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Abstract. Given a torus action �T2;M� on a smooth manifold, the orbit map evx�t� � t � x for
each x 2M induces a homomorphism ev�:Z2!H1�M;Z�. The action is said to be Rank-k
if the image of ev� has rank k �W 2� for each point ofM. In particular, if ev� is a monomorphism,
then the action is called homologically injective. It is known that a holomorphic complex torus
action on a compact KÌhler manifold is homologically injective.We study holomorphic complex
torus actions on compact non-KÌhler Hermitian manifolds. A Hermitian manifold is said to
be a locally conformal KÌhler if a lift of the metric to the universal covering space is conformal
to a KÌhler metric.We shall prove that a holomorphic conformal complex torus action on a
compact locally conformal KÌhler manifold M is Rank-1 provided that M has no KÌhler
structure.
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1. Introduction

We study compact non-KÌhler Hermitian manifolds which admit holomorphic
complex torus actions. By a holomorphic complex torus action m : T 1

C �M!M
we mean an effective action of a complex torus T 1

C on a complex manifold M such
that the action m is holomorphic. For each x 2M, the orbit map evx : T 1

Cÿ!M
de¢ned by evx�t� � t � x induces a homology homomorphism ev� : Z2!H1�M;Z�.
If the image of ev� has rank k �W 2� for each x 2M, we call it a Rank-k torus action.
Especially when Rank � 2, i.e. ev� is injective, the action is said to be homologically
injective. The rank of the torus action is motivated by the work of Harvey and
Lawson [6]. It is known that every holomorphically isometric action of a complex
torus on a compact KÌhler manifold is homologically injective (for example, [2]).
The purpose of this note is to study which kind of holomorphic complex torus actions
occur on compact non-KÌhler Hermitian manifolds. A Hermitian manifold M is
called a locally conformal KÌhler manifold if M admits a Hermitian metric whose

Compositio Mathematica 124: 341^349, 2000. 341
# 2000 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1012080829810 Published online by Cambridge University Press

https://doi.org/10.1023/A:1012080829810


lift to the universal covering space ~M is conformal to a KÌhler metric on ~M. We refer
to [5] for the detail of locally conformal KÌhler manifolds. For example, some of
compact elliptic surfaces and Inoue surfaces are such locally conformal KÌhler
manifolds. We shall prove the following main theorem:

THEOREM. Let �T 1
C;M; g� be a holomorphic complex torus action on a compact

locally conformal KÌhler manifold M acting as a group of conformal transformations
with respect to the Hermitian metric g. IfM of real dimension at least 4 does not admit
any KÌhler structure, then the action is Rank-1.

A holomorphic transformation f is conformal if f �g � l � g for some positive func-
tion l:M!R. Note that the holomorphic isometries of g are contained in the group
of holomorphic conformal transformations. Concerning KÌhler structures on
complex manifolds, we remark that keeping the complex structure ¢xed, a compact
locally conformal KÌhler manifold admits some KÌhler metric if and only if it
is globally conformal to KÌhler (cf. [5, 9]).

Some elliptic surfaces admit such torus actions. For example, the usual Hopf
manifold admits a Rank-1 holomorphic torus action generated by the Lee and
anti-Lee vector ¢eld (compare [5]).

2. Conformal KÌhler Actions

Let ~M be the universal covering space of M and p � p1�M� its fundamental group.
Let J be a lift of the complex structure of M to ~M and ~g the lift of g to ~M. If
M is a locally conformal KÌhler manifold, then there exists a KÌhler metric h
on ~M such that ~g � a � h for some positive function a on ~M. Denote by O the fun-
damental 2-form of h (i.e., O�X ;Y � � h�X ; JY �). A holomorphic conformal

transformation f of � ~M; ~g; J� satisfies f � ~g � b � ~g. Letting m � �f �a�ÿ1 � b � a, we

have f �O � m � O. Since O is KaÈ hler and dim MX 4, m must be constant. Thus, f
becomes a holomorphically homothetic transformation onto ~M itself. Let G be the

group of all holomorphic homothetic transformations of ~M. Then there exists a

map r which assigns to each element of G a positive number. It is easy to see that

r:Gÿ!R� is a (continuous) homomorphism.

LEMMA 1. Let �T1
C;M; g� be a holomorphic conformal complex torus action on a

compact locally conformal KÌhler manifold. Then either one of circles in T1
C lifts

to a nontrivial homothetic transformations on � ~M;O�. In particular, if ~T 1
C is a lift

of the action T1
C to ~M, then r� ~T 1

C� � R�.
Proof. Suppose not. Then ~T1

C acts as isometries with respect to h, i.e., r� ~T 1
C� � 1,

~t�O � O for every ~t 2 ~T 1
C. Let x; Jx be the vector ¢elds induced by ~T1

C. Consider
the map t: ~M!R de¢ned by t� ~x� � O�Jx ~x; x ~x�. As above, t�~t � ~x� � t� ~x� for
~t 2 ~T 1

C. In particular, xf � Jxf � 0.
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Denote the orthogonal space by

fx; Jxg? � fW 2 T ~M j h�x;W � � h�Jx;W � � 0g:
Choose an arbitrary vector ¢eld V 2 fx; Jxg?. By de¢nition,

3dO�V ; x; Jx� � VO�x; Jx� � xO�Jx;V � � JxO�V ; x�ÿ
ÿ O��V ; x�; Jx� ÿ O��x; Jx�;V � ÿ O��Jx;V �; x�:

Let ffygy2R, fcygy2R be 1-parameter subgroups generated by x; Jx respectively. Since
fy is holomorphic and

�V ; x� � lim
y!0

V ÿ fÿy�V
y

;

we have O��V ; x�; Jx� � 0. Similarly, O��Jx;V �; x� � 0. As O is KÌhler, Vt � 0.
Hence, t is a constant map on ~M.

On the other hand, the fundamental group p also acts on ~M as a group of
homothetic transformations; g�O � r�g� � O for g 2 p. There exists an element
g 2 p such that r�g� 6� 1, otherwise M would admit a KÌhler structure. As p
centralizes ~T 1

C, we have

t�g � ~x� � O�g�Jx ~x; g�x ~x� � r�g�t� ~x� 6� t� ~x�;
which yields a contradiction. &

COROLLARY 2. There exists a circle S1 on T 1
C whose lift is isomorphic to

R � ffygy2R so that fy
�O � ey � O up to a constant multiple.

As R acts properly and freely on ~M, the action �p; ~M� induces a properly discon-
tinuous action �G;Y � where Y � ~M=R. There is an equivariant principal bundle:

�Z;R�!�p; ~M� ÿ!P �G;Y �:

LEMMA 3. There exists a section s : Yÿ! ~M such that t�s�y�� � const: for every
y 2 Y. In particular, for any y 2 Y, O�Jxs�y�; xs�y�� � 1 (up to a constant multiple.)

Proof. Let t: ~Mÿ!R be as above. Choose a point p 2 ~M and t�p� � a 2 R�.
Denote N � fz 2 ~M j t�z� � ag. By Corollary 2,

t�fy�x�� � fy
�O�Jxx; xx� � ey � t�x�:

For each z 2 N, we have

t��xz� � xt � lim
y!0

t�fy�z�� ÿ t�z�
y

� lim
y!0

ey ÿ 1
y
� t�z� � a 6� 0:

Hence z is a regular point of t. Thus N � tÿ1�a� is a codimension 1-regular
submanifold of ~M. Let P0 : Nÿ!Y be the restriction of the projection P to N.
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For any y 2 Y , there is w 2 ~M with P�w� � y. Choose et such that a � t�w�ÿ1 � et.
Then t�ft�w�� � ett�w� � a, and so ft�w� 2 N and P0�ft�w�� � y, P0 is surjective.
Similarly, P0 is injective. Since P0 is a restriction of P, P0 : N!Y is homeomorphic.
De¢ne a section s : Y! ~M to be the inverse of P0. As s�Y � � N, we note that
t�s�y�� � a for y 2 Y . &

Let ~T 1
C � R�Ker r and D a subgroup of covering translations of the lift:

~T 1
C!T 1

C. Choose a point ~x 2 ~M such that p� ~x� � x and let ev ~x : ~T 1
C! ~M be the evalu-

ation map ev ~x�~t� � ~t � ~x as before. Consider the following commutative diagrams:

D ÿÿÿÿÿÿ!i
p???y ???y

~T 1
C ÿÿÿÿÿÿ!ev ~x ~M

p

???y p

???y
T 1
C ÿÿÿÿÿÿ!evx M ) T1

C ÿÿÿÿÿÿ!evx M

p1� ~T 1
C� ÿÿÿÿÿÿ!ev#

1

p�

???y p�

???y
p1�T 1

C� ÿÿÿÿÿÿ!ev#

p1�M� ÿÿÿÿÿÿ!n
H1�M�

@#

???y �
???y k

???y
D ÿÿÿÿÿÿ!i

p ÿÿÿÿÿÿ!n
p=�p; p�:

Here ev� � n � ev# : Z2 � p1�T 1
C�ÿ!H1�M� and n is the canonical projection.

Case I. If Ker r � S1, then D � Z � R. By the commutative diagram,
ev��Z2� � n�Z�. As r factors through p=�p; p�, r � ev��Z2� � r�Z� � Z because
Z � R with r�R� � R�. Thus the action is Rank-1.
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Case II (geometric part). We consider the case that ~T1
C � R2. Then D � Z2. As R2

acts properly and freely on ~M, the action �p; ~M� induces a properly discontinuous
action �Q;W � where W � ~M=R2 for which the following diagram is commutative:

�Z;R� ÿÿÿÿÿÿ!� �Z;R�???y ???y
�Z2;R2� ÿÿÿÿÿÿ! �p; ~M� ÿÿÿÿÿÿ!m �Q;W �???y P

???y k
???y

�Z;R� ÿÿÿÿÿÿ! �G;Y � ÿÿÿÿÿÿ! �Q;W �:

PROPOSITION 4. Let �Z;R�ÿ!�G;Y �ÿ!�Q;W � be the induced equivariant
principal bundle. There exists a contact form o on Y with the following properties:

(1) o is a connection form on the principal bundle R!Yÿ!W.
(2) o is G-invariant.

As a consequence, if there exists a subgroup Q0 of ¢nite index in Q which acts freely on
W, then there is a principal circle bundle S1!Y=G0ÿ!W=Q0 whose Euler class is
nonzero in H2�W=Q0;Z�.

Proof. Let s : Y! ~M be a section as in Lemma 3. De¢ne a 1-form o on Y to be
o�Vy� � O�xs�y�; ~Vs�y�� where

~Vs�y� 2 fxg? � fX 2 T ~M j h�x;X � � 0g
such that P�� ~Vs�y�� � Vy. It is easy to check that o is well de¢ned. The 1-parameter
group R induces a vector ¢eld Z on Y . Since x; Jx generate R2, P�Jx � Z. As
Jx 2 fxg?, Lemma 3 implies that o�Zy� � 1. In particular, o is a connection form
on the principal bundle R!Yÿ!W . Using the interior product operator i, we
can write P�o� ~Vs�y�� � ixO� ~Vs�y��. Then

dP�o � d � ixO � �Lx ÿ ix � d�O � LxO � O:

For this,

LxO � lim
y!0

f�yOÿ O
y

� lim
y!0

ey ÿ 1
y
� O � O

as before. Thus, P��do�n � On so that o ^ �do�n 6� 0 for each point of Y , i.e., o is a
contact form. Moreover,

do�Z;V � � P�do�Jx; ~V � � O�Jx; ~V � � h�x; ~V � � 0:

Hence Z is a characteristic vector ¢eld for o.
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We prove that o is invariant under the action of G. For g 2 G, choose u 2 p with
P�u� � g. As P�u � s�y�� � g � y, there exists n 2 Z such that u � s�y� � n � s�g � y�. Then
note that �nÿ1 � u�� ~Vs�y� 2 Ts�g�y� ~M for which

h��nÿ1 � u�� ~V ; x� � r�nÿ1 � u� � h� ~V ; �uÿ1 � n��x� � r�nÿ1 � u� � h� ~V ; x� � 0:

Thus, we have �nÿ1 � u�� ~Vs�y� 2 fxg?s�g�y�.
Since P���nÿ1 � u�� ~Vs�y�� � g�Vy, a calculation shows that

r�u� � O�xs�y�; ~Vs�y�� � u�O�xs�y�; ~Vs�y�� � O�xn�s�g�y�; u� ~Vs�y��
� r�n� � O�xs�g�y�; �nÿ1 � u�� ~Vs�y��:

On the other hand, we note that r�u� � r�n�. For this,

r�u� � t�u � s�y�� � t�n � s�g � y�� � r�n� � t�s�g � y�� � r�n�:
Hence,

o�Vy� � O�xs�y�; ~Vs�y�� � O�xs�g�y�; �nÿ1 � u�� ~Vs�y�� � o�g�Vy�:
That is, g�o � o, o is G-invariant. &

Remark 5. It is easy to see that P� maps fx; Jxg? isomorphically onto Null o. As
the complex structure leaves invariant fx; Jxg?, it induces a complex structure J
on Null o. So the pair �o; J� is a pseudo-Hermitian structure on Y in which the
characteristic vector ¢eld Z induces a principal R-action on Y . Such a
pseudo-Hermitian structure �o; J� endowed with Z is called standard (or
equivalently, almost regular). Compare [1, 7, 8].

We recall the following algebraic result from [3]:

PROPOSITION 6. Let 1!Zkÿ!Gÿ!H!1 be a central group extension. If the
canonical projection n : Zk!G=�G;G� is injective, then G has a splitting subgroup
G0 of ¢nite index, i.e., G0 � Zk �H 0. Especially, the representative cocycle for
the above extension has ¢nite order in H2�H;Zk�.

Case III (algebraic part). Given a properly discontinuous action �Q;W �, we can

define the direct product action �Z2 �Q;R2 �W �:
�n; a��x;w� � �x� n; a�w��:

PROPOSITION 7. Suppose that ev� � n � i : Z2ÿ!H1�M;Z� � p=�p; p� is injective.
Passing to a subgroup Q0 of ¢nite index in Q, the product action
�R2; �Z2 �Q0;R2 �W �� is equivariantly diffeomorphic to the original action
�R2; �p0; ~M��. Here p0 is a subgroup of p which occurs as an extension
1!Z2ÿ!p0ÿ!Q0!1 restricted to Q0. In particular, Q0 acts freely on W.
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Proof. Let 1!Z2 ÿ!ev#

pÿ!Q!1 be the induced central group extension. We
identify ev#�n� � n. A (central) group extension can be represented by a 2-cocycle
�f � 2 H2�Q;Z2�. In fact, choosing a section q : Qÿ!p, f is described as
f �a; b� � q�ab� � q�a�q�b� for a; b 2 Q. Then p is the product Z2 �Q with group law:

�n; a��m; b� � �n�m� f �a; b�; ab�:
Recall some facts about the injective Seifert ¢bering from [3].

Let �Z2;R2�!�p; ~M� ÿ!m �Q;W � be an equivariant principal bundle as above.
Choosing a (continuous) section ~q : W! ~M, the correspondence �x;w�ÿ!x � ~q�w�
gives a diffeomorphism of the product R2 �W onto ~M for which the action of
R2 is equivalent to the original R2-action. We obtain the corresponding action
of p on R2 �W . In fact, for an element �0; a� 2 Z2 �Q, as the projection m maps
m��0; a� � �0;w�� � a � w, we can write the action �0; a� � �0;w� � �w�a��a � w�; a � w�
for a function w : Qÿ!Map�W ;R2�. Let g � �n; a� be any element of p. As p
centralizes ~T 1

C � R2,

g � �x;w� � �n� x� w�a��a � w�; a � w�: �1�
The equality ��0; a� � �0; b���0;w� � �f �a; b�; ab��0;w� implies that

f �a; b� � w�b��b � w� � w�a��ab � w� ÿ w�ab��ab � w�:
Viewed w as an element of the cochain complex C1�Q; Map�W ;R2��, we have
f � d1w.

On the other hand, by Proposition 6, �f � is a torsion element in H2�Q;Z2�. Say,
some ` 2 Z, ` � f � d1l0 for a 1-cochain l0 : Qÿ!Z2, i.e.,

f �a; b� � 1
`
l0�b� � 1

`
l0�a� ÿ 1

`
l0�ab�:

Put l � �1=`�l0 so that f � d1l in C1�Q; Map�W ;R2��. Here R2 is viewed as a con-
stant map in Map�W ;R2�. Using l, we have another action of p in this case:

g � �x;w� � �n� x� l�a�; a � w�:
Since

f � d1w � d1l; �ÿl� w� 2 H1�Q; Map�W ;R2��:
As W is simply connected and the quotient W=Q is compact, we know that
H1�Q; Map�W ;R2�� � 0. (See [4].) And so there exists an element
h 2 H0�Q; Map�W ;R2��, i.e., a map h : Wÿ!R2 such that

ÿl�a� � w�a��w� � �d0h��a��w� � h�aÿ1 � w� ÿ h�w�:
We have

ÿl�a� � w�a��a � w� � h�w� ÿ h�a � w�: �2�
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Using h, we de¢ne a diffeomorphism H:R2 �Wÿ!R2 �W to be
H��x;w�� � �x� h�w�;w�.

Let 1!�Q;Q�!Qÿ!Q=�Q;Q�!1 be the exact sequence. Noting l�1� � 0, we see
that l��Q;Q�� � Z2. A calculation shows that

l�a`� � ` � l�a� ÿ ff �a; a� � f �a2; a� � . . .� f �a`ÿ1; a�g 2 Z2:

AsQ is ¢nitely generated,Q=�Q;Q� � Zk � ha torsion groupi for some k. LetQ0 be a
subgroup of Q which maps onto ` �Zk. Then Q0 is of ¢nite index in Q satisfying that
l�Q0� � Z2. If 1!Z2!p0ÿ!Q0!1 is the induced group extension, then there is
an isomorphism F of p0 onto the direct product Z2 �Q0 by setting
F�n; a0� � �n� l�a0�; a0�. Then �F;H� : �p0;R2 �W �ÿ!�Z2 �Q0;R2 �W � is an
equivariant diffeomorphism between the original action �p0;R2 �W � and the prod-
uct action �Z2 �Q0;R2 �W �. In fact, using �1�; �2�,

F�n; a0�H�x;w� � ��n� l�a0�� � x� h�w�; a0w�
� �n� x� w�a0��a0w� � h�a0w�; a0w�
� H�n� x� w�a0��a0w�; a0w�
� H��n; a0��x;w��:

Since p0 acts freely on R2 �W , Q0 acts freely on W . &

3. Proof of the Theorem

We have only to check Case II of the above discussion. By Corollary 2,
ev�:Zÿ!p=�p; p� � H1�M;Z� is injective at least. So in order to complete the proof
of the main Theorem, it suf¢ces to show that ev� : Z2ÿ!H1�M;Z� cannot be
injective. Suppose that ev� � n � i : Z2ÿ!H1�M;Z� is injective. Proposition 7
implies that there exists a subgroup Q0 of ¢nite index in Q for which
p0 � Z2 �Q0, andQ0 acts freely onW . Since the isomorphism F preserves the center,
it induces an isomorphism:

G0 � Z�Q0 ���

However, applying Proposition 4, the principal bundle S1!Y=G0ÿ!W=Q0 has a
nonzero Euler class; equivalently, by taking the homotopy exact sequence of the
fundamental groups, 1!Z ÿ!ev#

G0ÿ!Q0!1 is a nontrivial group extension, which
contradicts ���.

Remark 8. When we work with the locally conformal symplectic structure
invariant under the complex structure, the same result holds whenever the function
t� ~x� � O�x ~x; Jx ~x� is nonzero everywhere.
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