O}(|U|),$$

where

(4.9)
$$BU = -\sum_{l=1}^{2} (L_1 U_l \overline{\omega}^2 + L_2 U_l \overline{\omega}^1) \cdot L_l.$$

Hence it follows that

(4.10)
$$\|BU\|^2 \le 2\|T^*U\|^2 + C\|U\|^2,$$

and we conclude from (4.9) that

$$||BU||^2 = \sum_{l=1}^2 \sum_{j=1}^2 ||L_j U_l||^2.$$

If we use Lemma 3.9 and the boundary conditions, we get, for $U = U_l$, that

$$\begin{split} \|L_1U\|^2 &= (L_1U, L_1U) = -(\overline{L}_1L_1U, U) - (L_1U, e_1U) \\ &= -(L_1\overline{L}_1U, U) + ([L_1, \overline{L}_1]U, U) - (L_1U, e_1U) \\ &= (\overline{L}_1U, \overline{L}_1U) + (\overline{L}_1U, \overline{e}_1U) - (L_1U, e_1U) + ([L_1, \overline{L}_1]U, U). \end{split}$$

Note that we can write

$$[L_1, \overline{L}_1] = \sum_{i=1}^2 \omega^i ([L_1, \overline{L}_1]) L_i + \sum_{i=1}^2 \overline{\omega}^i ([L_1, \overline{L}_1]) \overline{L}_i.$$

Set $c_{11}^i = \omega^i([L_1, \overline{L}_1])$, and $d_{11}^i = \overline{\omega}^i([L_1, \overline{L}_1])$. Then

$$([L_1, \overline{L}_1]U, U) = \sum_{i=1}^2 (c_{11}^i L_i U, U) + \sum_{i=1}^2 (d_{11}^i \overline{L}_i U, U),$$

and hence

$$\|L_1U\|^2 = \|\overline{L}_1U\|^2 + (c_{11}^2L_2U, U) + (d_{11}^2\overline{L}_2U, U) + \mathcal{O}((\|L_1U\| + \|\overline{L}_1U\|)\|U\|).$$

Note that

$$(d_{11}^2 \overline{L}_2 U, U) = -(U, L_2(\overline{d}_{11}^2 U)) - (\overline{e}_2 U, \overline{d}_{11}^2 U) - \int_{M_0} d_{11}^2 |U|^2 \, dS,$$

because U = 0 on M_{σ} . Therefore it follows that

$$\frac{1}{2} \|L_1 U\|^2 = \frac{1}{2} \|\overline{L}_1 U\|^2 - \frac{1}{2} \int_{M_0} d_{11}^2 |U|^2 \, dS + \mathcal{O}(\sigma L^A(U)) + \mathcal{O}(\sigma^{-1} \|U\|^2),$$

and hence from (4.2) we have

$$\begin{split} \|BU\|^2 &= \frac{1}{2} \|L_1 U\|^2 + \frac{1}{2} \|\overline{L}_1 U\|^2 + \|L_2 U\|^2 \\ &- \frac{1}{2} \int_{M_0} d_{11}^2 |U|^2 \, ds + \mathcal{O}(\sigma L^A(U)) + \mathcal{O}(\sigma^{-1} \|U\|^2) \\ &\geq \frac{1}{3} L^A(U) - \frac{1}{2} \int_{M_0} d_{11}^2 |U|^2 \, ds - C\sigma^{-1} \|U\|^2, \end{split}$$

provided that σ is sufficiently small. Note that $d_{11}^2 = -c_{11}^2 = -\omega^2([L_1, \overline{L}_1]) \leq 0$ on M_0 because M_0 is pseudoconvex. Therefore we get

(4.11)
$$||BU||^2 \ge \frac{1}{3}L^A(U) - C\sigma^{-1}||U||^2.$$

By combining (4.10) and (4.11) we get

(4.12)
$$\frac{1}{3}L^{A}(U) - C\sigma^{-1} \|U\|^{2} \leq 2\|T^{*}U\|^{2}.$$

From (4.5) and Lemma 4.4, it follows that

(4.13)
$$|||U|||_{2^{-m}}^2 + \sigma^{-3}||U||^2 \le CL^A(U).$$

If we combine (4.10), (4.12) and (4.13) we obtain for sufficiently small σ that

(4.14)
$$\sigma^{-3} \|U\|^2 + L^A(U) + \|\|U\|\|_{2^{-m}}^2 \le C(\|T^*U\|^2 + \|SU\|^2).$$

For the estimates of the non-tangential derivatives of U, we note that $L_2^A = \frac{\partial}{\partial y_4} + X$, where $X = \sum_{j=1}^3 b_j(y) \frac{\partial}{\partial y_j}$. Therefore a standard argument yields the inequality

$$(4.15) \quad |||\frac{\partial f}{\partial y_4}|||_{-1+2^{-m}}^2 \le C(1+\sum_{j=1}^3 |b_j|_{\tilde{W}(x_0),5}^2)(|||f|||_{2^{-m}}^2+||\overline{L}_2f||^2+||f||^2),$$

for all $f \in C_0^{\infty}(\widetilde{W}(x_0))$, where $\widetilde{W}(x_0)$ is a neighborhood containing $W(x_0)$. This inequality can be applied with $f = U_l$ and one obtains (4.1) combining (4.13)-(4.15). This completes the proof of Theorem 4.1.

We now define Sobolev spaces for sections of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$. Recall that the open sets $B_b(x_0)$ satisfy (3.19) and (3.20) for each $x_0 \in M$. Choose a set $T_{\sigma} = \{x_i^{\sigma} \in M, i \in I\}$ such that the sets $B_{c\sigma/2}(x_i^{\sigma}), i \in I$, cover $S_{\varepsilon,\sigma}$, and such that no two points x_i^{σ} and x_j^{σ} satisfy $|x_i^{\sigma} - x_j^{\sigma}| \leq c\sigma/4$ where | | is the distance function on $S_{\varepsilon,\sigma}$. It follows that the sets $W(x_i^{\sigma}), i \in I$, cover $S_{\varepsilon,\sigma}$ and that there exists an integer \tilde{N} such that no point of $S_{\varepsilon,\sigma}$ lies in more than \tilde{N} of the open sets $W(x_i^{\sigma})$. Furthermore, there exist functions ζ_i, ζ_i' (that are independent of $y_{2n}) \in C_0^{\infty}(W(x_i^{\sigma}))$ such that $\sum_{i \in I} \zeta_i^2 \equiv 1$, such that if $x \in \operatorname{supp} \zeta_i$, then

(4.16)
$$\zeta'_i \equiv 1 \text{ in } B_{c'\sigma}(x),$$

and such that both ζ_i and ζ'_i satisfy

(4.17)
$$|\zeta_i|_{k,W(x_i^{\sigma})} + |\zeta_i'|_{k,W(x_i^{\sigma})} \le C_k \sigma^{-k}.$$

Now let F be any section of $\Gamma^{0,q}(S_{\varepsilon,\sigma};A)$. We define

$$\|F\|_{k,A}^2 = \sum_{i \in I} \|\zeta_i F\|_{k,A,W(x_i^{\sigma})}^2,$$

where

$$\|\zeta_i F\|_{k,A,W(x_i^{\sigma})}^2 = \sum_{j=1}^2 \sum_{|J|=q} \|\zeta_i F_j^J\|_{k,W(x_i^{\sigma})}^2,$$

and where $F = \sum_{j=1}^{2} \sum_{|J|=q} F_{j}^{J} \overline{\omega}_{A}^{J} \cdot L_{j}^{A}$ is the decomposition of F in terms of the L_{1}^{1} , L_{2}^{A} , ω_{A}^{1} , ω_{A}^{2} frame of $W(x_{i}^{\sigma})$. Moreover, the Sobolev norm $\| \|_{k,W(x_{i}^{\sigma})}$ is taken with respect to the y-coordinates of $W(x_{i}^{\sigma})$. We define $H_{k}^{0,q}(S_{\varepsilon,\sigma}; T_{A}^{1,0})$ to be the set of all sections F of $\Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$ for which $\|F\|_{k,A} < \infty$. If we define $L_{q}^{2}(S_{\varepsilon,\sigma}; T_{A}^{1,0})$ to be the set of all $F \in \Gamma^{0,q}(S_{\varepsilon,\sigma}; A)$ such that $\|F\|^{2} < \infty$, then it is obvious that the norms $\| \|$ and $\| \|_{0,A}$ are equivalent on $L_{q}^{2}(S_{\varepsilon,\sigma}; T_{A}^{1,0})$. We also define $\mathcal{A}(S_{\varepsilon,\sigma})$ to be the space of sections $A \in \Gamma^{0,1}(S_{\varepsilon,\sigma}; 0)$ such that along M_{0} , $A(\overline{L}) = 0$ whenever $\overline{L} \in$ $T^{0,1} \cap \mathbb{C}TM_{0}$. Since $\mathcal{A}(S_{\varepsilon,\sigma}) \subset \Gamma^{0,1}(S_{\varepsilon,\sigma}; 0)$, we define $\|A\|_{k} = \|A\|_{k,0}$, and we define $H_{k}(S_{\varepsilon,\sigma}; \mathcal{A})$ to be the set of $A \in \mathcal{A}(S_{\varepsilon,\sigma})$ such that $\|A\|_{k} < \infty$.

We want to get an estimate in global form. Define $Q(U,U) = ||T^*U||^2 + ||SU||^2$. By using the partition of unity as defined above satisfying (4.16), (4.17), and the estimates in Theorem 4.1, we obtain:

COROLLARY 4.5. Suppose that A satisfies (3.41) for all $x_0 \in \overline{M}$. Then there exists a fixed small σ and a constant $\varepsilon_1 > 0$ such that for all $\varepsilon, 0 < \varepsilon < \varepsilon_1$, and all $U \in \text{Dom}(T^*) \cap \text{Dom}(S)$,

(4.18)
$$||U||^2 \le CQ(U,U).$$

Now let us fix $\sigma > 0$, satisfying Corollary 4.5 and set $W(x_0) = W_{\sigma}(x_0)$. Using Theorem 4.1 and the standard "bootstrap" method, we can get regularity estimates for the linearized equation. The proof follows the method similar to the proof in Section 9 of [4].

THEOREM 4.6. Suppose that (3.41) holds and that U is the solution of $\Box U = G$, where $G \in H_k^{0,2}(S_{\varepsilon}; T_A^{1,0})$ for all k > 0. Then for all integers

 $k \geq 1$ and each pair of functions ζ , ζ' in $C_0^{\infty}(W(x_0))$ as in (4.16) and (4.17), U, D_2^*U satisfy

(4.19)
$$\begin{aligned} \|\zeta U\|_k &\lesssim \|\zeta' G\|_{k-2\delta} + (1+\|A\|_{k+1})(\|\zeta' G\|_5 + \|\zeta' U\|) \text{ and } \\ \|\zeta D_2^* U\|_k &\lesssim \|\zeta' G\|_k + (1+\|A\|_{k+2})(\|\zeta' G\|_5 + \|\zeta' U\|). \end{aligned}$$

Note that $N(j) = \{i \in I; W(x_i^{\sigma}) \cap W(x_j^{\sigma}) \neq \emptyset\}$ is bounded by a fixed number $\widetilde{N} \geq 1$. Also it follows from (3.18) and Lemma 3.7 that the frames $L_k^{A,j}$ in $W(x_j^{\sigma})$ and $L_k^{A,i}$ in $W(x_i^{\sigma})$, k = 1, 2, are related by

$$L_k^{A,j} = \sum_{l=1}^2 B_{kl}^{A,ji} L_l^{A,i}, \ k = 1, 2,$$

where $B_{kl}^{A,ji}$ satisfies

(4.20)
$$|D_{y^i}^m B_{kl}^{A,ji}| \lesssim 1 + P_{m,x_i^{\sigma}}(A).$$

Similarly if $w_{A,j}^k$, j = 1, 2, is the dual frame of $L_k^{A,j}$, then there exists a matrix $b_k^{A,ji}$ such that $\overline{w}_{A,j}^k = \sum_{l=1}^2 b_{k,l}^{A,ji} \overline{w}_{A,i}^l$, k = 1, 2, where $b_{k,l}^{A,ji}$ satisfies

(4.21) $|D_{y^{i}}^{m}b_{k,l}^{A,ji}| \lesssim 1 + P_{m,x_{i}^{\sigma}}(A).$

Therefore it follows from (4.20) and (4.21) that for a section V in $\Gamma_A^{0,q}(S_{\epsilon}; A)$, q = 1, 2, and for functions $\zeta_j, \zeta'_j \in C_0^{\infty}(W_j^{\sigma})$ satisfying (4.16), (4.17), we have:

$$(4.22) \quad \|\zeta_j'V\|_{k,W(x_j^{\sigma})}^2 \lesssim \sum_{i \in N(j)} (\|\zeta_i V\|_{k,W(x_i^{\sigma})}^2 + \|A\|_k^2 \|\zeta_i V\|_{3,W(x_i^{\sigma})}^2).$$

We now state the estimate (4.19) in global form.

THEOREM 4.7. Assume that $\Box U = G$, where $G \in H_k^{0,2}(S_{\varepsilon}; T_A^{1,0})$ for all k and that A satisfies (3.41). Then

(4.23)
$$\|D_2^*U\|_k \lesssim \|G\|_k + (1+\|A\|_{k+2})\|G\|_5.$$

Proof. Set $\zeta = \zeta_j \in C_0^{\infty}(W(x_j^{\sigma}))$ in (4.19) and sum up over j and then apply (4.22). Then we get

$$\|D_2^*U\|_k \lesssim \|G\|_k + (1 + \|A\|_{k+2})(\|G\|_5 + \|U\|).$$

Since (4.18) holds, it follows that

$$(1 + ||A||_{k+2})||U|| \lesssim (1 + ||A||_{k+2})||G||_4,$$

and this proves (4.23).

125

https://doi.org/10.1017/S0027763000006814 Published online by Cambridge University Press

$\S 5.$ Extension of *CR* structures

In this section we will prove Theorem 1.1 and Theorem 1.2 using the estimates in Section 4. If $A \in \mathcal{A}(S_{\varepsilon,\sigma})$ is sufficiently small and if we set $P_A(\overline{L}) = \overline{L} + A(\overline{L})$, then $\overline{\mathcal{L}}_A = \{P_A(\overline{L}); \overline{L} \in \overline{\mathcal{L}}\}$. If we set $Q_A(\omega) = \omega - A^*\omega$, then $\Lambda_A^{1,0} = \{Q_A(\omega); \omega \in \Lambda^{1,0}(\mathcal{L})\}$. We define a nonlinear operator $\Phi: \mathcal{A}(S_{\varepsilon,\sigma}) \to \Gamma^{0,2}(S_{\varepsilon,\sigma})$ as follows:

(5.1)
$$\Phi(A)(\overline{L}',\overline{L}'',\omega) = Q_A(\omega)([P_A(\overline{L}'),P_A(\overline{L}'')]).$$

Obviously, if $\Phi(A) = 0$, then \mathcal{L}_A is an integrable almost complex structure on $S_{\varepsilon,\sigma}$.

Note that there is a natural map $\mathcal{P}_A: \Gamma_A^{0,2} \to \Gamma^{0,2}$, defined as follows: if $B \in \Gamma_A^{0,2}$, we define $\mathcal{P}_A B$ by

$$(\mathcal{P}_A B)(\overline{L}_1,\overline{L}_2,\omega)=B(P_A(\overline{L}_1),P_A(\overline{L}_2),Q_A(\omega))$$

Therefore it follows from the definition of F^A in (2.5) that $\Phi(A) = \mathcal{P}_A(F^A)$. We note also that if d and A are small sections of \mathcal{A} on $S_{\varepsilon,\sigma}$, then there exist sections $\Delta_{A,d}^+$ and $\Delta_{A,d}^-$ of $\Lambda_A^{0,1} \otimes T_A^{1,0}$ and $\Lambda_A^{0,1} \otimes T_A^{0,1}$, respectively, so that

$$P_{A+d}(\overline{L}) = P_A(\overline{L}) + \Delta^+_{A,d}(P_A(\overline{L})) + \Delta^-_{A,d}(P_A(\overline{L})).$$

Similarly, there exist sections $\delta^+_{A,\delta}$ and $\delta^-_{A,\delta}$ of Hom $(\Lambda^{1,0}_A, \Lambda^{1,0}_A)$ and Hom $(\Lambda^{1,0}_A, \Lambda^{0,1}_A)$, respectively, so that

$$Q_{A+d}(\omega) = Q_A(\omega) - \delta^+_{A,d}(Q_A(\omega)) - \delta^-_{A,d}(Q_A(\omega)).$$

Then it follows that $\Delta_A^{\pm}(d) = \Delta_{A,d}^{\pm}$ both depend linearly on d and that the coefficients depend smoothly on A, and that the mapping $d \longrightarrow \Delta_A(d) = \Delta_A^+(d) + \Delta_A^-(d)$ is invertible. Then $\Phi'(A)(d)$, as an element of $\Gamma^{0,2}$, satisfies

(5.2)
$$\Phi'(A)(d) = (\mathcal{P}_A \circ D_2^A \circ \Delta_A^+)(d) - \mathcal{P}_A(h_A(d)(F^A)),$$

where $h_A(d): T_A^{1,0} \longrightarrow T_A^{1,0}$ denotes the adjoint of $\delta_A^+(d): \Lambda_A^{1,0} \longrightarrow T_A^{1,0}$. Since $\Phi(A) = \mathcal{P}_A(F^A)$, we let U_A be the solution of $\Box U_A = -F^A$ and then set $V_A = (D_2^A)^* U_A$ and then set $d_A = \Delta_A^{-1}(V_A)$. Since $D_3 = 0$, it follows that $D_2^A V_A = -F^A$. Hence we have from (5.2) that

(5.3)
$$\Phi(A) + \Phi'(A)d_A = \mathcal{P}_A(F^A + D_2^A V_A) - \mathcal{P}_A(h_A(d_A)(F^A)) \\ = -\mathcal{P}_A(h_A(d_A)(F^A)).$$

Using the representations in (5.2) and (5.3), we can now obtain that (as in Section 11 in [4]), $\Phi(A) + \Phi'(A)(d_A)$ vanishes in second order in $\Phi(A)$. This is a key property in the Nash-Moser approximation process.

We recall that F^A vanishes in infinite order along M_0 (in x-coordinates!) This can be stated in y-coordinates as follows. The proof is similar to that of Lemma 6.2 in [4].

LEMMA 5.1. Suppose that there exists a section $F \in \Gamma^{0,2}(\overline{\Omega}^+)$ where $\overline{\Omega}^+ = \{(x,t) \in \Omega; \ 0 \le t < 1\}$ such that F and all its derivatives vanish to infinite order along M. Then for all k, $N = 0, 1, 2, \ldots$, and all $x_0 \in M$,

(5.4)
$$|F^0|_{k,W(x_0)} \le C_{k,N} \varepsilon^N \varphi(x_0)^N$$

where F^0 means that F is written out in $W(x_0)$ according to the frame L_1^0 , L_2^0 , ω_0^1 , ω_0^2 of \mathcal{L}^0 (\mathcal{L}^A with A = 0).

We can now prove the main theorems of this paper:

Proof of Theorem 1.1. We will show that $\|\Phi(0)\|_D < b$ for the small b > 0 and the integer D which are appeared in the variant of Nash-Moser theorem [4, Theorem 13.1]. As in Section 11 of [4], the rest of the properties for the $\Phi(A)$ in the hypothesis of Nash-Moser theorem can be proved using the relations in (5.2) and (5.3), and the estimates for \Box operator in Section 4.

Note that (4.17) and (5.4) imply that for each $i \in I$,

$$\|\zeta_i F^0\|_{k,0}^2 \le C_{k,N} \varepsilon^N \varphi(x_i^\sigma)^N$$

so that after summing up over x_i^{σ} ,

(5.5)
$$\|F^0\|_{k,0,\Phi}^2 \le C_{k,N} \sum_{i \in I} \varphi(x_i^{\sigma})^N \varepsilon^N.$$

Since the choice of the points that was made before (4.17) shows that the balls $B_{\frac{c\sigma}{8}}(x_i^{\sigma})$, $i \in I$, are all disjoint, we can obtain an upper bound on N(l), which is defined to be the number of $i \in I$ such that $2^{-l-1} \leq \varphi(x_i^{\sigma}) < 2^{-l}$. In fact, in terms of the \langle , \rangle_0 -metric introduced in Section 2, the volume of $B_{\frac{c\sigma}{8}}(x_i^{\sigma})$ is roughly bounded below by $\varepsilon^3 \sigma^{3(1+2^{m-1})} \varphi(x_i^{\sigma})^{6m} \sim \varepsilon^3 \sigma^{3(1+2^{m-1})} 2^{-6lm}$, and the \langle , \rangle_0 -volume of the region in $S_{\varepsilon,\sigma}$ with $2^{-l-1} \leq \varepsilon^{3\sigma} - \varepsilon^3 \sigma^{3(1+2^{m-1})} 2^{-6lm}$.

 $\varphi(x) \leq 2^{-l}$ is roughly bounded above by $\varepsilon \sigma^{3\cdot 2^{m-1}}\cdot 2^{-2ml}.$ Thus, we conclude that

(5.6)
$$N(l) \lesssim \varepsilon^{-2} \sigma^{-3} 2^{4ml}.$$

Thus (5.5) and (5.6) imply that if N = 4ml + 1, then

$$\|\Phi(A)\|_{k} = \|F^{0}\|_{k,0} \lesssim C_{k} \cdot \varepsilon$$

for sufficiently small ε . In particular, if we set k = D, and choose ε to be sufficiently small, then it follow that $\|\Phi(A)\|_D < b$.

Proof of Theorem 1.2. Since $\overline{M} \subset bD$ is a compact pseudoconvex CR manifold of finite type, we conclude from Theorem 1.1 that there exist a continuous nonnegative function g and an integrable almost complex structure \mathcal{L}^+ on

$$S_g^+ = \{(x,t) \in M \times \mathbb{R}; \ 0 \le t \le g(x)\}.$$

Moreover, since \mathcal{L}^+ is a small perturbation of \mathcal{L}^0 , which satisfies $dt(\mathcal{J}_{\mathcal{L}^0}(X_0)) < 0$, it follows that $dt(\mathcal{J}_{\mathcal{L}^+}(X_0)) < 0$.

Let \mathcal{L}^- be the integrable almost complex structure on D. We can smoothly extend \mathcal{L}^+ and \mathcal{L}^- to $S_g = S_g^+ \cup S_g^-$, where $S_g^- = \{(x,t) \in M \times \mathbb{R}; -g(x) \leq t \leq 0\}$. It follows that \mathcal{L}^+ and \mathcal{L}^- are integrable to infinite order along $M \in bD$. Hence, Theorem 2.2 implies that there is a diffeomorphism $G: S_g \to S_g$ so that $G_*(\mathcal{L}^+) = \mathcal{L}^-$ to infinite order along M. Since \mathcal{L}^\pm both satisfy $dt(\mathcal{J}_{\mathcal{L}^\pm}(X_0)) < 0$, the proof of Theorem 4.2 in [4] shows that G maps S_g^+ to S_g^+ . Thus, if we define \mathcal{L} on S_g by $\mathcal{L}_z = (G_*\mathcal{L}^+)_z$ if $z \in S_g^+$ and $\mathcal{L}_z = \mathcal{L}_z^-$ if $z \in S_g^-$, then \mathcal{L} is integrable on S_g .

References

- A. T. Akahori, A new approach to the local embedding theorem of CR structures for n ≥ 4, Mem. Amer. Math. Soc., (1987), no. 366, Amer. Math. Soc., Providence, R. I..
- [2] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Michigan Math. J., 35 (1988).
- [3] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z., 200 (1989).
- [4] D. Catlin, Sufficient conditions for the extension of CR structures, J. of Geom. Anal., 4 (1994), 467-538.
- [5] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z., **211** (1992), 105–120.

- [6] H. Jacobowitz and F. Treves, Non-realizable CR structures, Inventiones Math, 66 (1982), 231-249.
- [7] J. J. Kohn, Pseudo-differential operators and non-elliptic problems, C. I. M. E. (1969), 159–165.
- [8] J. J. Kohn, Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two, J. Differ. Geom., 6 (1972), 523-542.
- [9] M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math., 115 (1982), 451-500.
- [10] J. McNeal, Boundary behavior of the Bergman kernel function in \mathbb{C}^2 , Duke Math. J., 58 (1989), 499-512.
- [11] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13 (1959).
- [12] X. Saint Raymond, A simple Nash-Moser implicit function theorem, L'Enseignement Mathematique, 35 (1989), 217-226.
- [13] S. Webster, On the proof of Kuranishi's embedding theorem, Ann. Inst. Henri Poincare, 6 (1989), 183-207.

Department of Mathematics Sogang University C. P. O. Box 1142, Seoul 121-742 KOREA shcho@ccs.sogang.ac.kr