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The regularity series of a

convergence space II

D.C. Kent and G.D. Richardson

This study is a continuation of an earlier paper on the

regularity series of a convergence space. The notions of a

i?-Hausdorff series and the T -modification of a convergence

space are introduced, and their relationship with the regularity

series is studied. The concept of a symmetric space is shown to

be useful in studying T--compactifications. Several examples

are given; one being a Hausdorff convergence space with an

arbitrarily large regularity series.

Introducti on

This work is a continuation of the study of the regularity series (or

i?-series) of a convergence space which was initiated by the authors in

[70]. The notation and terminology of [70] will be used without further

reference.

In Section 1, we define the i?-Hausdorff series (or i?ff-series), the

i?-Hausdorff modification, and the T -modification of a space X , and

study the behavior of these phenomena and their relationship to the

if-series. Section 2 is devoted to a study of symmetric spaces. It is

shown that, for all practical purposes, a compact symmetric space is

topological. Section 3 deals with the problem of extending a

compactiflcation of a space X to compactifications of the regular,
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symmetric, and T -modifications of X . In Section 4, the behavior of the

i?-series and RH-series of a space relative to products and certain

quotient maps is given further study. Section 5 gives an example to show

that the length of the i?-series of a Hausdorff convergence space can be

arbitrarily large. Examples are also given in this section which show that

Theorems 6.3 and 1.h of [70] cannot be significantly improved. The

concluding section utilizes concepts developed earlier in the paper to

simplify the proof of theorems obtained by Rama ley and Wyler in [7].

It should be noted that Theorems 3-2 and 4.1 of [70] are incorrect as

stated. Corrected statements of these theorems and several others derived

from them (Theorems 3.5, k.2, k.h, and Corollary 4.3 of [10]) are given in

Sections 3 and 4 of this paper, along with counterexamples to the original

statements.

1 . The i?fl-series

Let X b e a space, and let {r X : 0 5 a S lR(X)} denote the

i?-series of X , which terminates with X , the regular modification of

X . Recall that X is B-Hausdorff if Xp is Hausdorff; a regular

Hausdorff space is said to be 7_ .

On an arbitrary space X , a relation ~ is defined as follows:

x ~ y iff x -*• y in X . It is easy to verify that this is an

equivalence relation; let sX = {[x] : x £ X} be the set of equivalence

classes, and let (j> : X -*• sX be the natural map. We assign to sX the

quotient convergence structure determined by X and (J) . In other words,

F •+ [y] in sX iff there is G •+ x in X such that <|>(G) = F , and

x € [y] . Furthermore, let X be the set sX equipped with the quotient
s

convergence structure determined by § : X -*• sX . We begin by establish-

ing some basic properties of the space X .
8

LEMMA 1.1. Let A and B be subsets of a space X such that
= <)>(B) . Then A c cl^, B .

v

Proof. Let x i. A . Then [x] € <J>(B) , and so there is

https://doi.org/10.1017/S0004972700022590 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022590


T h e r e g u l a r i t y s e r i e s 225

y € [x] n B . Since y -*• x in X , x € cl^. B . //
r

LEMMA 1.2. Let X be a space, and F a filter on X such that

<j)(F) -»• [x] in X . Then there is y € [x] such that F -*• y in X .

Thus the map (f> : X •* X is perfect.

Proof. Since <j> : X -*• X is a convergence quotient map, there is
t* s

y € [x] and G •+ y in X such that <j)(G) = ()>(F) . By Lemma 1.1,

F > el- G , and F -»• y since X is regular. //
r

It is established in [4] that a perfect map preserves regularity;

hence, by Lemma 1.2, X is regular. Moreover, it follows from Lemma 1.2
s

that X is T_ ; consequently X is a 7 space. Since sX is finer
S -L S j

than X , it follows that sX is i?-Hausdorff.
s

PROPOSITION 1.3. For any space X , Xg is T and sX is

R-Hausdorff.

For each ordinal number a , define s X to be r (sX) : the ordinal

sequence {s X : 0 5 a 5 I (sX)} will be called the R-Hausdorff series

(abbreviated i?fl-series) for X . Note that X 5 (sX) , and so all terms

S 3?

in the i?#-series are /?-Hausdorff. We wil l refer to sX as the

R-Hausdorff modification of X , and to X as the T-modification of
s i

THEOREM 1.4. Let X be a space.

(a) 4> :. r X •*• s X is continuous for all ordinals a .

(b) Xs = (sX)r .

(c) lR(sX) S lR(X) .

Proof, (a) follows immediately from Proposition 3.1 of [JO].

(b) Let a be the larger of the ordinals lAx) and lAsX) . Then
n IX

: r X •+ s X is continuous by (a). Since r X = X and s X = (sX) ,
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we have that X 2 {sX) , since ((> : X •+• X is a convergence quotient

map. The reverse inequality is noted above, and so X = (sX) is the

terminal element in the iffl-series.

(a) Let a = lR(X) • Then ((> : X •*• s X is continuous by (a). But

(j) : X ->• J is a convergence quotient map, and so s X 'S X . On the
jr s as

other hand, X 5 saX for all ordinals 8 , and so s X = X . Hence

lR{sX) 5 a . //

We will use l-A
riti

rather than lAsX) to designate the length of
H

the iffl-series.

PROPOSITION 1.5. If X is locally compact, then £ 1 •

Proof. Since local compactness is preserved by convergence quotient
maps, sX is locally compact and i?-Hausdorff. The assertion thus follows
from Theorem 2.5 of LI01. II

The straightforward proof of the next proposition will be omitted.

PROPOSITION 1.6. Let X and Y be spaces, f : X •+ Y a continuous

function, and define J : sX •*• sY by J([x]) = [fix)] . Then J is a
well-defined function, the diagram that follows is commutative, and the
functions involved are all continuous:

f f f

id

The term convergence group is used here as in [70]; in particular, we

consider only abelian groups and use the additive notation.

Given a convergence group X , it is shown in Theorem 3.U of 1101 that

r X is a convergence group for all ordinals a ; in particular, X is a

regular convergence group. The equivalence class [0] is a subgroup of

X , since x, y (. [0] implies 0 converges to x and y , and hence to
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x - y , so that x-y € [0] . Note that sX has the same underlying set as

the factor group X/[0] . It is easy to check that the group operations on

X/[0] are continuous relative to the quotient convergence structure on

sX . These observations, along with Theorem 3-^ of [JO] prove the

following.

THEOREM 1.7. If X is a convergence group, then s X is a

convergence group for each ordinal a. .

Let C(X, Y) be the set of all continuous functions from a space X

into a space Y . The continuous convergence structure on C(X, Y) is the

coarsest relative to which the evaluation map e : C(X, Y) x X -*• Y ,

defined by e(f, x) = f(x) , is continuous. The function space with the

continuous convergence structure is denoted by C {X, Y) . Convergence in

C (X, Y) can be characterized as follows: if $ is a filter on
G

C (X, Y) , then $ ->• f in C (X, Y) iff $( F) -+ f{x) in Y whenever
G O

F -»• x in X . Function spaces with the continuous convergence structure

have been studied by a number of authors; see, for example, [/] and [2].

THEOREM 1.8. Let X be a space and Y a regular space. Then, for
all ordinals a , CjX, Y) = C^r^X, Y) . If Y is also Hausdorff, then

C (X, Y) = C (s X, Y) for all a .
G O QL

Proor. First note that the sets C(X, Y) and c[r X, Y) are equal,

since f : X -*• Y is continuous iff f • X -* X is continuous. Also

C (X, Y) < C [r X, Y) is clear. Let $ •+ f in C (X, Y) , and let F -*• x
G G Ot G

in r X . Then there is & < a and n € N such that F 2 cl G , where
a r&X

G -»• x in X . Then $(F) 2 $ cl" G > * cl" G > cl"$(G) , and the

I r&X ) I Xr ) Y

latter filter converges to f{x) in Y since Y is regular. This

establishes that $ •+ / in Ca[rX, Y) .

To prove the second equality, it suffices, in view of the first

equality, to show that C {X, Y) = C {sXs Y) . If x •+ y in X , then
G G I*

f e C (X, Y) implies f(x) = f(y) . It follows that / : sX •* Y , where
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?([«]) = fW , is well defined. By identifying / € C(X, Y) with J in

C(sX, Y) , we obtain set equality. It is also easy to verify that, under

this identification, the continuous convergence structures on the two sets

coincide. //

2. Symmetric spaces

A symmetric space X is defined to be a regular space with the

property that F -»• x whenever F -* y and y -*• x . Examples of symmetric

spaces include 21 spaces, regular topological spaces, regular convergence

groups, and regular uniform convergence spaces. We shall see that compact

symmetric spaces are, for all practical purposes, topological.

Some additional terminology concerning mappings will be needed for

this and later sections. Let / be a continuous map from a space X onto

a space Y . The map is open if, whenever F is an ultrafilter, F -*• y

in Y , and x £ f (y) , there is a filter G on X such that G •*• x

and f(G) = F . We will say that f is strongly open if the preceding

condition is satisfied when F is an arbitrary filter (not necessarily an

ultrafilter). Finally, X is said to have the initial structure

determined by / and Y if G -»• x in X whenever f(G) ->• f(x) in Y .

Observe that if X has the initial structure determined by f and Y ,

then / is strongly open and perfect; indeed, / is strongly perfect in

the sense defined by the statement of Lemma 1.2.

We omit the simple proof of the next assertion.

LEMMA 2.1. Let f map X onto Y . If Y is syrmetric

(respectively, regular, locally compact, compact, topological), and X has

the initial structure determined by Y , then X is symmetric

(respectively, regular, locally compact, compact, topological).

PROPOSITION 2.2. The following statements about a regular space X

are equivalent:

(a) X is symmetric;

(b) X has the initial structure determined by 4> : X •+• X ;
s

(c) <j> : X •*• X is strongly open.
s
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Proof. Fi rs t note that when X i s regular, X = sX . By Lemma 2 . 1 ,
s

(b) =* (a) . To establish that (a) "* (c) , let F •+ [x] in X , and let

y £ [x] . By definition of X , there is z € [x] and a filter H ->• z

s

in X such that <|>(H) = F . But symmetry implies that H -*• y in X , and

so <j> is strongly open. To show that (a) "* ( W , let G be a filter on X

such that ()>(G) •* [a;] . Then there is H -»• j/ £ [x] such that

<j)(H) = <()(G) . But G > clJ^ follows by Lemma 1.1, and G * y in X

since X is regular. //

It is shown in [4] that the image of a topological space under an open

map is topological. This observation, along with Lemma 2.1 and Proposition

2.2 implies:

COROLLARY 2.3. If X is a regular topological space, then X is a

T topological space. If X is symmetric and X is topological

(respectively, compact, locally compact) then X is topological

(respectively, compact, locally compact).

Recall the notation XX for the topological modification of X , and

ln(X) for the length of the decomposition series of X . The next theorem

generalizes a well-known result (see [9]) concerning compact T- spaces.

THEOREM 2.4. (a) If X is a compact regular space, then

1DW < 2 .

(b) If X is a compact syrmetric space, then ^X is a compact

regular topological space, X and XX have the same ultrafilter

convergence, and IQ(X) - 1 •

Proof. (a) Let A c X , and x € d p i . Then there is an

ultrafilter F -»• x such that cljA € F . By Lemma 2.1 of [5], there is an

2
ultrafilter G containing A such that F > cl«G . Since X is compact,

there is y € X such that G -*• y ; since X is regular, F •* y .

Therefore [x] - [y] , since x i clyF , and so y € C^-TA implies

2 2
x 6 C^-TA • Thus we have shown that the closure operator cl is
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idempotent.

(b) If X is symmetric, then an argument very similar to that of the

preceding paragraph can be used to show that clj, is idempotent; thus the

pretopological modification TTAT = XX . Let F be an ultrafilter which is

finer than VY(x) , the neighborhood filter at x . Then x 2 clvF .

Since X is compact, there is y € X such that F -> y . But then

x "*" y > y "*• x J an<i F -> a; by symmetry. Thus X and XX have the same

ultrafilter convergence, and the proof is complete. //

THEOREM 2.5. Let X be a regular convergence group.

(a) A filter F is Cauchy in X iff <J>(F) is Cauchy in X .

s
(b) X is complete iff X is complete.

(c) X is totally bounded iff X is totally bounded.
s

(d) X is a topological group iff Xg is a topological group.

Proo±. We will prove only (a). Recall that F is Cauchy iff

F - F + O . If F - F - > 0 in X , then cf>(F-F) = <|>(F) - <|>(F) •*• [0] in

X by continuity of <|> . Conversely, if <j>(F-F) = <!>( F) - ((>( F) •*• [0] in
s

X , then we use the fact that X is symmetric along with Proposition 2.2

8

to establish that F - F > ((>~1((j)( F)-<(>( F)) •+ 0 in X . II

For any space X , let OX be the set X with the initial structure

determined by (j) and X . It is easy to show that F •* x in aX iff
s

there is j f [a;] such that F -»• y in X . The space aX is the finest

symmetric space coarser than X , and will be called the symmetric

modification of X . Some basic properties of aX are stated without

proof.

PROPOSITION 2.6. Let X be a space.

2
(1) For each subset A of X , cl A c cla^4 c cl^ A .

r r

(2) \Xr = X(oX) .

(3) If f : X -*• Y is continuous, then f : aX •* oY is continuous.
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(U) X = (ox) = s(aX) = a[x ) .

(5) If X is R-Hausdorff, then X = aX .

3. Compactifications

In this section we examine the interrelationships between

compactifications of if, X , and X . The assumption is made throughout

this section that all compactifications are strict.

As noted in the introduction, Theorems 3.2 and 3-5 of [JO] are

incorrect as stated; Example 5-6 of [JO] is a counterexample to Theorem

3.2. Both of these theorems are correct if the additional assumption is

made that the compactification or completion is i?-Hausdorff. It seems to

be rather difficult to obtain a satisfactory version of Theorem 3.2 of [JO]

when the compactification is not i?-Hausdorff; a partial result in this

direction is obtained in Theorem 3.2 below.

Let (Y, f) be a compactification of a space X . Then

/ : s X -*• s Y is continuous for all ordinals a by Proposition 1.6.

However / need not be injective, and, when injective, need not be an

embedding. The following lemma is obvious.

LEMMA 3.1. Let (Y, f) be a compactification of X .

(a) If f is injective, then for each x £ X ,

/([x]) = [fix)] n f(X) .

(b) If [Y , f) is a compactification of X 3 then f is

injective.

THEOREM 3.2. Let X be a locally compact Hausdorff space and let

{Y, f) be a Hausdorff compactification of X . Then [Y^, f) is a

compactification of X iff f is injective.

Proof. Assume that f is injective. By Theorem 2.U (a), the

2
closure operator cl is indempotent. Let A be a compact subset of

r

fix) c Y and let B c_A • If y 6 cl2. B , then there is an ultrafilter
r
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G •+ y in Y^ such that c l y B d G . By Lemma 2.1 of [5 ] , there i s an
r

ultrafilter F such that B f F and G > cly F . Since A is compact,
v

there is z (. A such that F -»• 3 in Y . Also G -*• z in Y , and so

y € [2] . Thus we have shown that

cly S c cl^S u {y € Y : y 6 [s] for some 3 € clJ3} ,

and it is easy to see that this inclusion is actually an equality. Since

clyB c f(X) , this result, along with Lemma 3.1 (a), implies that

r

Let F ->• f(x) in Y , where /(*) 6 F and a; € X . Then there is

o
G ->• /(a;) in Y such that F 2 cl G . By the strictness condition, we

r

can assume that f(X) € G . Thus the results of the preceding paragraph

imply that f 1 elf; G = elf] f~l(G) . Since (Y, /) is a compactification

I ^ J X
P

of X , /""""(G) -+ x in X , and so cl| /'1(G) -»• a; in X . Thus
r

/""""(F) > Z"1 cl^ G implies that /~1(F) •* x in X , and it follows that

[Y , f) is a compactification of X If

EXAMPLE 3.3. Let X be an infinite set, x € X , and F a free

ultrafilter on X ; let X have the finest convergence structure such

that each free ultrafilter other than F converges to x . The space X

is easily seen to be locally compact, regular, and Hausdorff. Let

Y = X u {a} , where a $ X be a one-point compactification of X , where

F -»• a in Y . This compactification of X is Hausdorff, but not

i?-Hausdorff. One can easily verify that f is injective, and so Y is a

regular compactification of X = X . But Y is not a Hausdorff space,

and indeed it can be shown that X has no regular Hausdorff compact

compactification. Thus Y is not a compactification of X = X , even
8 S

though / is injective and continuous. / /
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For the remainder of this section, we will investigate the

circumstances under which (Y, f)'a compactification of X implies that

(Y , ~f) is a T compactification of X .

THEOREM 3.4. Let (Y, f) be a regular compactification of X .

Then (Y , f~) is a T oompaotifioation of X iff the following

condition is satisfied:

if F -*- y in Y , where f(X) € F and [y] n f(X) t 0 , then

F •+ f(x) € [y] in Y for some x d X .

Proof. We refer to the diagram of Proposition 1.6. Assume that

[y , ~f) is a T compactification of X , and let F -> y in Y , where

f(X) (. F and f{x) € [y] . Since /(*s) € <t> F , then /^((j^F) + [x] in

Xg . Let G be a filter on X such that (fîG = T"1^^) and

G •+ x € [ar] . Then /(<)>-y-G) = (J>̂F , and by commutativity of the diagram,

$Y(fG) = <t>/ • By Lemma 1.1, F > cly/(G) -> /(^j € [y] in Y .

Conversely, assume the given condition: if [/(̂ -i]] = [jf^o)! » then

f[x ) •+ f (x ) in Y , and so x -* x in ^ , since / : X -*• Y is an

embedding. Thus [a:.J = QcJ , and f : X •+ Y is injective. It remains

to show that 7"1 : 7(^ ) •* ̂  i s continuous. Let F ->• [f(x)] in Y ,
s s s

where f(* ) € F . Then there exists a filter G on Y such that
s

G •*• y € [/(*)] in Y , where <J) G = F . Since J[x ) € F , there is a

filter H on Y with f(X) € H and ^ = F . Also, 4>yG = <j>yH , and so

H 2 clyG by Lemma 1.1. Thus H ->• y in Y , and /(/) E H . By the

hypothesis, there is x d X such that H •*• f[x ) € [j/] in Y . Thus

/""""(H) •+ x in Z , and so <f>«(/^1H) •+ [a;] in X g . Since

T1^) = *A:(^
1H) , 7 is an embedding. //

THEOREM 3.5. Let (Y, f) be a compactification of a space X .

Then \j ,~f] is a T compactification of X iff (ay, f) is a
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symmetric compactification of OX .

Proof. Assume that [Y , f] i s a compactification of X , and
s s

consider the diagram:

From the fact that (Y, f) is a conpactification of X , it follows that

/ is a continuous injection in the previous diagram (see Proposition 2.6).

If G •* y £ f{X) in oY , where f(X) € G , then (|>V(G) •* [y] in y .

If x = /~1(j/) , then T^fov6) = "J^/"1^) -> [x] in J , since / is an

embedding. But this implies that f (G) •* x in aX , since aX has the

initial structure determined by <j> and X .
A o

Conversely, assume that (oY, f) is a compactification of OX . Then

(oJ) = y and (aX) = X by Proposition 2.6. Thus, we can apply
s s s s

Theorem 3.1* with aX and oY playing the roles of X and Y . Since ay

is symmetric, the condition specified in Theorem 3.^ is clearly satisfied,

and so [Y , f~) is a compactification of X . II
S 8

COROLLARY 3.6. Let X be a locally compact, Hausdorff convergence

groupj and let (Y, f) be a Hausdorff compactification of X , where Y

is also a convergence group and f is injective. Then (y^, /) is a

regular convergence group compactification of X , and [Y , f) is a T

convergence group compactification of X
s

Proof. This assertion follows from Theorem 1.7, Theorem 3-2, Theorem

3.5, and the fact that regular convergence groups are symmetric. //

A space which has a 21 compactification is said to be Tychonoff. In

[9], it is shown that a space X is Tychonoff iff X is a regular space

which has the same ultrafilter convergence as a completely regular,
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Hausdorff topological space.

THEOREM 3.7. For any space X , X is Tyohonoff iff aX has a
s

symmetric aompactification.

Proof. If (y, /) is a symmetric compactification of aX , then the

argument used in the proof of Theorem 3-5 establishes that [Y , ~f] is a

T--compactification of X . Conversely, assume that (Z, g) is a

T -compactification of Xg . Let W = Z - g[x ) , let X = X u W , and

define Y : Y ->- Z by V{y) = g([y]) if y e X , and 4-(y) = y if

z/ € Z . Let Y have the initial structure determined by V . By this

construction, Y is symmetric and compact, and it can be shown that

[Y, idy.) is a compactification of OX ; we omit the details. //

4. Quotients and products

We begin this section by correcting an error in Theorem U.l of [70].

The assertion that / cl 6 = cl / G , which occurs about half way

>• rgJ > r8Y

through the proof of Theorem k.l, is invalid without an additional

assumption. The following lemma, which is easy to prove, provides what is

needed.

LEMMA 4.1. If f : X •* Y is an open map, then, for each A c_ Y and

n € N , olnxf
XU) = /

We now state the corrected version of this theorem.

THEOREM 4.2. If f : X •* Y is open and proper, then f : r X •+ r Y

is open and proper for all ordinals a .

Proof. Assume that f : roX •*• r.Y is open and proper for all

ordinals 3 < a . With the help of Lemma h.l, the proof of Theorem k.l of

[10] is now a valid argument to establish that / : r X •*• r Y is proper.

It remains to show that the same map is open. Let F be an ultrafilter

which converges to y in r Y . Let x £ f (y) . Then there is an

ultrafilter 6 -»• y in Y , £ < a , and n i N such that F > cl" G .
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Since f '. X -*• 1 is open, there is an ultrafilter H on X such that

f(H) = G and H -»• x in X . Then /[cl* H = cl" G < F ; this

follows from the induction hypothesis and the fact that proper maps are

closure-preserving. Thus there is an ultrafilter K > cl H v f (F) .

Hence f(K) = F and K. -»• x in r X , which completes the proof. //

Note that Corollaries k.2 and 1+.3 and Theorem k.h of [70] are all

derived from Theorem U.I. All of these results are valid if one adds the

additional assumption that the map / is open.

If / : X •*• Y has one of the two properties (open and proper) but not

the other, then it need not be true that / : r X •*• r Y has the same

property. We give a counterexample below for the "proper" case; examples

for the "open" case are at hand, but are omitted for brevity.

EXAMPLE 4.3. Let A, B , and C be countably infinite disjoint

sets, let X = A u B u C , and let Y = A u B . Let x be a fixed point

in Y , and let F be a free ultrafilter on X containing A . For each

infinite subset D of A and for each point z in B , choose a free

ultrafilter Gn on X which contains D . Because of the large supply
u,z

of free ultrafilters which contain D , this selection can be made in such

a way that Gfl + G^ when D ± E or z t y . Let X be equipped with

the finest convergence structure which satisfies the following conditions:

(1) F •* x Q j

(2) GDtB-» .

Let J be a subspace of X . Since C and B are countable sets, there

exists an injective function g mapping C onto B . We now define

/ : X -> Y as follows:

(1) if x € A u B , then f(x) = x ;

(2) if x € C , then f{x) = g(x) .

By th i s construction, / : X •*• Y i s a perfect map. Note that

c l v F = F n B n x , where B is the f i l t e r of a l l oversets of B . Thus
A U
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each free ultrafilter H on Y containing B , r Y-converges to x .

But no free ultrafilter on X which contains C can i\..X-converge, and

consequently / : r X •*• r.Y is not proper. //

It is interesting to note that the map / : X •* Y is not only-

perfect, tart is also a retract. It follows from Theorem it.5 of [JO] that

/ : r.X -*• r.Y is a retract even though it is not proper.

PROPOSITION 4.4. Let f : X •+ Y and ^ : Y •*• sY be open

(respectively, proper) maps. Then f : sX -*• sY is open (respectively,

proper).

Proof. We refer to the diagram of Proposition 1.6. The proof will he

given for the "open" case; the other case is similar.

Let F "be an ultrafilter on sY converging to [y] , and let

[*] € /"''"([I/]) • Let x± € [x] and y± = /(a^) . Since ^ is open,

there is an ultrafilter H on Y such that H -»• y in Y and

<t>y(H) = F . Since f is open, there is an ultrafilter G on X such

that G -*• x in X and f{G) = H . Thus $Y(G) -*• [x] in sX , and
-L A.

= F , since the diagram is commutative. //

COROLLARY 4.5. If f : X •* Y is open and proper and <|>„ : Y -»• sY

is open and proper, then f : s X •*• s Y is open and proper for all

ordinals a .

COROLLARY 4.6. If f : X -»• Y is open and proper and Y is

symmetric, then f : s X •* s Y is open and proper for all ordinals a .

We will conclude this section by briefly considering the behavior of

the RH-serles relative to products. Let X = v{x. : i € j} be a product

space, where I denotes a finite index set. One can easily verify that

under the natural identification the sets sX and T\{sX. : i d l\

coincide.

THEOREM 4.7. Let X = -nix. : i € l] be a product space, where I
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is a finite index set.

(a) sX = •n{eXi : i $ i) .

(b) s X = TT{S X. : i € l\ .

(a) lm(X) = suV{lRH{x.) : i t l] .

The proof of (a) i s routine and statements (b) and (o) follow

immediately from (a), and the results of Section 6 of [70]. / /

5. Examples

In [70], there are spaces constructed whose i?-series have length at

least 3 . In our first example, we construct a Hausdorff space X* such

that ^n(^) — O 5 where a is any preassigned ordinal. An interesting

feature of the space X* is that it differs from a locally compact,

regular, Hausdorff space only in the convergence of one filter and its

refinements.

EXAMPLE 5.1. Let a be an uncountable cardinal ordinal (that is,

the least ordinal of a given cardinality), and let {A^ : 0 S a < a} be a

disjoint collection of denumerable sets. Let X = U[A : 0 £ a < a} .

Partition each X0" into sets Ix0' : 0 5 n < u>\ , where each X0' is

denumerable. Also, let the elements of A be indexed as follows:

a ( a ) a
A = \x : 0 - n < cof . No relationship is assumed between the sets A

and the elements a;̂  . Assign to X the finest convergence structure

subject to the following conditions:

(1) each free ultrafilter which contains A , X-converges to

x ° + 1 , for all a < o ;

(2) for each n < w , let 2"n = jx" : 0 £ a < a\ , and let T^

have the well order determined by the superscripts of its

elements.
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A filter F which contains T converges to y in T iff the

restriction of F to T converges to y in the order topology on T

The space X resembles closely the space (S, r) of Example 2.10 of

[5]. Like the latter space, X is locally compact, regular, and

Hausdorff.

We now define a space X* on the same underlying set as follows: X*

has the finest convergence structure which satisfies the conditions imposed

on X along with the condition that the filter A generated by the

collection iX -X : n < u)> converges to an arbitrary but prechosen point

a <= X1 .

If A = X - X is a subbasic member of A , then

clyv1 = A u M ^ - p f and *" - cly*j4 for n - 2 • From this> we easily

deduce the following results:

(1) y •+ a in r±X* for all y € U{xa : 2 S a 5 u} ;

(2) a •*• y in r^C* for all y € U{ja
 : 2 5 a 5 u} ;

(3) a -h- y in v^.* for all y € X0" if a > w .

Similarly, one can show that a •* y in r,X* for each y £ XT , but a

does not r. X*-converge to any point in A if a > 2w . Note that for a

point z £ K , rJC*^-convergence of filters to s does not differ from

^^-convergence of filters to s until a critical ordinal a is reached

when a •* z in r X* . If 6 is the largest ordinal such that a

g
r X*-converges to points in X , then 6 + w will be the largest ordinal

such that a r .F-converges to points in AT . Thus it is clear that

l£* > a . //

It is shown in Theorem 7.U of [JO] that if X is first countable,
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then ^n(^) - w + 1 . The next example shows that a first countable space

can achieve an i?-series length of precisely w, + 1 .

EXAMPLE 5.2. Let X* be the space constructed in Example 5-1 and

let 0 = w, . In the definition of convergence in X* , three types of

non-trivial filters constitute a base for the convergence structure. All

three types have countable filter bases if O = u. . Thus X* is first

B = X* - [X° v X1) , and let B be the filter consisting of all

countable.

Let

oversets of B . Then B c c l y*^a} , and so B -»• a in r X* .
rui wl

Suppose B -*• a in r X* . Then there is an a < w and n < to such

that B 2: cl" ^G , where G •*• a in X* . But then X° u {a} € G , and it

is clear that B £ cln ^{x u {a}) if a < u . Therefore it is

impossible for B to r X*-converge to a , and so ^-n^* _ u + 1 . But

l^X* 5 u^ + l by Theorem 1 .k of JO , and so Z-^* = a)1 + 1 . //

In Theorem 6.3 of 10 , it is shown that if X = TJ {X. : i € l\ is

a product space, where J is a finite index set, then

r X = "1 f {r X. : i € i] , for all ordinals a . Our next example shows

that this conclusion does not extend to products over an infinite index

set.

EXAMPLE 5.3. Let N denote the set of all non-negative integers.

Define on the set N the finest convergence structure such that

n •* n + 1 . Let X = N be the product space; let x denote the point

in X whose coordinates are all 0 , and let y = (0, 1, 2, ...) . Since

cl"{0} = {0, 1, 2 n} , then n •*• 0 in r±N for all n d N . Thus

y -»• x in [r^) .

Wow suppose that y •*• x in r X ; then there is m (. N and
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F -»• x in X such that y 2 clv^ • This means that k 2 cl^F, for each

k i N , where F, is the projection of F onto the k-th copy of N .

Since the only filter which converges to 0 in N is 0 , it follows that

F, = 6 , and so k 2 cl^O , for each k € N . But this is impossible if

k > m , since cl™{0} = {0, 1, 2, ..., m) . This contradiction establishes

that y -h- x in r X , and so r±X # [pJf]11 . II

6. Application

The notions of a compactification and a completion were studied by

Rama ley and Wyler in [7] from the categorical point of view. We give an

alternate proof to Theorem 7-1 of [7] by making use of the ^--modification

of a space discussed in Section 1.

THEOREM 6.1 ([7]). The class of compact T spaces is a reflective

subcategory of the category of all convergence spaces.

Proof. Let (I, j) denote the compactification given in [8] for a

space X . It is not necessary for X to be Hausdorff as was assumed in

[S]. It was shown in [8] that j is a universal mapping relative to

compact T spaces and continuous mappings.

Let / be a continuous function from X into a compact 2" space

Z . Then there exists a continuous function g : Y -*• Z such that

g ° 3 - f . Let (J) denote the natural mapping from Y into Y . Then
s

by commutativity of the diagram in Proposition 1.6, g : Y -*• Z is a

continuous function such that g ° <(> = g . Hence / = g ° (j) ° j , and so

<j) o j is a universal mapping. //

The notion of a Cauchy space was defined in [6], and previously by

several other authors. The reader is asked to refer to [6] for basic

definitions not given here. Let (X, C) denote a Cauchy space; then the

relation F ~ G iff F n G € C defines an equivalence relation on C .

Let 2" = {[F] : F £ C} denote the quotient set, and let j : X -»• T be

defined by j(x) = [x] . Further, let V be defined to be the Cauchy
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structure {G : G > j'F n [F], F € C} on T .

A function f from a Cauchy space (X, C) into a Cauchy space

(X, V) is called Cauchy-continuous if /(F) € t? whenever F £ C . The

above mapping j : (X, C) •+ (T, 0) is Cauchy continuous. In fact, (T, V)

is the Cauchy space associated with the uniform convergence space

completion given by Wyler in [//]. Hence it follows that j is a

universal mapping relative to complete Hausdorff Cauchy spaces and Cauchy-

continuous mappings.

Rama ley and Wyler, in Theorem 5.3 of [7], have shown that a class of

T complete Cauchy spaces is a reflective class of Cauchy spaces

satisfying conditions specified there. We show the following version by

using the same technique as in the above theorem.

THEOREM 6.2. The class of T complete Cauchy spaces is reflective

in the class of all Cauchy spaces.

Proot. Let (X, C) be a Cauchy space and let / : U , C) •+ {R, E)

be a Cauchy continuous mapping into the T complete Cauchy space

{R, E) . As mentioned above, since J is a universal mapping, then there

exists a Cauchy-continuous mapping g : (I7, V) -*• (i?, E) such that

f = g ° 3 •

Let T denote the T -modification of the convergence space induced
s i

by (T, V) on T . Let V denote the Cauchy structure associated with
s

the convergence structure of T . Then IT , V ) is a T complete

Cauchy space. From Proposition 1.6, g : [T , V ) -*• (R, E) is Cauchy-

continuous, since both spaces are complete, and g ° § = g . Hence

f = g o (j> o j t so $ o j is a universal mapping. //
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