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Tensor Product Realizations of Simple
Torsion Free Modules
D. J. Britten and F. W. Lemire

Abstract. Let G be a finite dimensional simple Lie algebra over the complex numbers C . Fernando
reduced the classification of infinite dimensional simple G-modules with a finite dimensional weight
space to determining the simple torsion free G-modules for G of type A or C . These modules were
determined by Mathieu and using his work we provide a more elementary construction realizing each
one as a submodule of an easily constructed tensor product module.

0 Introduction

Let G be a finite dimensional simple Lie algebra over the complex numbers C, and
let H be a Cartan subalgebra of G. A G-module M is said to be a weight module if
and only if M =

⊕∑
λ∈H∗ Mλ, where each weight space Mλ = {v ∈ M | hv =

λ(h)v(∀h ∈ H)} is finite dimensional. A weight module is torsion free provided all
elements from G \H act injectively on M and it has degree 1 provided all the weight
spaces are 1-dimensional.

Fernando [F] reduced the classification of all simple weight modules to determin-
ing the simple torsion free modules and showed that the only simple Lie algebras
admitting torsion free modules are those of type A or C .

In [BL2], every simple torsion free module T(�a) of degree 1 is explicitly con-
structed. Example 1.4 below presents this construction in the An case. The authors
conjectured, see [L] for example, that all simple torsion free modules of arbitrary
finite degree can be realized as submodules of a tensor product T(�a) ⊗ L(λ) where
L(λ) is a simple finite dimensional module.

In a recent paper Mathieu [M] has classified and provided a realization of all sim-
ple torsion free weight modules. Nevertheless, the proof of the conjecture would
provide a more elementary and explicit realization of the simple torsion free mod-
ules than the realization given by Mathieu.

In this paper techniques employed by Mathieu are adapted to establish the conjec-
ture. The proof of the conjecture for torsion free Cn-modules follows directly from
a complete reducibility theorem [BHL] and Mathieu’s work and will be briefly de-
scribed at the end of this paper. The focus here is on the case of torsion free An-
modules.

In the first section, we set down the notation and state the basic definitions and
results required for this paper. The key concept of aΣ-injective An-family of modules
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is introduced in Section 2 together with some basic properties of such families. Sec-
tion 3 is devoted to providing the Jordan-Holder composition factors for the tensor
product modules T(a) = L(aω1) ⊗ L(λ) where a ∈ C \ Z≥0 and λ is a dominant
integral weight. Finally in Section 4, we combine the results from Sections 2 and 3 to
prove the conjecture for torsion free An-modules.

1 Preliminaries

Let g�(n + 1,C) denote the Lie algebra of all (n + 1) × (n + 1) complex matrices
with commutator product and {Ei, j | 1 ≤ i, j ≤ n + 1} be the standard set of
matrix units. Fix a realization of An as the Lie subalgebra of g�(n + 1,C) generated
by {Ei,i+1, Ei+1,i | 1 ≤ i ≤ n} and fix its Cartan subalgebra to be H = span{hi =
Eii − Ei+1,i+1 | i = 1, . . . , n}. Let εi denote the projection of any (n + 1) × (n + 1)
matrix onto its (i, i)-th entry then a basis of simple roots for the root system∆ of An

is given by ∆++ = {αi = εi − εi+1 | i = 1, . . . , n} and the corresponding positive
roots ∆+ = {εi − ε j = αi + · · · + α j−1 | i < j}. For i ≤ j, Ei, j+1 is a positive root
element belonging to the positive root εi − ε j+1 = αi + · · · + α j and is denoted by
Xαi +···+α j . Correspondingly, E j+1,i belongs to the negative root−(αi + · · ·+α j) and is
denoted 2αi +···+α j . The rank n Z-lattice generated by∆++ will be denoted by Q. The

weights ωi = ε1 + · · · + εi −
i

n+1 (ε1 + · · · + εn+1) for i = 1, . . . , n provide the dual
basis for ∆++ with respect to the inner product determined by setting 〈εi, ε j〉 = δi j .
Finally, let {h∨i | i = 1, . . . , n} be the basis of H dual to {αi}—i.e., αi(h∨j ) = δi j .

Let Ãn denote the Lie subalgebra of An generated by

{Ei,i+1, Ei+1,i | 2 ≤ i ≤ n}.(1.1)

Clearly, Ãn � An−1.
Let U (An) denote the universal enveloping algebra of An, U+(An) the subalgebra

of U (An) generated by the elements Xαi , U−(An) the subalgebra of U (An) generated
by the elements Yαi , U (H) the universal enveloping algebra of the Cartan subalgebra
H and U0 the centralizer of H in U (An).

Let M be an An weight module. The set of all weights λ ∈ H∗ with Mλ �= {0}
is called the support of M and is denoted Supp(M). An infinite dimensional weight
module M is said to be admissible provided Supp(M) is contained in finitely many
Q cosets and there exists a B ∈ Z such that dim Mλ ≤ B for all λ ∈ Supp(M). The
degree of an admissible module is the maximum dimension of its weight spaces.

For each ξ ∈ H∗, we denote by L(ξ) the simple An-module having highest weight
ξ (with respect to∆++). Clearly L(ξ) is a weight module and its support is contained
in {ξ −

∑n
i=1 niαi | ni ∈ Z≥0}.

Following Mathieu define a coherent An-family of degree d to be a weight An-
module M such that

(i) dim Mλ = d for all λ ∈ H∗ and
(ii) for each u ∈ U0 the map λ �→ trace(u ↓Mλ) is polynomial in λ.

A coherent An-family M is said to be irreducible if and only if there exists a weight
λ ∈ H∗ such that Mλ is a simple U0-module.
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Theorem 1.2

(i) [M, Lemma 3.3] Any admissible weight module M has a composition series of finite
length.

(ii) [M, Proposition 4.8] For every simple infinite dimensional admissible An-module
M of degree d there exists a unique irreducible semisimple coherent An-family Mss

of degree d which contains M as a submodule.
(iii) [M, Proposition 5.4 and Theorem 10.2] For every irreducible coherent An-family

M of degree d, there is a τ ∈ H∗ such that the submodule M[τ ] =
∑
ν∈[τ ] Mν is

simple torsion free of degree d.

Let M be an infinite dimensional admissible simple module of degree d. Mathieu
gives a general construction of a coherent family M(M) which contains M. This is
described briefly in Section 2. Theorem 1.2(i) allows us to form the “semisimplifica-
tion”, Mss(M), of M(M). These irreducible semisimple coherent families are labelled
using Λ = {

∑n
i=1 aiωi ∈ H∗ | ai ∈ Z≥0 for i = 2, . . . , n; a1 ∈ C \ Z≥0}.

Theorem 1.3 [M, Prop. 8.5] For each admissible irreducible semisimple coherent An-
family Mss there exists a unique weight wt(M) ∈ Λ such that the simple highest weight
module L

(
wt(M)

)
is isomorphic to a submodule of Mss. This correspondence is bijec-

tive.

Of particular interest is the following construction of a coherent An-family of de-
gree 1.

Example 1.4 Fix a ∈ C. Define

S(a) = spanC

{
x
�b = xb1

1 · · · x
bn+1
n+1

∣∣ b1, . . . , bn+1 ∈ C with
n+1∑
i=1

bi = a
}
.

Then an An-module structure can be defined on S(a) by embedding An into the Weyl
algebra Wn+1 = 〈xi, ∂i | i = 1, . . . , n + 1〉 with Ei j �→ xi∂ j . Here, Wn+1 is the Lie
algebra generated by xi , and ∂i where the action of xi on S(a) is multiplication by xi

and the action of ∂i on S(a) is partial differentiation with respect to xi . It is easily
verified that S(a) is a coherent An-family of degree 1. Now fix a1, . . . , an+1 ∈ C \ Z
with

∑n+1
i=1 ai = a. Define τ =

∑n
i=1(ai − ai+1)ωi and let T(�a) ≤ S(a) be given by

T(�a) = spanC

{
x
�b = xb1

1 · · · x
bn+1
n+1

∣∣ n+1∑
i=1

bi = a, ai − bi ∈ Z
}
= S(a)[τ ].

Then T(�a) is a simple torsion free An-module of degree 1, and as shown in [BL2]
every such module may be realized in this manner. If a /∈ Z≥0, then L(aω1) < S(a)
is an admissible module with maximal vector xa

1 having weight aω1 ∈ Λ. In fact

L(aω1) � spanC{x
a−�1
1 x�1−�22 · · · x�nn+1 | �i ∈ Z; �1 ≥ �2 ≥ · · · ≥ �n ≥ 0} < S(a).
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When a = N ∈ Z≥0, L(Nω1) is a simple finite dimensional (hence not admissible)
submodule of S(N). In this case

L(Nω1) � spanC{x
N−�1
1 x�1−�22 · · · x�nn+1 | �i ∈ Z; 0 ≤ �n ≤ · · · ≤ �1 ≤ N} < S(N)

has a maximal vector xN
1 and the unique admissible submodule of Sss(N) with highest

weight in Λ given by Theorem 1.3 is

L
(

(−N − 2)ω1 + (N + 1)ω2

)
� 〈x−1

1 xN+1
2 〉/L(Nω1).

The central character of S(a) is Xaω1 in either case.
If Mss(ξ) ←→ ξ ∈ Λ is the bijection of Theorem 1.3 then the degree of Mss(ξ) is

equal to the degree of L(ξ). Mathieu partitions Λ into weights of three types:

(i) if ξ(h1) /∈ Z<0 then ξ is said to be nonintegral;
(ii) if there exists an index i such that ξ(h1 + · · · + hi) + i = 0 then ξ is said to be

singular and
(iii) if ξ(h1) ∈ Z<0 and is not singular it is said to be regular integral.

The regular integral elements of Λ can be associated with dominant integral weights
as follows. If µ is a dominant integral weight then set µ[0] = µ and for k = 1, . . . , n
define µ[k] = σα1+···+αk ◦ · · · ◦ σα1 · λ where σγ denotes the reflection of H∗ in
the hyperplane perpendicular to γ for any γ ∈ ∆+ and · denotes the affine action
of the Weyl group. For k = 1, . . . , n the weights µ[k] ∈ Λ, µ[k] is linked to µ,
µ[k − 1] − µ[k] is a positive integral multiple of α1 + · · · + αk and each regular
integral weight ξ is of the form µ[k] for some dominant integral weight µ.

For any weight ν =
∑n

i=1 νiωi let ν̃ denote its restriction to H ∩ Ãn, i.e., ν̃ =∑n
i=2 νiωi .

Theorem 1.5 [M, Theorem 11.4]

(i) If ξ =
∑n

i=1 aiωi ∈ Λ is either nonintegral or singular then the degree of M(ξ) is
equal to the dimension of the simple Ãn-module with highest weight ξ̃.

(ii) For any dominant integral weight µ the degree of Mss(µ[n]) is equal to the dimen-
sion of the simple Ãn-module with highest weight µ̃[n] and if 1 ≤ k < n the degree
of Mss(µ[k]) plus the degree of Mss(µ[k+1]) is equal to the dimension of the simple
Ãn-module with highest weight µ̃[k].

Proposition 1.6 Let ξ ∈ Λ. The coherent An-family Mss(ξ) has degree 1 if and only if
ξ = aω1 for some a ∈ C \ Z≥0 or ξ = −(N + 2)ω1 + (N + 1)ω2 for some N ∈ Z≥0.

Proof If ξ has either of the two forms given then construct S(a) as in Example 1.4.
Use Theorem 1.2(ii) to obtain the semisimplification of S(a). Theorem 1.4 tells us
that S(a)ss �Mss(ξ) and hence the degree of Mss(ξ) is 1.

Conversely, suppose that the coherent An-family Mss(ξ) has degree 1. Applying
Theorem 1.2(iii), let [τ ] be a Q coset such that Mss(ξ)[τ ] is a torsion free submod-
ule. Certainly this submodule is simple of degree 1 and so it is isomorphic to some
T(�a). Set a =

∑n+1
i=1 ai . Form S(a) containing T(�a) as in Example 1.4. Then by

Theorem 1.2(ii), Mss(ξ) � Sss(a) since both of these modules contain T(�a). Sss(a)
contains L(aω1) if a ∈ C \ Z≥0 or L(−(N + 2)ω1 + (N + 1)ω2) if a = N ∈ Z≥0. By
the uniqueness of Theorem 1.3, ξ = aω1 or ξ = −(N + 2)ω1 + (N + 1)ω2.
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2 Σ-Injective Coherent An-Families

In this section, the focus is on a particular type of admissible coherent An-family.
Its description starts by fixing a basis Σ = {α1 + · · · + αk | k = 1, . . . , n} of the
root lattice Q which is a commuting basis in the sense that [Yµ1 ,Yµ2 ] = 0 for all
µ1, µ2 ∈ Σ.

Definition 2.1 A Σ-injective coherent An-family of degree d is an An weight module
M such that

(i) dim Mζ = d for each ζ ∈ H∗,
(ii) Yµ acts injectively on M for all µ ∈ Σ,
(iii) there exists a linear basis B =

⋃
ζ∈H∗ Bζ of M where each Bζ is a basis of the

corresponding weight space Mζ and Bζ−µ = YµBζ for each root µ ∈ Σ, and
(iv) for each element u ∈ U0, there is a d× d matrix of polynomials P(u)(z1, . . . , zn)

= [p(u)
i j (z1, . . . , zn)] such that the matrix representation of the action of u on

Mζ with respect to B is

[u ↓Mζ]Bζ = [p(u)
i j (c1, . . . , cn)] = P(u)(c1, . . . , cn) when ζ =

n∑
i=1

ci(α1 + · · · + αi).

To simplify notation we write p(u)
i j (ζ) for p(u)

i j (c1, . . . , cn) when ζ =∑n
i=1 ci(α1 + · · · + αi). The p(u)

i j (z1, . . . , zn)’s are called the structure polynomials
of M.

General Assumption Unless otherwise stated M is assumed to be an admissible An-
module of degree d where Supp(M) ⊂ κ+ Q for some κ ∈ H∗ and such that Yµ acts
injectively on M for each µ ∈ Σ. Fix κ so that Mκ has basis Bκ = {v1, . . . , vd}.

The aim now is to show that there exists a unique Σ-injective An-family M(M) of
degree d which contains M as a submodule. For the existence of such a module we
rely on the work of Mathieu.

Let YΣ denote the multiplicative subset of U generated by {Yµ | µ ∈ Σ}. By [M,
Lemma 4.2], the set YΣ satisfies the Ore conditions. Let UΣ denote the localization
of U with respect to YΣ. Set M ′ to be the UΣ-module UΣ ⊗U M. Then M ′ is a
weight module with a U -submodule isomorphic to M and dim M ′

ν = d for all ν ∈
Supp(M ′) = κ + Q.

For any n-tuple of integers (k1, . . . , kn) we defineΘ(k1,...,kn) : UΣ −→ UΣ to be the
automorphism given by

Θ(k1,...,kn)(w) = Y k1
α1
· · ·Y kn

α1+···+αn
wY−kn
α1+···+αn

· · ·Y−k1
α1
.

Assume κ =
∑n

i=1 ci(α1 + · · · + αi) is a weight of M with Bκ = {v1, . . . , vd} a
basis of the weight space Mκ. Fix an element u ∈ UΣ. Since Σ is a basis of Q and the
elements of YΣ act injectively on M ′, for any weight ζ ∈ κ + Q there exists a unique
element Y k1

α1
· · ·Y kn

α1+···+αn
in YΣ with ki ∈ Z such that Bζ = {Y k1

α1
· · ·Y kn

α1+···+αn
vi | i =

1, . . . , d} is a basis for the weight space M ′
ζ .
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Since the elements Yγ for γ ∈ Σ are locally ad nilpotent on UΣ, there exists an
integer N such that ad(Yγ)N+1(u) = 0 for all γ ∈ Σ. By [M, Lemma 4.3], we have
that

Y k1
α1
· · ·Y kn

α1+···+αn
uY−kn
α1+···+αn

· · ·Y−k1
α1

=
∑

0≤i1,...,in≤N

(
k1

i1

)
· · ·

(
kn

in

)
(ad Yα1 )i1 · · · (ad Yα1+···+αn )in (u)Y−in

α1+···+αn
· · ·Y−i1

α1
,

and soΘ(k1,...,kn) given by

u �→
∞∑

i1=0

· · ·
∞∑

in=0

(
k1

i1

)
· · ·

(
kn

n

)
(ad Yα1 )i1 · · · (ad Yα1+···+αn )in (u)Y−in

α1+···+αn
· · ·Y−i1

α1

where (
km

im

)
=

km(km − 1) · · · (km − im + 1)

im!

is an automorphism for all integer values of k1, . . . , kn. Thus, for any c1, . . . , cn ∈ C,
the mapΘ(c1,...,cn) : UΣ −→ UΣ given by

u �→
∞∑

i1=0

· · ·
∞∑

in=0

(
c1

i1

)
· · ·

(
cn

in

)
(ad Yα1 )i1 · · · (ad Yα1+···+αn )in (u)Y−in

α1+···+αn
· · ·Y−i1

α1

is an automorphism.
The U0-module structure of M ′ can be described through the use of the automor-

phisms Θ(k1,...,kn) with the k ′i s ∈ Z. In fact, for each u ∈ U0, each n-tuple (i1, . . . , in)

with 0 ≤ i1, . . . , in ≤ N , N as above, and each j, select ai1,...,in

j,k ∈ C such that

(ad Yα1 )i1 · · · (ad Yα1+···+αn )in (u)Y−in
α1+···+αn

· · ·Y−i1
α1

v j =
d∑

k=1

ai1,...,in

j,k vk

where Bκ = {v1, . . . , vd} is a basis of the weight space M ′
κ. Let z1, . . . , zn denote n

commuting variables and define polynomials

p(u)
jk (z1, . . . , zn) =

∑
0≤i1,...,in≤N

(
z1 − c1

i1

)
· · ·

(
zn − cn

in

)
ai1,...,in

j,k .

It follows that the action of u on Bζ = {Y k1
α1
· · ·Y kn

α1+···+αn
vi | i = 1, . . . , d} a basis

M ′
ζ is given by

uY k1
α1
· · ·Y kn

α1+···+αn
v j = Y k1

α1
· · ·Y kn

α1+···+αn
Θ(−k1,...,−kn)(u)v j

= Y k1
α1
· · ·Y kn

α1+···+αn

n∑
k=1

p(u)
jk (c1 − k1, . . . , cn − kn)vk

=

n∑
k=1

p(u)
jk (c1 − k1, . . . , cn − kn)Y k1

α1
· · ·Y kn

α1+···+αn
vk.
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From this calculation one sees that the action of each u ∈ U0 on the weight spaces M ′
ζ

with ζ in the coset [κ] = κ+Q are “polynomially related” and the action of u on M ′
ζ is

related to the action ofΘ(−k1,...,−kn)(u) on M ′
κ where κ−ζ =

∑n
i=1 ki(α1+· · ·+αi). In

particular, the action of U0 on M ′
ζ is the action of U0 on M ′

κ twisted byΘ(−k1,...,−kn).
To construct M(M): start with a copy, M ′

[τ ], of M ′ for each coset [τ ] of Q in H∗;
form the direct sum indexed by these cosets

M(M) =
⊕ ∑

[τ ]∈H∗/Q

M ′
[τ ] with κ− τ =

n∑
i=1

bi(α1 + · · · + αi);

and define the action of each element u ∈ (UΣ)0 on M ′
[τ ] by twisting the action of u

on M ′ through the use of the automorphismΘ(−b1,...,−bn). Since by [M, Lemma 4.3]

Θ(−k1,...,−kn) ◦Θ(−b1,...,−bn) = Θ(−b1−k1,...,−bn−kn)

for Y k1
α1
· · ·Y kn

α1+···+αn
v j ∈ M ′

[τ ] we have

uY k1
α1
· · ·Y kn

α1+···+αn
v j =

n∑
�=1

p(u)
j� (c1 − b1 − k1, . . . , cn − bn − kn)Y k1

α1
· · ·Y kn

α1+···+αn
v�.

Hence the action of u ∈ U0 on M ′
[τ ] is determined by the structure polynomials.

As shown by Mathieu, the definition of M ′
[τ ] is independent of the coset represen-

tative. Thus, the coherent family M(M) of degree d containing M, as constructed by
Mathieu, is in fact a Σ-injective family with structure polynomials p(u)

i j (z1, . . . , zn).

Theorem 2.2

(i) The structure polynomials of a Σ-injective coherent An-family M of degree d con-
taining M are uniquely determined by M, a fixed weight κ of M with dim Mκ = d
and a basis Bκ = {v1, . . . , vd}.

(ii) A Σ-injective coherent An-family M of degree d is a UΣ-module and is uniquely
determined by its structure polynomials.

(iii) There is a unique, up to isomorphism, Σ-injective coherent An-family M contain-
ing M as a submodule.

Proof (i) Let M be any Σ-injective coherent An-family of degree d containing M.
Then the values of the structure polynomials p(u)

i j (z1, . . . , zn) are determined by M
for (z1, . . . , zn) = (c1 − k1, . . . , cn − kn) with ki ∈ Z≥0. By Zariski density, these
polynomials are uniquely determined.

(ii) The fact that M can be viewed as a UΣ-module follows immediately from the
injectivity of the elements Yµ for all µ ∈ Σ and the assumption that all weight spaces
have dimension d.

Since for any root ν ∈ ∆+ \Σ both Yν and Xν can be expressed as commutators of
appropriate elements Yµ1 and Xµ2 with µ1, µ2 ∈ Σ, to complete the proof it suffices
to show that for each µ = α1 + · · · + αp ∈ Σ the actions of Yµ and Xµ are deter-
mined by the structure polynomials. By our assumption on the bases of the weight
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spaces the elements Y±1
µ simply translate the basis elements. Let u = YµXµ ∈ U0

and Bκ = {v j | j = 1, . . . , d} be a fixed basis of Mκ. Then for any basis vector

Y k1
α1
· · ·Y kn

α1+···+αn
v j ∈ M ′

[τ ] with κ− τ =
∑n

i=1 bi(α1 + · · · + αi)

XµY
k1
α1
· · ·Y kn

α1+···+αn
v j

= Y−1
µ YµXµY

k1
α1
· · ·Y kn

α1+···+αn
v j

= Y−1
µ

n∑
�=1

p(u)
j� (c1 − b1 − k1, . . . , cn − bn − kn)Y k1

α1
· · ·Y kn

α1+···+αn
v�

=
n∑
�=1

p(u)
j� (c1 − b1 − k1, . . . , cn − bn − kn)Y k1

α1
· · ·Y

kp−1
α1+···+αp

· · ·Y kn
α1+···+αn

v�

where the p(u)
i j ’s are the structure polynomials belonging to u.

Part (iii) follows immediately from parts (i) and (ii).

At this point, one should note that there are two different unique coherent An-
families associated with a simple module M satisfying the General Assumption: the
irreducible semisimple coherent An-family Mss(M) and the Σ-injective coherent An-
family M(M).

Theorem 2.3 Let ξ ∈ Λ. If ξ = aω1 for some a ∈ C \ Z≥0 or ξ = −(N + 2)ω1 +
(N + 1)ω2 for some N ∈ Z≥0 and λ is a dominant integral weight then

M
(

L(ξ)⊗ L(λ)
)
�M

(
L(ξ)

)
⊗ L(λ).

Proof Fix ξ as in the Theorem. Independent of the the choice of ξ both L(ξ) and
L(ξ)⊗ L(λ) are Σ-injective An-modules and hence one can construct the Σ-injective
coherent An-families M

(
L(ξ)

)
⊗L(λ) and M

(
L(ξ)⊗L(λ)

)
. Since each of these have

degree d = dim L(λ) and contain a submodule isomorphic to L(ξ)⊗ L(λ), it follows
from Theorem 2.2 that M

(
L(ξ)⊗ L(λ)

)
�M

(
L(ξ)

)
⊗ L(λ).

Theorem 2.4 Let ξ = aω1 for some a ∈ C \ Z≥0 or ξ = −(N + 2)ω1 + (N + 1)ω2

for some N ∈ Z≥0 and λ be a dominant integral weight. Then M
(

L(ξ) ⊗ L(λ)
)

[τ ]
is

torsion free if and only if M
(

L(ξ)
)

[τ−λ]
is torsion free.

Proof If M
(

L(ξ)
)

[τ−λ]
is torsion free, then clearly M

(
L(ξ)

)
[τ−λ]

⊗ L(λ) �

M
(

L(ξ)⊗ L(λ)
)

[τ ]
is torsion free.

Conversely, if M
(

L(ξ)⊗ L(λ)
)

[τ ]
is torsion free then it contains a simple torsion

free submodule T. Therefore,

T ≤M
(

L(ξ)⊗ L(λ)
)

[τ ]
�M

(
L(ξ)

)
[τ−λ]

⊗ L(λ).

Since the degree of M
(

L(ξ)
)

is 1, the degree of M
(

L(ξ)
)

[τ−λ]
is 1. Assume

M
(

L(ξ)
)

[τ−λ]
is not torsion free. Suppose further that M

(
L(ξ)

)
[τ−λ]

is simple. By
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[F], there is a root vector which is locally nilpotent on M
(

L(ξ)
)

[τ−λ]
and hence on

M
(

L(ξ)
)

[τ−λ]
⊗ L(λ) which precludes it from containing a torsion free submodule.

Thus, if M
(

L(ξ)
)

[τ−λ]
is not torsion free, then M

(
L(ξ)

)
[τ−λ]

is not simple. Since

N =M
(

L(ξ)
)

[τ−λ]
is admissible it has finite length by Theorem 1.2(i). Consider the

composition series
0 = Ns+1 ⊂ Ns ⊂ · · · ⊂ N1 = N.

Certainly, if T ∩
(

Ni ⊗ L(λ)
)
�= {0} then by simplicity T ⊆ Ni ⊗ L(λ). Let j be the

largest index with T ⊆ N j ⊗ L(λ). Then T⊕
(

N j+1⊗ L(λ)
)
⊆ N j ⊗ L(λ). If there is

a root vector which does not act injectively on N j/N j+1, then again by [F], it is locally
nilpotent on N j/N j+1 and hence on (N j/N j+1)⊗L(λ) �

(
N j⊗L(λ)

)
/
(

N j+1⊗L(λ)
)

.

However, T ∩ N j+1 ⊗ L(λ) = {0} and so
(

N j ⊗ L(λ)
)
/
(

N j+1 ⊗ L(λ)
)

contains an
isomorphic copy of T, contrary to T being torsion free. On the other hand if all
root vectors act injectively on N j/N j+1 they also act injectively on N j and hence each
element of [τ −λ] is a weight of N j . This implies N j =M

(
L(ξ)

)
[τ−λ]

is torsion free
as required.

Theorem 2.5 If
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mq = M

is a sequence of admissible submodules of M maximal with respect to having strictly
increasing degrees, and M(M)[τ ] is any torsion free submodule of M(M) of degree d,
then

0 =M(M0)[τ ] ⊂M(M1)[τ ] ⊂ · · · ⊂M(Mq)[τ ] =M(M)[τ ]

is a composition series of M(M)[τ ].

Proof Let κ be as in the General Assumption. Since each of M1, . . . ,Mq satisfies the
General Assumption, we may construct

0 =
(
M(M0)

)
[τ ]
⊂
(
M(M1)

)
[τ ]
⊂ · · · ⊂

(
M(Mq)

)
[τ ]
=
(
M(M)

)
[τ ]
.

By Theorem 1.2(i)
(
M(M)

)
[τ ]

has a composition series. If this sequence is not a

composition series, then for some i there is a submodule P such that
(
M(Mi)

)
[τ ]
⊂

P ⊂
(
M(Mi+1)

)
[τ ]

. Certainly, since these submodules are torsion free, di < dP <

di+1 ≤ d where di , dP, and di+1 are the degrees of Mi , P, and Mi+1, respectively.
Necessarily, P satisfies the General Assumption and

0 =M(M0) ⊂ · · · ⊂M(Mi) ⊂M(P) ⊂M(Mi+1) ⊂ · · · ⊂M(Mq) =M(M)

is a sequence of Σ-injective coherent An-families.

Mi = M ∩
(
M(Mi)

)
[τ ]
⊂ M ∩

(
M(P)

)
[τ ]
⊂ M ∩

(
M(Mi+1)

)
[τ ]
= Mi+1

and this contradicts the maximality condition on

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mq = M.
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3 Admissible Highest Weight Modules

In this section, the focus is on the decomposition of the tensor product module

T(a) = L(aω1)⊗ L(λ)

where a ∈ C \ Z≥ 0 and λ is a dominant integral weight. The goal here is to show
that for each ξ ∈ Λ, L(ξ) occurs as a submodule of such a tensor product.

The key to the decomposition of T(a) is the branching of L(λ) into simple Ãn-
modules. The branching of L(λ) into An−1-modules is easily done using a Gel’fand-
Zeitlin basis realization of L(λ). The branching into Ãn-modules can be found by
using the diagram reversing automorphism before applying this technique. This sug-
gests that a dominant integral weight λ =

∑n
i=1 λiωi is associated with a partition

π : 0 ≤ π1 ≤ π2 ≤ · · · ≤ πn of |π| =
∑n

i=1 πi where πi =
∑i

j=1 λ j . The desired

branching into Ãn-modules is easily described using a set of partitions

Π(λ) = {p : 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn | 0 ≤ p1 ≤ π1 ≤ p2 ≤ π2 ≤ · · · ≤ pn ≤ πn}.
(3.1)

For each p ∈ Π(λ), with |p| =
∑n

i=1 pi , define

λ(p) = (|p| + p1 − |π|)ω1 +
n∑

i=2

(pi − pi−1)ωi and λ̃(p) =
n∑

i=2

(pi − pi−1)ωi ,

(3.2)

then,
L(λ) �

⊕ ∑
p∈Π(λ)

L(λ̃(p))

as Ãn-modules. For each p ∈ Π(λ), fix a basis {vp j | j = 1, . . . , dp} of L(λ̃(p))
consisting of An-weight vectors in such a manner that vp1 is a highest weight vector
for L(λ̃(p)) with respect to Ãn and has An weight λ(p).

Let a ∈ C \ Z≥0. In this setting, a basis of T(a) = L(aω1)⊗ L(λ) is

B = {xa,�� ⊗ vp j | �i ∈ Z≥0; �1 ≥ · · · ≥ �n ≥ �n+1 = 0; p ∈ Π(λ); j = 1, . . . , dp}.

(3.3)

An alternate basis which takes advantage of the An-module structure of T(a) is now
sought.

For each �� = (�1, . . . , �n+1) ∈ Zn+1 with �1 ≥ · · · ≥ �n+1 = 0, there exists a
unique monomial u(��) = C��Y

�1−�2
α1

· · ·Y �nα1+···+αn
with C�� ∈ C such that u(��)xa

1 = xa,��.
Moreover, for each j = 1, . . . , dp, there exists a (not necessarily unique) element
up j ∈ U−(Ãn) such that up jvp1 = vp j . Since uxa

1 = 0 for any element u ∈ U−(Ãn), it
follows that for any up j , u ′p j ∈ U−(Ãn) with up jvp1 = u ′p jvp1 = vp j

u(��)up j(xa
1 ⊗ vp1) = u(��)(xa

1 ⊗ vp j) = u(��)u ′p j(xa
1 ⊗ vp1).
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As is proven below a desirable basis is described using the elements

(xa,�� ⊗ vp j)
− = u(��)(xa

1 ⊗ vp j).

Observe that in the special case when�� =�0 then (xa
1 ⊗ vp j)− = xa

1 ⊗ vp j .
For each p ∈ Π(λ), define the subspace W p to be

spanC{(xa,�� ⊗ vq, j)
− | �i ∈ Z, �1 ≥ · · · ≥ �n+1 = 0;

q ∈ Π(λ); |q| > |p|; j = 1, . . . , dq}

and observe that Wq ⊂W p if and only if λ(q)(h∨1 ) > λ(p)(h∨1 ) since

λ(p)(h∨1 ) = λ(p)

(
1

n + 1

n∑
i=1

(n + 1− i)hi

)
= |p| −

n

n + 1
|π|.

Proposition 3.4 Let a ∈ C \ Z≥0.

(i) A linear basis for T(a) is given by

B− = {(xa,�� ⊗ vp j)
− | �i ∈ Z≥0; �1 ≥ · · · ≥ �n+1 = 0; p ∈ Π(λ); j = 1, . . . , dp}.

(ii) For p ∈ Π(λ), W p is a U -module with linear basis given by

B−p = {(xa,�� ⊗ vq j)
− | �i ∈ Z, �1 ≥ · · · ≥ �n+1 = 0;

q ∈ Π(λ); |q| > |p|; j = 1, . . . , dq}.

(iii) U−(xa
1 ⊗ vp1) + W p is a U -module with a linear basis given by

{(xa,�� ⊗ vp j)
− | �i ∈ Z, �1 ≥ · · · ≥ �n+1 = 0; j = 1, . . . , dp} ∪B−p .

Proof (i) Notice that if ν = λ−
∑n

i=1 kiαi is the weight of vp j , and µ = α1+· · ·+αm,
then (ν − µ)(h∨1 ) < ν(h∨1 ) and so Yµvp j ∈

∑
|q|<|p| L(λ̃(q)). Order the elements in B

and B− in such a way that xa,��⊗vq j occurs before xa,�� ′⊗vpl, respectively (xa,��⊗vq j)−

occurs before (xa,�� ′ ⊗ vpl)−, whenever |q| < |p|. Then if the elements in B− are
expressed as linear combinations of the elements in B the coefficient matrix is upper
triangular with 1’s on the main diagonal. Since B is a basis of T(a) so is B−.

(ii) It is clear from part (i) and the definition of W p that B−p is a basis of W p. Also,
for any µ ∈ ∆+ and any basis vector vp j ∈ L(λ) we have

Xµvp j ∈ L(λ̃(p))⊕
∑
|q|>|p|

⊕L(λ̃(q)).

In fact, if µ ∈ ∆+ \ Σ then Xµvp j ∈ L(λ̃(p)) and if µ ∈ Σ we have µ(h∨1 ) > 0
and hence Xµvp j ∈

∑
|q|>|p|⊕L(λ̃(q)). Further, since Xµxa

1 = 0 for any µ ∈ ∆+ we
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conclude that Xµ(xa
1 ⊗ vp j) ∈ W p. Since W p is generated, as a U−-module, by the

elements {(xa
1 ⊗ vq1)− | |q| > |p|} it follows that W p is a U -module.

Part (iii) is proven in an analogous manner to part (ii).

Suppose v ∈ T(a) has weight µ. Then v can be expressed as
∑
�� xa,��⊗ v�� for unique

choices of v�� ∈ L(λ) having weights µminus the weight of xa,��. Moreover, when v is
a maximal vector there is more to be said.

Proposition 3.5 If v+ =
∑
�� xa,�� ⊗ v�� is an An-maximal vector in T(a) then v�0 is a

nonzero Ãn-maximal vector in L(λ). Conversely for each Ãn-maximal vector vp1 in

L(λ) there exists a unique An-maximal vector
∑
�� xa,�� ⊗ v�� in T(a) such that v�0 = vp1.

Proof Assume, contrary to what we wish to prove, that v+ =
∑
�� xa,�� ⊗ v�� is an

An-maximal vector in T(a) with v�0 = 0. Select an index �� such that
∑
�i is minimal

among the indices with v�� �= 0. Without loss of generality, we may assume that �q > 0

and �i = 0 for i = q + 1, . . . , n + 1. Observe that Eq,q+1xa,�� = �qxa,��xq/xq+1 �= 0. Also

since
∑
�i is assumed to be minimal, for any�k with v�k �= 0, Eq,q+1xa,�� is linearly

independent of xa,�k and assuming that Eq,q+1xa,�k �= 0, it is linearly independent of

Eq,q+1xa,�k when�k �= �� since they have different weights. Since v+ is assumed to be
maximal,

0 = Eq,q+1v+

= �q
xa,��xq

xq+1
⊗ v�� + xa,�� ⊗ Eq,q+1v�� +

∑
�k �=��

(Eq,q+1xa,�k ⊗ v�k + xa,�k ⊗ Eq,q+1v�k).

From the observations above, the first term of this sum is nonzero and is linearly
independent of the other terms. This contradiction implies that we must have v�0 �= 0.

The vector v�0 is is claimed to be an Ãn-maximal vector. Certainly, for any index
i ≥ 2,

0 = Ei,i+1v+

= xa
1 ⊗ Ei,i+1v�0 +

∑
�k�=�0

(Ei,i+1xa,�k ⊗ v�k + xa,�k ⊗ Ei,i+1v�k).

If Ei,i+1v�0 �= 0 then a linear independence argument shows that this equation is not
possible and so Ei,i+1v�0 = 0. Hence, v�0 is a maximal vector with respect to Ãn as
claimed.

To prove the second assertion it suffices to show that T(a) contains a maximal
vector of weight aω1 + λ(p). To this end select any integer N ≥

∑n
i=1 ki where λ =∑n

i=1 kiωi . Applying the Pieri Formula we have that

T(N) = L(Nω1)⊗ L(λ) � ⊕
∑

p∈Π(λ)

L(Nω1 + λ(p)).
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Therefore for each p ∈ Π(λ), there exists a nonzero maximal weight vector in T(N)

of the form v+ =
∑
�� xN,��⊗ v�� having weight Nω1 +λ(p). For any positive root vector

Ei j one has that i < j and so

0 = Ei jv
+ =

∑
��

(xi∂ jx
N,��)⊗ v�� +

∑
��

xN,�� ⊗ (Ei jv��)

from which it follows that the coefficients of the simple tensors do not involve N .
Clearly, the vectors v�� in this vector v+ are independent of the value of N . It follows

then that for any a ∈ C \ Z≥0 the vector
∑
�� xa,�� ⊗ v�� ∈ T(a) is nonzero, has weight

aω1 + λ(p) and is maximal.

Remark 3.6 According to Proposition 3.5, for each p ∈ Π(λ) there exists a unique
maximal vector of weight aω1 + λ(p) in T(a) having the form

xa
1 ⊗ vp1 +

∑
���=0

xa,�� ⊗ v��.

This vector is denoted by (xa ⊗ vp1)+.

Lemma 3.7 The degree of the An-module (U−(xa
1⊗ vp1) +W p)/W p equals the dimen-

sion dp of the Ãn-module L(λ̃(p)).

Proof By Proposition 3.4(iii) V = (U−(xa
1 ⊗ vp1) + W p)/W p has a linear basis given

by {(xa,�� ⊗ vp j)− + W p | �i ∈ Z≥0, �1 ≥ �2 ≥ · · · ≥ �n+1 = 0; j = 1, . . . , dp}.
Since L(aω1) has degree 1 it follows that the degree of V is less than or equal to dp,
the dimension of the Ãn-module L(λ̃(p)). It remains to be shown that V has a weight
space having dimension equal to dp.

Assume that the An weight of the vector vp j is given by λ(p)−
∑n

i=2 m jiαi and de-
fine B to be the maximum of the coefficients m ji for j = 1, . . . , dp and i = 2, . . . , n.

For each j = 1, . . . , dp we define the n tuple ��( j) =
(

nB, (n − 1)B − m j2, . . . ,

B−m jn

)
. It is readily verified that for each j = 1, . . . , dp the vector (xa,��( j)⊗ vp j)−+

W p is in the aω1 + λ(p) −
∑n

i=1(n − i + 1)Bαi weight space. Since these vectors are
linearly independent, this weight space has dimension dp as claimed.

Lemma 3.8 Let λ =
∑n

i=1 λiωi be a dominant integral weight and a ∈ C. For any
p ∈ Π(λ) there exists at most one other element q ∈ Π(λ) such that aω1 +λ(p) is linked
to aω1 + λ(q). Further, in this case, there exists a dominant integral weight µ such that
{aω1 + λ(p), aω1 + λ(q)} = {µ[k− 1], µ[k]} for some index k ∈ Z>0.

Proof Let |π| =
∑n

i=1(n − i + 1)λi and assume that aω1 + λ(p) and aω1 + λ(q) are
linked. This means that their ε coordinates are permutations of one another, a fact
which remains valid when any multiple of

∑n+1
i=1 εi is added to each. According to

(3.2), the ε coordinates of

aω1 + λ(p) + δ −
1

n + 1

(
a + |p| + p1 − |π| + 1 +

n∑
i=1

(pi − pi−1 + 1)
) n+1∑

i=1

εi
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and

aω1 + λ(q) + δ −
1

n + 1

(
a + |q| + q1 − |π| + 1 +

n∑
i=1

(qi − qi−1 + 1)
) n+1∑

i=1

εi

are respectively,

(a + |p| + pn + n− |π|, pn − p1 + n− 1, pn − p2 + n− 2, . . . , pn − pn−1 + 1, 0)

and

(a + |q| + qn + n− |π|, qn − q1 + n− 1, qn − q2 + n− 2, . . . , qn − qn−1 + 1, 0).

By assumption these two tuples are permutations of each other and their last n coor-
dinates form a decreasing sequence of integers. Since the sum of their components
are a + (n + 1)pn + n(n+1)

2 − |π| and a + (n + 1)qn + n(n+1)
2 − |π| respectively it fol-

lows that pn = qn. For any indices i < j since pi ≤ πi ≤ · · · ≤ π j−1 ≤ q j it
follows that pn − pi + n − i �= qn − q j + n − j. Therefore if q �= p, there exists
an index k such that pi = qi for i �= k, a + |p| + pn − |π| = qn − qk + n − k and
pn − pk + n− k = a + |q| + qn − |π|. This establishes the uniqueness.

Assume that pk < qk and define the dominant integral weight

µ = (p2 − p1)ω1 + · · · + (pk − pk−1)ωk−1 + (qk − pk − 1)ωk

+ (pk+1 − qk)ωk+1 + (pk+2 − pk+1)ωk+2 + · · · + (pn − pn−1)ωn.

By direct computation we find that µ[k−1] = aω1 +λ(p) and µ[k] = aω1 +λ(q).

Lemma 3.9 If τ ∈ H∗ such that L(τ ) is an admissibleΣ-injective module with central
character χµ for some dominant integral weight µ, then τ = µ[k] for some 1 ≤ k ≤ n.

Proof According to Mathieu, since L(τ ) is admissible with centralχµ, τ =
∑n

i=1 aiωi

with ai ∈ Z having exactly one ak ∈ Z<0. If a1 = m ≥ 0 and v+ is the maximal
vector of L(τ ) then by Σ-injectivity Y m+1

α1
v+ �= 0 is a maximal vector, contrary to

the simplicity of L(τ ). Therefore, τ ∈ Λ and as noted in Section 1, this implies that
τ = µ[k] for some 1 ≤ k ≤ n.

Theorem 3.10 Let µ be a dominant integral weight and assume that V is aΣ-injective
An-module generated by a highest weight vector v0 of weight µ[k] and degree equal to
the dimension of the Ãn-module L(µ̃[k]). Then

(i) if k = n, then V � L(µ[n]);
(ii) if k < n, then V contains the submodule L(µ[k + 1]) and is indecomposable with

composition factors L(µ[k + 1]) and L(µ[k]) � V/L(µ[k + 1]).

Proof It follows from Lemma 3.9 that if V is not simple it must contain a submodule
isomorphic to L(µ[l]) for some index l > k. If k = n this is impossible and hence in
this case V must be simple—i.e., equivalent to L(µ[n]).
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Assume now that 0 ≤ k < n. By Lemma 1.5(ii), we have that the degree of
L(µ[k]) is strictly less than the dimension of the Ãn-module L(µ̃[k]). Therefore V
is not equivalent to L(µ[k])—i.e. is not simple. Since V is generated by a highest
weight vector, V is a homomorphic image of the Verma module M(µ[k]) having
highest weight µ[k]. Also by Theorem 3.9 V must contain a submodule isomorphic
to L(µ[l]) for some l > k.

If l ≥ k + 2 then since µ[k + 1] > µ[k + 2] in the Bruhat ordering, the BGG resolu-
tion implies that V must contain highest weight vectors of weightµ[k+1] andµ[k+2].
However, the sum of the degrees of L(µ[k]), L(µ[k + 1]) and L(µ[k + 2]) is strictly
larger than the degree of V . It follows that V must have a highest weight vector, say
v1, of weight µ[k+1]. Therefore V is indecomposable and further V/U v1 � L(µ[k]),
U v1 � L(µ[k + 1]) and hence L(µ[k + 1]) ≤ V .

The composition factors of the tensor product module T(a) are now given in the
following theorem.

Theorem 3.11 Let
0 = T0 ⊂ T1 ⊂ · · · ⊂ Tq = T(a)

be a composition series of T(a). Then the composition factors for T(a) are L(ν) with

ν ∈ Ω = {aω1 + λ(p) | p ∈ Π(λ)}

∪ {µ[k + 1] | 0 ≤ k < n, whenever aω1 + λ(p) = µ[k]

for some p ∈ Π(λ) and some dominant integral weight µ}.

Moreover, in the corresponding sequence of Σ-injective coherent An-families

0 =M(T0) ⊆M(T1) ⊆ · · · ⊆M(Tq) =M(T(a))

equality holds between M(Ti) and M(Ti+1) if and only if Ti+1/Ti � L(aω1 +λ(p)) where
aω1 + λ(p) is dominant integral.

Proof For each p ∈ Π(λ) such that aω1 + λ(p) is a nonintegral or a singular weight
(xa

1 ⊗ vp1)+ is a highest weight vector in T(a) and by Theorem 1.5 the submod-
ule generated by this vector has degree equal to the degree of L(aω1 + λ(p))—i.e.,
U (xa

1 ⊗ vp1)+ � L(aω1 + λ(p)). On the other hand assume that p ∈ Π(λ) where
aω1 +λ(p) = µ[k] for some dominant integral weight µ. By Lemma 3.7 together with
Theorem 1.5(ii) there exists q ∈ Π(λ) such that aω1 + λ(q) = µ[k − 1] or µ[k + 1].
Without loss of generality assume that aω1 + λ(q) = µ[k + 1]. Since W p is the di-
rect sum of generalized eigenspaces belonging to central characters χaω1+λ(q) where
|q| > |p|, U (xa

1 ⊗ vp1)+ ∩W p = 0. Hence, by Lemma 3.7, the degree of U (xa
1 ⊗ vp1)+

is equal to the dimension of Ãn-module L(µ̃[k]). By Theorem 3.10, the submodule
generated by the highest weight vector (xa

1⊗vp1)+ is an indecomposable module with
composition factors given by L(µ[k]) and L(µ[k+1]). Further the highest weight vec-
tor (xa

1 ⊗ vq1)+ is contained in this submodule. In this case the vector xa
1 ⊗ vq1 does
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not belong to U (xa
1 ⊗ vp1)+ and therefore U (xa

1 ⊗ vq1) + Wq is a highest weight mod-
ule with highest weight µ[k + 1] in T(a)/Wq having degree equal to the dimension of
the Ãn-module L(µ̃[k + 1]). By Theorem 3.10, U (xa

1 ⊗ vq1) + Wq is isomorphic to
L(µ[n]) if k + 1 = n and if k + 1 < n, then it has composition factors L(µ[k + 1]) and
L(µ[k + 2]).

By the first part of the proof,

Ti+1/Ti � L(τ ) = L(aω1 + λ(�)) or L(µ[k + 1]).

If τ is not dominant integral, then Mss(Ti) ⊂ Mss(Ti+1), since the larger module
contains a copy of L(τ ) not contained in the smaller one. If τ is dominant integral,
then τ = aω1 + λ(�) since µ[k + 1] is not and moreover the degree of Ti equals the
degree of Ti+1. Thus since M(Ti) ⊆ M(Ti+1), it must be the case that M(Ti) =
M(Ti+1).

Corollary 3.12 For any weight ξ ∈ Λ there exists a dominant weight λ and a scalar
a ∈ C \ Z≥0 such that L(ξ) is isomorphic to a submodule of L(aω1)⊗ L(λ).

Proof If ξ =
∑n

i=1 aiωi ∈ Λ is either nonintegral or singular then Theorem 1.5
implies that the degree of L(ξ) is equal to the dimension of the simple Ãn-module
L(ξ̃). Let λ = ξ−a1ω1. Let v+ be a maximal vector of L(λ) and xa

1⊗v+ be the highest
maximal vector in L(a1ω1) ⊗ L(λ). By Lemma 3.7, U (xa

1 ⊗ v+) has degree equal to
the degree of the Ãn-module L(ξ̃). Σ-injectivity implies that U (xa

1 ⊗ v+) � L(ξ) and
hence in this case L(ξ) is isomorphic to a submodule of L(aω1)⊗ L(λ).

If ξ is a regular integral weight in Λ then let µ denote the unique dominant inte-
gral weight such that ξ = µ[k] for some k = 1, . . . , n. Assume first that k > 1. Then
µ[k−1] =

∑n
i=1 biωi where b1 ∈ Z<0 and b2, . . . , bn ∈ Z≥0. Let V be the submodule

generated by the highest maximal vector of L(b1ω1)⊗ L(µ[k− 1]− b1ω1). By Theo-
rem 3.10(ii), L(ξ) is a submodule of V . Now suppose that k = 1. By Lemma 3.8, L(ξ)
is a submodule of L(−ω1)⊗ L(µ + ω1) since the submodule generated by the highest
maximal vector, which has weight µ = µ[0], is not simple.

The following example is presented to illustrate the concepts of this section.

Example 3.13 Consider the A3 module T(a) = L(aω1) ⊗ L(λ) where a = −2 and
λ = ω2. A basis for L(ω2) is given by

{xi ∧ x j | 1 ≤ i < j ≤ 4}

and a basis for L(−2ω1) is given by

{x−2−�1
1 x�1−�22 x�2−�33 x�34 | �i ∈ Z≥0; �1 ≥ �2 ≥ �3}.

The partition π associated with λ = ω2 is {0, 0, 1, 1} and Π(ω2) =
{
{0, 1, 1},

{0, 0, 1}
}

. The corresponding weights are λ({0,1,1}) = ω2, λ({0,0,1}) = −ω1 + ω3.
Observe that x1 ∧ x2 and x2 ∧ x3 are highest weight vectors in L(ω2) with respect to
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the subalgebra Ã3 and have weights λ({0,1,1}) = ω2, λ({0,0,1}) = −ω1 +ω3 respectively.
The associated highest weight vectors in T(−2) are

(
x−2

1 ⊗ (x1 ∧ x2)
)+
= x−2

1 ⊗ (x1 ∧ x2) and(
x−2 ⊗ (x2 ∧ x3)

)+
= x−2

1 ⊗ (x2 ∧ x3)− x−3
1 x2 ⊗ (x1 ∧ x3) + x−3

1 x3 ⊗ (x1 ∧ x2)

having weights −2ω1 + λ({0,1,1}) = −2ω1 + ω2 and−2ω1 + λ({0,0,1}) = −3ω1 + ω3

respectively.
Note that −2ω1 + ω2 = µ[1] and −3ω1 + ω3 = µ[2] are regular integral weights

where µ is the dominant integral weight 0. According to Theorem 3.11, therefore,
the composition factors for T(−2) are the simple highest weight modules with highest
weights−2ω1+ω2,−3ω1+ω3,−3ω1+ω3 and −4ω1. Define the following submodules

T0 = U ·
(

x−2
1 ⊗ (x2 ∧ x3)

)
T1 = U ·

(
x−2

1 ⊗ (x1 ∧ x2)
)

T2 = U ·
(

x−3
1 x4 ⊗ (x2 ∧ x3)− x−4

1 x3x4 ⊗ (x1 ∧ x2) + x−4
1 x2x4 ⊗ (x1 ∧ x3)

)
T3 = U ·

(
x−2

1 ⊗ (x2 ∧ x3)− x−3
1 x2 ⊗ (x1 ∧ x3) + x−3

1 x3 ⊗ (x1 ∧ x2)
)
.

It is readily verified that T(−2) = T0
⊃ T1 ⊃
⊃ T2 ⊃

T3. A Jordan Holder series for

T(−2) is given by

T(−2) = T0 ⊃ T1 + T2 ⊃ T2 ⊃ T3

with composition factors T0/(T1+T2) � L(−3ω1+ω3), (T1+T2)/T2 � L(−2ω1+ω2),
T2/T3 � L(−4ω1), and T3 � L(−3ω1 + ω3) as expected.

4 Simple Torsion Free An-Modules

In this section, the previous results are combined to determine the composition fac-
tors for the tensor product of a torsion free An-module of degree 1 having central
character χaω1 with a /∈ Z≥0 and a simple finite dimensional module. Finally it is
shown that every simple torsion free An-module of finite degree is isomorphic to a
submodule of such a tensor product module.

Fix any simple torsion free An-module M of degree 1 having central character
χaω1 with a /∈ C \ Z≥0. Then by [BL2], M is of the form T(�a) as constructed in
Example 1.4 and by Proposition 1.6, there exists a coset [τ ] ∈ H∗/Q such that M �
M
(

L(aω1)
)

[τ ]
.

Theorem 4.1 Let M be a simple torsion free An-module of degree 1 as above, L(λ)
be any simple finite dimensional An-module, and Ω be as in Theorem 3.11. Then the
composition factors for the tensor product module M ⊗ L(λ) are M

(
L(ν)

)
[τ+λ]

where
ν ∈ Ω and ν is not dominant integral.
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Proof Since M �M
(

L(aω1)
)

[τ ]
,

M ⊗ L(λ) �M
(

L(aω1)
)

[τ ]
⊗ L(λ) �M

(
L(aω1)⊗ L(λ)

)
[τ+λ]
.

Let T(a) = L(aω1)⊗ L(λ) and

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tq = T(a)

be a composition series of T(a). Modify this sequence to obtain a sequence of ad-
missible submodules maximal with respect to having strictly increasing degrees. By
Theorem 2.5, this sequence is transferred to a composition series of M ⊗ L(λ).

Remark According to Proposition 1.6 there are two types of weights ξ ∈ Λ associ-
ated with degree 1 coherent An-families, namely ξ = aω1 for a ∈ C \ Z≥0 and ξ =
−(N +2)ω1 +(N +1)ω2 for N ∈ Z≥0. For completeness we state without proof that if

λ is a dominant integral weight and M =M
(

L
(
−(N + 2)ω2 − (N + 1)ω2

))
[τ−λ]

is

a simple torsion free An-module of degree 1 having central character χNω1 for some
N ∈ Z≥0 then the composition factors of M ⊗ L(λ) are M

(
L(ξ)

)
[τ ]

where

ξ ∈
(
{Nω1 + λ(p) | p ∈ Π(λ)} ∩ Λ

)
∪ {µ[k + 1] | ∃p ∈ Π(λ) and µ dominant integral

such that µ[k] = Nω1 + λ(p) for some 0 ≤ k < n}.

Theorem 4.2 Every simple torsion free module of finite degree is isomorphic to a sub-
module of T(�a)⊗ L(λ) for some choice of a simple finite dimensional An-module, L(λ),
and some choice of a simple torsion free module, T(�a), of degree 1.

Proof Let T be a simple torsion free module of degree d and M(T) be the unique
Σ-injective coherent family of degree d containing T, i.e., for some τ ∈ H∗, T =
M(T)[τ ]. From this form the irreducible semisimple coherent family Mss(T) con-
taining T. According to Theorem 1.3, there is a unique simple highest weight mod-
ule L(ξ) of degree d with ξ ∈ Λ such that L(ξ) is a submodule of Mss(T). The
unique Σ-injective coherent family M

(
L(ξ)

)
of degree d containing L(ξ) has the

property that its semisimple form contains T and so T = M
(

L(ξ)
)

[τ ]
. This means

that M
(

L(ξ)
)
�M(T) by Theorem 2.2(iii).

By Corollary 3.12, there is a dominant integral weight λ and an a ∈ C \ Z≥0 such
that L(ξ) is isomorphic to a submodule of L(aω1)⊗ L(λ). Therefore,

T �M
(

L(ξ)
)

[τ ]
≤M

(
L(aω1)⊗ L(λ)

)
[τ ]
�M

(
L(aω1)

)
[τ−λ]

⊗ L(λ)

and by Theorem 2.4, M
(

L(aω1)
)

[τ+λ]
is torsion free.
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Remark As noted in the introduction, the proof of the conjecture for torsion free
Cn-modules is much more transparent. In fact, if T is a simple torsion free Cn-
module of degree d then by [M, Theorem 4.5], there exists an admissible highest
weight ξ and a coset [τ ] ∈ H∗/Q such that T � M

(
L(ξ)

)
[τ ]

. Moreover, Mathieu

tells us that if ω = −1/2ωn then λ := ξ−ω is a dominant integral weight. According
to [BHL], L(ω)⊗L(λ) is completely reducible. Certainly, it is admissible and contains
a submodule isomorphic to L(ξ). It follows then that

T �M
(

L(ξ)
)

[τ ]
≤M

(
L(ω)⊗ L(λ)

)
[τ ]
�M

(
L(ω)

)
[τ−λ]

⊗ L(λ)

where M
(

L(ω)
)

[τ−λ]
is a simple torsion free module of degree 1.
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